The diagnostic accuracy of saliva testing for SARS-CoV-2: A systematic review and meta-analysis
Corresponding Author
Momen A. Atieh
Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates
Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
Correspondence
Momen A. Atieh, Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates; Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Writing - original draft, Writing - review & editing
Search for more papers by this authorMarina Guirguis
Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates
Contribution: Data curation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorNabeel H. M. Alsabeeha
Prosthetic Section, Ras Al-Khaimah Dental Center, Ministry of Health and Prevention, Dubai, United Arab Emirates
Contribution: Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorRichard D. Cannon
Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
Contribution: Investigation, Resources, Software, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Momen A. Atieh
Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates
Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
Correspondence
Momen A. Atieh, Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates; Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Writing - original draft, Writing - review & editing
Search for more papers by this authorMarina Guirguis
Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates
Contribution: Data curation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorNabeel H. M. Alsabeeha
Prosthetic Section, Ras Al-Khaimah Dental Center, Ministry of Health and Prevention, Dubai, United Arab Emirates
Contribution: Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorRichard D. Cannon
Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
Contribution: Investigation, Resources, Software, Writing - original draft, Writing - review & editing
Search for more papers by this authorAbstract
Introduction
Early detection of coronavirus disease 2019 (COVID-19) is paramount for controlling the progression and spread of the disease. Currently, nasopharyngeal swabbing (NPS) is the standard method for collecting specimens. Saliva was recently proposed as an easy and safe option with many authorities adopting the methodology despite the limited evidence of efficacy.
Objectives
The aim of this review was to systematically evaluate the current literature on the use of saliva test for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and carry out a meta-analysis to determine its diagnostic accuracy.
Materials and methods
Prospective studies were searched for in electronic databases, complemented by hand-searching relevant journals. The risk of bias and applicability were assessed using the revised Quality Assessment of Studies of Diagnostic Accuracy Studies (QUADAS-2) tool. Meta-analyses and meta-regression modeling were performed to calculate the diagnostic accuracy and examine sources of heterogeneity.
Results
A total of 16 studies were included with 2928 paired samples. The overall meta-analysis showed a high sensitivity and specificity for saliva test at 0.88 (95% CI 0.82–0.92) and 0.92 (95% CI 0.75–0.98), respectively. The diagnostic odds ratio was calculated at 87 (95% CI 19–395) and area under the curve was calculated as 0.92 (95% CI 0.90–0.94) suggesting very good performance of the saliva tests in detecting SARS-CoV-2.
Conclusion
Saliva testing has a very good discriminative and diagnostic ability to detect of SARS-CoV-2. Additional large and well-designed prospective studies are needed to further validate the diagnostic accuracy and determine a safe sample collection method prior to its recommendation for mass application.
Clinical relevance
Saliva demonstrated high sensitivity and specificity. The use of saliva will allow for self-collection of specimens and specimen collection in outpatient and community clinics.
CONFLICT OF INTEREST
Momen Atieh declares that he has no conflict of interest. Marina Guirguis declares that she has no conflict of interest. Nabeel Alsabeeha declares that he has no conflict of interest. Richard Cannon declares that he has no conflict of interest.
