Identification of circ_0089153/miR-608/EGFR p53 axis in ameloblastoma via MAPK signaling pathway
Jinwen Liu
Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
Department of Oral Histopathology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
Contribution: Data curation, Formal analysis, Investigation, Validation, Visualization, Writing - original draft
Search for more papers by this authorXue Qiao
Department of Oral Histopathology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
Central Laboratory Department, School and Hospital of Stomatology, Liaoning Province Key Laboratory of Oral Disease, China Medical University, Shenyang, China
Contribution: Conceptualization, Methodology, Project administration, Resources, Supervision, Writing - review & editing
Search for more papers by this authorJiayi Liu
Department of Oral Histopathology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
Contribution: Formal analysis, Investigation, Software, Validation, Visualization, Writing - review & editing
Search for more papers by this authorCorresponding Author
Ming Zhong
Department of Oral Histopathology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
Department of Stomatology, Xiang'an Hospital of Xiamen University, Xiamen, China
Correspondence
Ming Zhong, Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China.
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Methodology, Project administration, Resources
Search for more papers by this authorJinwen Liu
Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
Department of Oral Histopathology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
Contribution: Data curation, Formal analysis, Investigation, Validation, Visualization, Writing - original draft
Search for more papers by this authorXue Qiao
Department of Oral Histopathology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
Central Laboratory Department, School and Hospital of Stomatology, Liaoning Province Key Laboratory of Oral Disease, China Medical University, Shenyang, China
Contribution: Conceptualization, Methodology, Project administration, Resources, Supervision, Writing - review & editing
Search for more papers by this authorJiayi Liu
Department of Oral Histopathology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
Contribution: Formal analysis, Investigation, Software, Validation, Visualization, Writing - review & editing
Search for more papers by this authorCorresponding Author
Ming Zhong
Department of Oral Histopathology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
Department of Stomatology, Xiang'an Hospital of Xiamen University, Xiamen, China
Correspondence
Ming Zhong, Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China.
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Methodology, Project administration, Resources
Search for more papers by this authorAbstract
Objectives
This study investigated the role of circular RNAs (circRNAs) in the pathogenesis of ameloblastoma (AB), identifying potential novel targets for future targeted therapy.
Materials and Methods
CircRNA and microRNA (miRNA) profiling in AB were built with microarrays. Six novel circRNAs were validated, circ-miRNA networks were delineated. Hsa-miR-608 was filtered over cross-comparison between database screening, miRNA microarray and validated. Circ-miRNA binding sponge was validated via luciferase reporter assay. Downstream mRNAs were screened. Regulation between miRNAs and mRNAs was confirmed in vitro. Gene interaction networks and circRNA–miRNA–mRNA interaction pathway enrichment analyses were established.
Results
Six differentially expressed circRNAs were selected and validated. According to miRNAs and pathways predicted, six correlated miRNAs were selected, hsa-miR-608 was filtered and validated. The hsa_circ_0089153/hsa-miR-608 binding sponge was validated. Downstream gene interaction networks showed that EGFR and p53 had the strongest co-expression. In vitro transfection results confirmed the suppressive function of miR-608 and EGFR p53. Hsa_circ_0089153/hsa-miR-608/EGFR p53 interaction pathway enrichment analysis confirmed functions mainly enriched in MAPK and related signaling pathways regulating AB progression.
Conclusions
Six novel circRNAs were identified. Hsa_circ_0089153/hsa-miR-608 sponging was validated, hsa-miR-608 downregulated EGFR and p53, which might further regulate cell proliferation, differentiation, apoptosis, and cell cycle processes via the MAPK signaling pathway.
CONFLICT OF INTEREST
All authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
All data generated or analyzed during this study are included in this published article.
Supporting Information
Filename | Description |
---|---|
odi13788-sup-0001-TableS1-S2.docxWord 2007 document , 19.8 KB | Table S1-S2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Ahire, M. S., Tupkari, J. V., Chettiankandy, T. J., Thakur, A., & Agrawal, R. R. (2018). Odontogenic tumors: A 35-year retrospective study of 250 cases in an Indian (Maharashtra) teaching institute. Indian Journal of Cancer, 55(3), 265–272. https://doi.org/10.4103/ijc.IJC_145_18
- Akhtar, N., Makki, M. S., & Haqqi, T. M. (2015). MicroRNA-602 and microRNA-608 regulate sonic hedgehog expression via target sites in the coding region in human chondrocytes. Arthritis & Rheumatology, 67(2), 423–434. https://doi.org/10.1002/art.38952
- Au, S. W., Li, K. Y., Choi, W. S., & Su, Y. X. (2019). Risk factors for recurrence of ameloblastoma: A long-term follow-up retrospective study. International Journal of Oral and Maxillofacial Surgery, 48(10), 1300–1306. https://doi.org/10.1016/j.ijom.2019.04.008
- Bettoni, J., Neiva, C., Fanous, A., Olivetto, M., Demarteleire, C., Dakpé, S., & Devauchelle, B. (2018). Brain ameloblastoma: Metastasis or local extension case report and physipathological reflexion. Journal of Stomatology, Oral and Maxillofacial Surgery, 119(5), 436–439. https://doi.org/10.1016/j.jormas.2018.04.017
- Bologna-Molina, R., Ogawa, I., Mosqueda-Taylor, A., Takata, T., Sánchez-Romero, C., Villarroel-Dorrego, M., & Mikami, T. (2019). Detection of MAPK/ERK pathway proteins and KRAS mutations in adenomatoid odontogenic tumors. Oral Diseases, 25(2), 481–487. https://doi.org/10.1111/odi.12989
- Brown, N. A., & Betz, B. L. (2015). Ameloblastoma: A review of recent molecular pathogenetic discoveries. Biomark Cancer, 7(Suppl 2), 19–24. https://doi.org/10.4137/bic.S29329
- Brown, N. A., Rolland, D., McHugh, J. B., Weigelin, H. C., Zhao, L., Lim, M. S., & Betz, B. L. (2014). Activating FGFR2-RAS-BRAF mutations in ameloblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 20(21), 5517–5526. https://doi.org/10.1158/1078-0432.Ccr-14-1069
- Chen, B., & Huang, S. (2018). Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Letters, 418, 41–50. https://doi.org/10.1016/j.canlet.2018.01.011
- Chen, L., Wang, G., Qiao, X., Wang, X., Liu, J., Niu, X., & Zhong, M. (2020). Downregulated miR-524-5p participates in the tumor microenvironment of ameloblastoma by targeting the interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis. Medical Science Monitor, 26, e921863. https://doi.org/10.12659/msm.921863
- Chen, P. C., Liu, J. F., Fong, Y. C., Huang, Y. L., Chao, C. C., & Tang, C. H. (2019). CCN3 facilitates Runx2 and osterix expression by inhibiting miR-608 through PI3K/Akt signaling in osteoblasts. International Journal of Molecular Sciences, 20(13), 3300. https://doi.org/10.3390/ijms20133300
- Davanian, H., Balasiddaiah, A., Heymann, R., Sundström, M., Redenström, P., Silfverberg, M., Brodin, D., Sällberg, M., Lindskog, S., Weiner, C. K., & Chen, M. (2017). Ameloblastoma RNA profiling uncovers a distinct non-coding RNA signature. Oncotarget, 8(3), 4530–4542. https://doi.org/10.18632/oncotarget.13889
- DeVilliers, P., Suggs, C., Simmons, D., Murrah, V., & Wright, J. T. (2011). Microgenomics of ameloblastoma. Journal of Dental Research, 90(4), 463–469. https://doi.org/10.1177/0022034510391791