REFERENCES
- Aita, A., Basso, D., Cattelan, A. M., Fioretto, P., Navaglia, F., Barbaro, F., Stoppa, A., Coccorullo, E., Farella, A., Socal, A., Vettor, R., & Plebani, M. (2020). SARS-CoV-2 identification and IgA antibodies in saliva: One sample two tests approach for diagnosis. Clinica Chimica Acta, 510, 717–722. https://doi.org/10.1016/j.cca.2020.09.018
- Akobeng, A. K. (2007). Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta Paediatrica, 96(5), 644–647. https://doi.org/10.1111/j.1651-2227.2006.00178.x
- Altawalah, H., AlHuraish, F., Alkandari, W. A., & Ezzikouri, S. (2020). Saliva specimens for detection of severe acute respiratory syndrome coronavirus 2 in Kuwait: A cross-sectional study. Journal of Clinical Virology, 132, 104652. https://doi.org/10.1016/j.jcv.2020.104652
- Berenger, B. M., Conly, J. M., Fonseca, K., Hu, J., Louie, T., Schneider, A. R., Singh, T., Stokes, W., Ward, L., & Zelyas, N. (2021). Saliva collected in universal transport media is an effective, simple and high-volume amenable method to detect SARS-CoV-2. Clinical Microbiology and Infection, 27(4), 656–657. https://doi.org/10.1016/j.cmi.2020.10.035
- Binder, R. A., Alarja, N. A., Robie, E. R., Kochek, K. E., Xiu, L., Rocha-Melogno, L., Abdelgadir, A., Goli, S. V., Farrell, A. S., Coleman, K. K., Turner, A. L., Lautredou, C. C., Lednicky, J. A., Lee, M. J., Polage, C. R., Simmons, R. A., Deshusses, M. A., Anderson, B. D., & Gray, G. C. (2020). Environmental and aerosolized severe acute respiratory syndrome coronavirus 2 among hospitalized coronavirus disease 2019 patients. Journal of Infectious Diseases, 222(11), 1798–1806. https://doi.org/10.1093/infdis/jiaa575
- Chen, J. H. K., Yip, C. C. Y., Poon, R. W. S., Chan, K. H., Cheng, V. C. C., Hung, I. F. N., Chan, J. F. W., Yuen, K. Y., & To, K. K. W. (2020). Evaluating the use of posterior oropharyngeal saliva in a point-of-care assay for the detection of SARS-CoV-2. Emerging Microbes & Infections, 9(1), 1356–1359. https://doi.org/10.1080/22221751.2020.1775133
- Czumbel, L. M., Kiss, S., Farkas, N., Mandel, I., Hegyi, A., Nagy, Á., Lohinai, Z., Szakács, Z., Hegyi, P., Steward, M. C., & Varga, G. (2020). Saliva as a candidate for COVID-19 diagnostic testing: a meta-analysis. Frontiers in Medicine, 7, 465. https://doi.org/10.3389/fmed.2020.00465
- Deeks, J. J., Macaskill, P., & Irwig, L. (2005). The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. Journal of Clinical Epidemiology, 58(9), 882–893. https://doi.org/10.1016/j.jclinepi.2005.01.016
- Devillé, W. L., Buntinx, F., Bouter, L. M., Montori, V. M., de Vet, H. C. W., van der Windt, D. A. W. M., & Bezemer, P. D. (2002). Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC Medical Research Methodology, 2(1), 9. https://doi.org/10.1186/1471-2288-2-9
- Dinnes, J., Deeks, J., Kirby, J., & Roderick, P. (2005). A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy. Health Technology Assessment, 9(12), 1–113. https://doi.org/10.3310/hta9120
- Faggion, C. M. Jr, Atieh, M. A., & Park, S. (2013). Search strategies in systematic reviews in periodontology and implant dentistry. Journal of Clinical Periodontology, 40(9), 883–888. https://doi.org/10.1111/jcpe.12132
- Fakheran, O., Dehghannejad, M., & Khademi, A. (2020). Saliva as a diagnostic specimen for detection of SARS-CoV-2 in suspected patients: a scoping review. Infectious Diseases of Poverty, 9(1), 100. https://doi.org/10.1186/s40249-020-00728-w
- Fernandes, L. L., Pacheco, V. B., Borges, L., Athwal, H. K., de Paula Eduardo, F., Bezinelli, L., Correa, L., Jimenez, M., Dame-Teixeira, N., Lombaert, I., & Heller, D. (2020). Saliva in the diagnosis of COVID-19: A review and new research directions. Journal of Dental Research, 99(13), 1435–1443. https://doi.org/10.1177/0022034520960070