- Diniz, M. G., França, J. A., Vilas-Boas, F. A. S., de Souza, F. T. A., Calin, G. A., Gomez, R. S., de Sousa, S. F., & Gomes, C. C. (2019). The long noncoding RNA KIAA0125 is upregulated in ameloblastomas. Pathology, Research and Practice, 215(3), 466–469. https://doi.org/10.1016/j.prp.2018.12.030
- Diniz, M. G., Gomes, C. C., de Sousa, S. F., Xavier, G. M., & Gomez, R. S. (2017). Oncogenic signaling pathways in benign odontogenic cysts and tumours. Oral Oncology, 72, 165–173. https://doi.org/10.1016/j.oraloncology.2017.07.021
- Effiom, O. A., Ogundana, O. M., Akinshipo, A. O., & Akintoye, S. O. (2018). Ameloblastoma: Current etiopathological concepts and management. Oral Diseases, 24(3), 307–316. https://doi.org/10.1111/odi.12646
- Fernandes, A. M., Duarte, E. C., Pimenta, F. J., Souza, L. N., Santos, V. R., Mesquita, R. A., & de Aguiar, M. C. (2005). Odontogenic tumors: A study of 340 cases in a Brazilian population. Journal of Oral Pathology and Medicine, 34(10), 583–587. https://doi.org/10.1111/j.1600-0714.2005.00357.x
- Fregnani, E. R., Perez, D. E., Paes de Almeida, O., Fonseca, F. P., Soares, F. A., Castro-Junior, G., & Alves, F. A. (2017). BRAF-V600E expression correlates with ameloblastoma aggressiveness. Histopathology, 70(3), 473–484. https://doi.org/10.1111/his.13095
- Ganjre, A. P., Sarode, G., & Sarode, S. (2019). Molecular characterization of metastasizing ameloblastoma: A comprehensive review. Journal of Cancer Research and Therapeutics, 15(3), 455–462. https://doi.org/10.4103/jcrt.JCRT_268_17
- Gültekin, S. E., Aziz, R., Heydt, C., Sengüven, B., Zöller, J., Safi, A. F., Kreppel, M., & Buettner, R. (2018). The landscape of genetic alterations in ameloblastomas relates to clinical features. Virchows Archiv: An International Journal of Pathology, 472(5), 807–814. https://doi.org/10.1007/s00428-018-2305-5
- Han, B., Chao, J., & Yao, H. (2018). Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacology & Therapeutics, 187, 31–44. https://doi.org/10.1016/j.pharmthera.2018.01.010
- Heikinheimo, K., Happonen, R. P., Miettinen, P. J., & Ritvos, O. (1993). Transforming growth factor beta 2 in epithelial differentiation of developing teeth and odontogenic tumors. Journal of Clinical Investigation, 91(3), 1019–1027. https://doi.org/10.1172/jci116258
- Heikinheimo, K., Kurppa, K. J., & Elenius, K. (2015). Novel targets for the treatment of ameloblastoma. Journal of Dental Research, 94(2), 237–240. https://doi.org/10.1177/0022034514560373
- Hendra, F. N., Natsir Kalla, D. S., Van Cann, E. M., de Vet, H. C. W., Helder, M. N., & Forouzanfar, T. (2019). Radical vs conservative treatment of intraosseous ameloblastoma: Systematic review and meta-analysis. Oral Diseases, 25(7), 1683–1696. https://doi.org/10.1111/odi.13014
- Jayaraj, G., Sherlin, H. J., Ramani, P., Premkumar, P., Natesan, A., Ramasubramanian, A., & Jagannathan, N. (2014). Metastasizing Ameloblastoma - a perennial pathological enigma? Report of a case and review of literature. Journal of cranio-maxillo-facial Surgery: Official Publication of the European Association for Cranio-Maxillo-Facial Surgery, 42(6), 772–779. https://doi.org/10.1016/j.jcms.2013.11.009
- Kim, J. Y., Kim, J., Bazarsad, S., Cha, I.-H., Cho, S.-W., & Kim, J. (2019). Bcl-2 is a prognostic marker and its silencing inhibits recurrence in ameloblastomas. Oral Diseases, 25(4), 1158–1168. https://doi.org/10.1111/odi.13070
- Kondo, S., Ota, A., Ono, T., Karnan, S., Wahiduzzaman, M. D., Hyodo, T., Lutfur Rahman, M. D., Ito, K., Furuhashi, A., Hayashi, T., Konishi, H., Tsuzuki, S., Hosokawa, Y., & Kazaoka, Y. (2020). Discovery of novel molecular characteristics and cellular biological properties in ameloblastoma. Cancer Medicine, 9(8), 2904–2917. https://doi.org/10.1002/cam4.2931
- Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675–691. https://doi.org/10.1038/s41576-019-0158-7
- Kumamoto, H., Izutsu, T., Ohki, K., Takahashi, N., & Ooya, K. (2004). p53 gene status and expression of p53, MDM2, and p14 proteins in ameloblastomas. Journal of Oral Pathology and Medicine, 33(5), 292–299. https://doi.org/10.1111/j.0904-2512.2004.00044.x
- Kumamoto, H., & Ooya, K. (2007). Immunohistochemical detection of phosphorylated JNK, p38 MAPK, and ERK5 in ameloblastic tumors. Journal of Oral Pathology and Medicine, 36(9), 543–549. https://doi.org/10.1111/j.1600-0714.2007.00555.x
- Kurppa, K. J., Catón, J., Morgan, P. R., Ristimäki, A., Ruhin, B., Kellokoski, J., & Heikinheimo, K. (2014). High frequency of BRAF V600E mutations in ameloblastoma. The Journal of Pathology, 232(5), 492–498. https://doi.org/10.1002/path.4317
- Lei, M., Zheng, G., Ning, Q., Zheng, J., & Dong, D. (2020). Translation and functional roles of circular RNAs in human cancer. Molecular Cancer, 19(1), 30. https://doi.org/10.1186/s12943-020-1135-7
- Li, B., Hu, J., He, D., Chen, Q., Liu, S., Zhu, X., & Yu, M. (2020). PPM1D knockdown suppresses cell proliferation, promotes cell apoptosis, and activates p38 MAPK/p53 signaling pathway in acute myeloid leukemia. Technology in Cancer Research & Treatment, 19, 1533033820942312. https://doi.org/10.1177/1533033820942312
- Li, X., Zheng, Y., Zheng, Y., Huang, Y., Zhang, Y., Jia, L., & Li, W. (2018). Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway. Stem Cell Research & Therapy, 9(1), 232. https://doi.org/10.1186/s13287-018-0976-0
- Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., Chen, D. I., Gu, J., He, X., & Huang, S. (2015). Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Research, 25(8), 981–984. https://doi.org/10.1038/cr.2015.82
- Louis, C., Desoteux, M., & Coulouarn, C. (2019). Exosomal circRNAs: New players in the field of cholangiocarcinoma. Clinical Science, 133(21), 2239–2244. https://doi.org/10.1042/cs20190940
- Lu, T. X., & Rothenberg, M. E. (2018). MicroRNA. The Journal of Allergy and Clinical Immunology, 141(4), 1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034
- Martini, G., Ciardiello, D., Vitiello, P. P., Napolitano, S., Cardone, C., Cuomo, A., Troiani, T., Ciardiello, F., & Martinelli, E. (2020). Resistance to anti-epidermal growth factor receptor in metastatic colorectal cancer: What does still need to be addressed? Cancer Treatment Reviews, 86, 102023. https://doi.org/10.1016/j.ctrv.2020.102023
- Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., Loewer, A., Ziebold, U., Landthaler, M., Kocks, C., le Noble, F., & Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333–338. https://doi.org/10.1038/nature11928
- Morlandt, A. B., Moore, L. S., Johnson, A. O., Smith, C. M., Stevens, T. M., Warram, J. M., MacDougall, M., Rosenthal, E. L., & Amm, H. M. (2020). Fluorescently labeled Cetuximab-IRDye800 for guided surgical excision of ameloblastoma: A proof of principle study. Journal of Oral and Maxillofacial Surgery, 78(10), 1736–1747. https://doi.org/10.1016/j.joms.2020.05.022