- Glas, A. S., Lijmer, J. G., Prins, M. H., Bonsel, G. J., & Bossuyt, P. M. (2003). The diagnostic odds ratio: a single indicator of test performance. Journal of Clinical Epidemiology, 56(11), 1129–1135. https://doi.org/10.1016/s0895-4356(03)00177-x
- Golatowski, C., Gesell Salazar, M., Dhople, V. M., Hammer, E., Kocher, T., Jehmlich, N., & Völker, U. (2013). Comparative evaluation of saliva collection methods for proteome analysis. Clinica Chimica Acta, 419, 42–46. https://doi.org/10.1016/j.cca.2013.01.013
- Gorchakov, R., Berry, R. M., Patel, S. M., El Sahly, H. M., Ronca, S. E., & Murray, K. O. (2019). Optimizing PCR detection of Zika virus from various body fluids. American Journal of Tropical Medicine and Hygiene, 100(2), 427–433. https://doi.org/10.4269/ajtmh.18-0755
- Güçlü, E., Koroglu, M., Yürümez, Y., Toptan, H., Kose, E., Güneysu, F., & Karabay, O. (2020). Comparison of saliva and oro-nasopharyngeal swab sample in the molecular diagnosis of COVID-19. Revista da Associação Médica Brasileira, 66(8), 1116–1121. https://doi.org/10.1590/1806-9282.66.8.1116
- Hanson, K. E., Barker, A. P., Hillyard, D. R., Gilmore, N., Barrett, J. W., Orlandi, R. R., & Shakir, S. M. (2020). Self-collected anterior nasal and saliva specimens versus health care worker-collected nasopharyngeal swabs for the molecular detection of SARS-CoV-2. Journal of Clinical Microbiology, 58(11), e01824–20. https://doi.org/10.1128/JCM.01824-20
- Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560. https://doi.org/10.1136/bmj.327.7414.557
- Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19(3), 141–154. https://doi.org/10.1038/s41579-020-00459-7
- Irwig, L. (1994). Guidelines for meta-analyses evaluating diagnostic tests. Annals of Internal Medicine, 120(8), 667–676. https://doi.org/10.7326/0003-4819-120-8-199404150-00008
- Iwasaki, S., Fujisawa, S., Nakakubo, S., Kamada, K., Yamashita, Y., Fukumoto, T., Sato, K., Oguri, S., Taki, K., Senjo, H., Sugita, J., Hayasaka, K., Konno, S., Nishida, M., & Teshima, T. (2020). Comparison of SARS-CoV-2 detection in nasopharyngeal swab and saliva. Journal of Infection, 81(2), e145–e147. https://doi.org/10.1016/j.jinf.2020.05.071
- Jaeschke, R., Guyatt, G. H., & Sackett, D. L. (1994). Users' guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. JAMA, 271(9), 703–707. https://doi.org/10.1001/jama.271.9.703.
- Jamal, A. J., Mozafarihashjin, M., Coomes, E., Powis, J., Li, A. X., Paterson, A., Anceva-Sami, S., Barati, S., Crowl, G., Faheem, A., Farooqi, L., Khan, S., Prost, K., Poutanen, S., Taylor, M., Yip, L., Zhong, X. Z., McGeer, A. J., Mubareka, S., … Walmsley, S. (2021). Sensitivity of nasopharyngeal swabs and saliva for the detection of severe acute respiratory syndrome coronavirus 2. Clinical Infectious Diseases, 72(6), 1064–1066. https://doi.org/10.1093/cid/ciaa848
- Khurshid, Z., Zafar, M., Khan, E., Mali, M., & Latif, M. (2019). Human saliva can be a diagnostic tool for Zika virus detection. Journal of Infection and Public Health, 12(5), 601–604. https://doi.org/10.1016/j.jiph.2019.05.004
- Kim, S. E., Lee, J. Y., Lee, A., Kim, S., Park, K. H., Jung, S. I., Kang, S. J., Oh, T. H., Kim, U. J., Lee, S. Y., Kee, S. J., & Jang, H. C. (2020). Viral load kinetics of SARS-CoV-2 infection in saliva in Korean patients: a prospective multi-center comparative study. Journal of Korean Medical Science, 35(31), e287. https://doi.org/10.3346/jkms.2020.35.e287
- Ku, C. W., Shivani, D., Kwan, J. Q. T., Loy, S. L., Erwin, C., Ko, K. K. K., Ng, X. W., Oon, L., Thoon, K. C., Kalimuddin, S., & Chan, J. K. Y. (2021). Validation of self-collected buccal swab and saliva as a diagnostic tool for COVID-19. International Journal of Infectious Diseases, 104, 255–261. https://doi.org/10.1016/j.ijid.2020.12.080
- Landry, M. L., Criscuolo, J., & Peaper, D. R. (2020). Challenges in use of saliva for detection of SARS CoV-2 RNA in symptomatic outpatients. Journal of Clinical Virology, 130, e104567. https://doi.org/10.1016/j.jcv.2020.104567
- Lee, Y. H., & Wong, D. T. Saliva: an emerging biofluid for early detection of diseases. American Journal of Dentistry, 22(4), 241–248. Available: https://www.ncbi.nlm.nih.gov/pubmed/19824562
- Leeflang, M. M., Deeks, J. J., Gatsonis, C., & Bossuyt, P. M., Cochrane Diagnostic Test Accuracy Working Group. Systematic reviews of diagnostic test accuracy, Annals of Internal Medicine, 149(12), 889. https://doi.org/10.7326/0003-4819-149-12-200812160-00008
- Liu, L., Wei, Q., Alvarez, X., Wang, H., Du, Y., Zhu, H., Jiang, H., Zhou, J., Lam, P., Zhang, L., Lackner, A., Qin, C., & Chen, Z. (2011). Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of rhesus macaques. Journal of Virology, 85(8), 4025–4030. https://doi.org/10.1128/JVI.02292-10
- Moreno-Contreras, J., Espinoza, M. A., Sandoval-Jaime, C., Cantú-Cuevas, M. A., Barón-Olivares, H., Ortiz-Orozco, O. D., Muñoz-Rangel, A. V., de la Hernández Cruz, M., Eroza-Osorio, C. M., Arias, C. F., & López, S. (2020). Saliva sampling and its direct lysis, an excellent option to increase the number of SARS-CoV-2 diagnostic tests in settings with supply shortages. Journal of Clinical Microbiology, 58(10), e01659–20. https://doi.org/10.1128/JCM.01659-20
- Niedrig, M., Patel, P., El Wahed, A. A., Schädler, R., & Yactayo, S. (2018). Find the right sample: A study on the versatility of saliva and urine samples for the diagnosis of emerging viruses. BMC Infectious Diseases, 18(1), 707. https://doi.org/10.1186/s12879-018-3611-x
- Pasomsub, E., Watcharananan, S. P., Boonyawat, K., Janchompoo, P., Wongtabtim, G., Suksuwan, W., Sungkanuparph, S., & Phuphuakrat, A. (2021). Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: A cross-sectional study. Clinical Microbiology and Infection, 27(2), 285.e1–285.e4. https://doi.org/10.1016/j.cmi.2020.05.001
- Procop, G. W., Shrestha, N. K., Vogel, S., Van Sickle, K., Harrington, S., Rhoads, D. D., Rubin, B. P., & Terpeluk, P. (2020). A direct comparison of enhanced saliva to nasopharyngeal swab for the detection of SARS-CoV-2 in symptomatic patients. Journal of Clinical Microbiology, 58(11), e01946–20. https://doi.org/10.1128/JCM.01946-20
- Rao, M., Rashid, F. A., Sabri, F. S. A. H., Jamil, N. N., Zain, R., Hashim, R., Amran, F., Kok, H. T., Samad, M. A. A., & Ahmad, N. Comparing nasopharyngeal swab and early morning saliva for the identification of SARS-CoV-2, Clinical Infectious Diseases, 72(9), e352–e356. https://doi.org/10.1093/cid/ciaa1156
- Sakanashi, D., Asai, N., Nakamura, A., Miyazaki, N., Kawamoto, Y., Ohno, T., Yamada, A., Koita, I., Suematsu, H., Hagihara, M., Shiota, A., Kurumiya, A., Sakata, M., Kato, S., Muramatsu, Y., Koizumi, Y., Kishino, T., Ohashi, W., Yamagishi, Y., & Mikamo, H. (2021). Comparative evaluation of nasopharyngeal swab and saliva specimens for the molecular detection of SARS-CoV-2 RNA in Japanese patients with COVID-19. Journal of Infection and Chemotherapy, 27(1), 126–129. https://doi.org/10.1016/j.jiac.2020.09.027