- Oginni, F. O., Stoelinga, P., Ajike, S. A., Obuekwe, O. N., Olokun, B. A., Adebola, R. A., Adeyemo, W. L., Fasola, O., Adesina, O. A., Akinbami, B. O., Iwegbu, I. O., Ogunmuyiwa, S. A., Obimakinde, O. S., & Uguru, C. C. (2015). A prospective epidemiological study on odontogenic tumours in a black African population, with emphasis on the relative frequency of ameloblastoma. International Journal of Oral and Maxillofacial Surgery, 44(9), 1099–1105. https://doi.org/10.1016/j.ijom.2015.03.018
- Othman, N., & Nagoor, N. H. (2017). miR-608 regulates apoptosis in human lung adenocarcinoma via regulation of AKT2. International Journal of Oncology, 51(6), 1757–1764. https://doi.org/10.3892/ijo.2017.4174
- Ouyang, T., Zhang, Y., Tang, S., & Wang, Y. (2019). Long non-coding RNA LINC00052 regulates miR-608/EGFR axis to promote progression of head and neck squamous cell carcinoma. Experimental and Molecular Pathology, 111, 104321. https://doi.org/10.1016/j.yexmp.2019.104321
- Peralta, S., McCleary-Wheeler, A. L., Duhamel, G. E., Heikinheimo, K., & Grenier, J. K. (2019). Ultra-frequent HRAS p. Q61R somatic mutation in canine acanthomatous ameloblastoma reveals pathogenic similarities with human ameloblastoma. Veterinary and Comparative Oncology, 17(3), 439–445. https://doi.org/10.1111/vco.12487
- Qu, S., Yang, X., Li, X., Wang, J., Gao, Y., Shang, R., Sun, W., Dou, K., & Li, H. (2015). Circular RNA: A new star of noncoding RNAs. Cancer Letters, 365(2), 141–148. https://doi.org/10.1016/j.canlet.2015.06.003
- Sandoval-Basilio, J., González-González, R., Bologna-Molina, R., Isiordia-Espinoza, M., Leija-Montoya, G., Alcaraz-Estrada, S. L., Serafín-Higuera, I., González-Ramírez, J., & Serafín-Higuera, N. (2018). Epigenetic mechanisms in odontogenic tumors: A literature review. Archives of Oral Biology, 87, 211–217. https://doi.org/10.1016/j.archoralbio.2017.12.029
- Setién-Olarra, A., Marichalar-Mendia, X., Bediaga, N. G., Aguirre-Echebarria, P., Aguirre-Urizar, J. M., & Mosqueda-Taylor, A. (2017). MicroRNAs expression profile in solid and unicystic ameloblastomas. PLoS ONE, 12(10), e0186841. https://doi.org/10.1371/journal.pone.0186841
- Speight, P. M., & Takata, T. (2018). New tumour entities in the 4th edition of the World Health Organization Classification of Head and Neck tumours: odontogenic and maxillofacial bone tumours. Virchows Archiv: An International Journal of Pathology, 472(3), 331–339. https://doi.org/10.1007/s00428-017-2182-3
- Sweeney, R. T., McClary, A. C., Myers, B. R., Biscocho, J., Neahring, L., Kwei, K. A., Qu, K., Gong, X., Ng, T., Jones, C. D., Varma, S., Odegaard, J. I., Sugiyama, T., Koyota, S., Rubin, B. P., Troxell, M. L., Pelham, R. J., Zehnder, J. L., Beachy, P. A., … West, R. B. (2014). Identification of recurrent SMO and BRAF mutations in ameloblastomas. Nature Genetics, 46(7), 722–725. https://doi.org/10.1038/ng.2986
- Wagner, E. F., & Nebreda, A. R. (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nature Reviews. Cancer, 9(8), 537–549. https://doi.org/10.1038/nrc2694
- Wang, C., Tan, S., Liu, W.-R., Lei, Q., Qiao, W., Wu, Y., Liu, X., Cheng, W., Wei, Y.-Q., Peng, Y., & Li, W. (2019). RNA-Seq profiling of circular RNA in human lung adenocarcinoma and squamous cell carcinoma. Molecular Cancer, 18(1), 134. https://doi.org/10.1186/s12943-019-1061-8
- Wang, L., Long, H., Zheng, Q., Bo, X., Xiao, X., & Li, B. (2019). Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Molecular Cancer, 18(1), 119. https://doi.org/10.1186/s12943-019-1046-7
- Wilson, C. L., & Miller, C. J. (2005). Simpleaffy: A BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics, 21(18), 3683–3685. https://doi.org/10.1093/bioinformatics/bti605
- Wu, X., Li, J., Gassa, A., Buchner, D., Alakus, H., Dong, Q., Ren, N., Liu, M., Odenthal, M., Stippel, D., Bruns, C., Zhao, Y., & Wahba, R. (2020). Circulating tumor DNA as an emerging liquid biopsy biomarker for early diagnosis and therapeutic monitoring in hepatocellular carcinoma. International Journal of Biological Sciences, 16(9), 1551–1562. https://doi.org/10.7150/ijbs.44024
- Yao, J., Qian, K., Chen, C., Liu, X., Yu, D., Yan, X., Liu, T., & Li, S. (2020). ZNF139/circZNF139 promotes cell proliferation, migration and invasion via activation of PI3K/AKT pathway in bladder cancer. Aging (Albany NY), 12(10), 9915–9934. https://doi.org/10.18632/aging.103256
- Yao, R., Zou, H., & Liao, W. (2018). Prospect of Circular RNA in hepatocellular carcinoma: A novel potential biomarker and therapeutic target. Frontiers in Oncology, 8, 332. https://doi.org/10.3389/fonc.2018.00332
- You, Z., Liu, S. P., Du, J., Wu, Y. H., & Zhang, S. Z. (2019). Advancements in MAPK signaling pathways and MAPK-targeted therapies for ameloblastoma: A review. Journal of Oral Pathology and Medicine, 48(3), 201–205. https://doi.org/10.1111/jop.12807
- You, Z., Sun, L., Yan, X., Zhang, J., Du, J., Li, T., & Zhao, H. (2019). Clinicopathologic study on a rare variant of ameloblastoma with basal cell features. Oral Diseases, 25(3), 788–795. https://doi.org/10.1111/odi.13018
- Zhang, N., Li, Y., Zheng, Y., Zhang, L., Pan, Y., Yu, J., & Yang, M. (2019). miR-608 and miR-4513 significantly contribute to the prognosis of lung adenocarcinoma treated with EGFR-TKIs. Laboratory Investigation: A Journal of Technical Methods and Pathology, 99(4), 568–576. https://doi.org/10.1038/s41374-018-0164-y
- Zhang, X., Fang, J., Chen, S., Wang, W., Meng, S., & Liu, B. (2019). Nonconserved miR-608 suppresses prostate cancer progression through RAC2/PAK4/LIMK1 and BCL2L1/caspase-3 pathways by targeting the 3'-UTRs of RAC2/BCL2L1 and the coding region of PAK4. Cancer Medicine, 8(12), 5716–5734. https://doi.org/10.1002/cam4.2455
- Zhao, W., Cui, Y., Liu, L., Qi, X., Liu, J., Ma, S., Hu, X., Zhang, Z., Wang, Y., Li, H., Wang, Z., Liu, Z., & Wu, J. (2020). Splicing factor derived circular RNA circUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. Cell Death and Differentiation, 27(3), 919–933. https://doi.org/10.1038/s41418-019-0423-5
- Zheng, C. Y., Cao, R., Hong, W. S., Sheng, M. C., & Hu, Y. J. (2019). Marsupialisation for the treatment of unicystic ameloblastoma of the mandible: A long-term follow up of 116 cases. British Journal of Oral and Maxillofacial Surgery, 57(7), 655–662. https://doi.org/10.1016/j.bjoms.2019.06.002
- Zuo, W., Zhou, K., Deng, M., Lin, Q., Yin, Q., Zhang, C., Zhou, J., & Song, Y. (2020). LINC00963 facilitates acute myeloid leukemia development by modulating miR-608/MMP-15. Aging (Albany NY), 12(19), 18970–18981. https://doi.org/10.18632/aging.103252