- Senok, A., Alsuwaidi, H., Atrah, Y., Al Ayedi, O., Al Zahid, J., Han, A., Al Marzooqi, A., Al Heialy, S., Altrabulsi, B., AbdelWareth, L., Idaghdour, Y., Ali, R., Loney, T., & Alsheikh-Ali, A. (2020). Saliva as an alternative specimen for molecular COVID-19 testing in community settings and population-based screening. Infect Drug Resist, 13, 3393–3399. https://doi.org/10.2147/IDR.S275152
- Silva-Boghossian, C. M., Colombo, A. P., Tanaka, M., Rayo, C., Xiao, Y., & Siqueira, W. L. (2013). Quantitative proteomic analysis of gingival crevicular fluid in different periodontal conditions. PLoS One, 8(10), e75898. https://doi.org/10.1371/journal.pone.0075898
- Sullivan, P. S., Sailey, C., Guest, J. L., Guarner, J., Kelley, C., Siegler, A. J., Valentine-Graves, M., Gravens, L., del Rio, C., & Sanchez, T. H. (2020). Detection of SARS-CoV-2 RNA and antibodies in diverse samples: Protocol to validate the sufficiency of provider-observed, home-collected blood, saliva, and oropharyngeal samples. JMIR Public Health and Surveillance, 6(2), e19054. https://doi.org/10.2196/19054
- To, K. K., Tsang, O. T., Leung, W. S., Tam, A. R., Wu, T. C., Lung, D. C., Yip, C. C., Cai, J. P., Chan, J. M., Chik, T. S., Lau, D. P., Choi, C. Y., Chen, L. L., Chan, W. M., Chan, K. H., Ip, J. D., Ng, A. C., Poon, R. W., Luo, C. T., & Yuen, K. Y. (2020). Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet Infectious Diseases, 20(5), 565–574. https://doi.org/10.1016/S1473-3099(20)30196-1
- To, K. K. W., Yip, C. C. Y., Lai, C. Y. W., Wong, C. K. H., Ho, D. T. Y., Pang, P. K. P., Ng, A. C. K., Leung, K. H., Poon, R. W. S., Chan, K. H., Cheng, V. C. C., Hung, I. F. N., & Yuen, K. Y. (2019). Saliva as a diagnostic specimen for testing respiratory virus by a point-of-care molecular assay: A diagnostic validity study. Clinical Microbiology & Infection, 25(3), 372–378. https://doi.org/10.1016/j.cmi.2018.06.009
- Torretta, S., Zuccotti, G., Cristofaro, V., Ettori, J., Solimeno, L., Battilocchi, L., D'Onghia, A., Bonsembiante, A., Pignataro, L., Marchisio, P., & Capaccio, P. (2021). Diagnosis of SARS-CoV-2 by RT-PCR using different sample sources: Review of the literature. Ear, Nose & Throat Journal, 100(2_Suppl), 131S–138S. https://doi.org/10.1177/0145561320953231
- Vaz, S. N., Santana, D. S., Netto, E. M., Pedroso, C., Wang, W. K., Santos, F. D. A., & Brites, C. (2020). Saliva is a reliable, non-invasive specimen for SARS-CoV-2 detection. The Brazilian Journal of Infectious Diseases, 24(5), 422–427. https://doi.org/10.1016/j.bjid.2020.08.001
- Whiting, P. F. (2011). QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 155(8), 529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009.
- WHO. (2021). World Health Organization Coronavirus disease (COVID-19). http://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed 08 March 2021.
- Williams, E., Bond, K., Zhang, B., Putland, M., & Williamson, D. A. (2020). Saliva as a noninvasive specimen for detection of SARS-CoV-2. Journal of Clinical Microbiology, 58(8), e00776–20. https://doi.org/10.1128/JCM.00776-20
- Wyllie, A. L., Fournier, J., Casanovas-Massana, A., Campbell, M., Tokuyama, M., Vijayakumar, P., Warren, J. L., Geng, B., Muenker, M. C., Moore, A. J., Vogels, C. B. F., Petrone, M. E., Ott, I. M., Lu, P., Venkataraman, A., Lu-Culligan, A., Klein, J., Earnest, R., Simonov, M., … Ko, A. I. (2020). Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2. New England Journal of Medicine, 383(13), 1283–1286. https://doi.org/10.1056/NEJMc2016359
- Xu, H., Zhong, L., Deng, J., Peng, J., Dan, H., Zeng, X., Li, T., & Chen, Q. (2020). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science, 12(1), 8. https://doi.org/10.1038/s41368-020-0074-x