A review on drug repurposing applicable to obesity
Feng Chen
Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
Search for more papers by this authorKai Jing
Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
Search for more papers by this authorCorresponding Author
Zhen Zhang
Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
Correspondence
Xia Liu and Zhen Zhang, Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, 200433 Shanghai, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Xia Liu
Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
Correspondence
Xia Liu and Zhen Zhang, Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, 200433 Shanghai, China.
Email: [email protected] and [email protected]
Search for more papers by this authorFeng Chen
Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
Search for more papers by this authorKai Jing
Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
Search for more papers by this authorCorresponding Author
Zhen Zhang
Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
Correspondence
Xia Liu and Zhen Zhang, Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, 200433 Shanghai, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Xia Liu
Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
Correspondence
Xia Liu and Zhen Zhang, Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, 200433 Shanghai, China.
Email: [email protected] and [email protected]
Search for more papers by this authorFeng Chen and Kai Jing contribute equally to this work.
Summary
Obesity is a major public health concern and burden on individuals and healthcare systems. Due to the challenges and limitations of lifestyle adjustments, it is advisable to consider pharmacological treatment for people affected by obesity. However, the side effects and limited efficacy of available drugs make the obesity drug market far from sufficient. Drug repurposing involves identifying new applications for existing drugs and offers some advantages over traditional drug development approaches including lower costs and shorter development timelines. This review aims to provide an overview of drug repurposing for anti-obesity medications, including the rationale for repurposing, the challenges and approaches, and the potential drugs that are being investigated for repurposing. Through advanced computational techniques, researchers can unlock the potential of repurposed drugs to tackle the global obesity epidemic. Further research, clinical trials, and collaborative efforts are essential to fully explore and leverage the potential of drug repurposing in the fight against obesity.
CONFLICT OF INTEREST STATEMENT
None of the authors have any conflict of interest to declare.
REFERENCES
- 1 (NCD-RisC) NRFC. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017; 390(10113): 2627-2642. doi:10.1016/s0140-6736(17)32129-3
- 2Abdelaal M, le Roux CW, Docherty NG. Morbidity and mortality associated with obesity. Annals Transl Med. 2017; 5(7):161. doi:10.21037/atm.2017.03.107
- 3Chooi YC, Ding C, Magkos F. The epidemiology of obesity. MetabClinExp. 2019; 92: 6-10. doi:10.1016/j.metabol.2018.09.005
- 4Popkin BM, Du S, Green WD, et al. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes Rev. 2020; 21(11):e13128. doi:10.1111/obr.13128
- 5González-Muniesa P, Mártinez-González MA, Hu FB, et al. Obesity. Nat Rev Dis Primers. 2017; 3:17034. doi:10.1038/nrdp.2017.34
- 6Bhaskaran K, Dos-Santos-Silva I, Leon DA, Douglas IJ, Smeeth L. Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol. 2018; 6(12): 944-953. doi:10.1016/s2213-8587(18)30288-2
- 7Aune D, Sen A, Prasad M, et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. 2016; 353:353 i2156. doi:10.1136/bmj.i2156
- 8 Global BMIMC, Di Angelantonio E, Bhupathiraju SN, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016; 388(10046): 776-786. doi:10.1016/s0140-6736(16)30175-1
- 9Afshin A, Forouzanfar MH, Reitsma MB, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017; 377(1): 13-27. doi:10.1056/NEJMoa1614362
- 10Cawley J, Meyerhoefer C. The medical care costs of obesity: an instrumental variables approach. J Health Econ. 2012; 31(1): 219-230. doi:10.1016/j.jhealeco.2011.10.003
- 11Swinburn BA, Kraak VI, Allender S, et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report. Lancet. 2019; 393(10173): 791-846. doi:10.1016/s0140-6736(18)32822-8
- 12Elagizi A, Kachur S, Carbone S, Lavie CJ, Blair SN. A review of obesity, physical activity, and cardiovascular disease. Curr Obes Rep. 2020; 9(4): 571-581. doi:10.1007/s13679-020-00403-z
- 13Gaspar RC, Pauli JR, Shulman GI, Muñoz VR. An update on brown adipose tissue biology: a discussion of recent findings. Am J Physiol Endocrinol Metab. 2021; 320(3): E488-e495. doi:10.1152/ajpendo.00310.2020
- 14Reutrakul S, Van Cauter E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabol Open. 2018; 84: 56-66. doi:10.1016/j.metabol.2018.02.010
- 15Gutiérrez-Cuevas J, Santos A, Armendariz-Borunda J. Pathophysiological molecular mechanisms of obesity: a link between MAFLD and NASH with cardiovascular diseases. Int J Mol Sci. 2021; 22(21):11629. doi:10.3390/ijms222111629
- 16Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and obesity: role and clinical implication. Front Endocrinol. 2021; 12:585887. doi:10.3389/fendo.2021.585887
- 17Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019; 15(5): 288-298. doi:10.1038/s41574-019-0176-8
- 18Carlsson LMS, Sjöholm K, Jacobson P, et al. Life expectancy after bariatric surgery in the Swedish obese subjects study. N Engl J Med. 2020; 383(16): 1535-1543. doi:10.1056/NEJMoa2002449
- 19Lespessailles E, Paccou J, Javier RM, Thomas T, Cortet B. Obesity, bariatric surgery, and fractures. J Clin Endocrinol Metab. 2019; 104(10): 4756-4768. doi:10.1210/jc.2018-02084
- 20Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013; 273(3): 219-234. doi:10.1111/joim.12012
- 21Kauppila JH, Tao W, Santoni G, et al. Effects of obesity surgery on overall and disease-specific mortality in a 5-country population-based study. Gastroenterology. 2019; 157(1): 119-127.e1. doi:10.1053/j.gastro.2019.03.048
- 22Cooper TC, Simmons EB, Webb K, Burns JL, Kushner RF. Trends in weight regain following Roux-en-Y gastric bypass (RYGB) bariatric surgery. Obes Surg. 2015; 25(8): 1474-1481. doi:10.1007/s11695-014-1560-z
- 23Kanji S, Wong E, Akioyamen L, Melamed O, Taylor VH. Exploring pre-surgery and post-surgery substance use disorder and alcohol use disorder in bariatric surgery: a qualitative scoping review. Int J Obes (Lond). 2019; 43(9): 1659-1674. doi:10.1038/s41366-019-0397-x
- 24Azam H, Shahrestani S, Phan K. Alcohol use disorders before and after bariatric surgery: a systematic review and meta-analysis. Ann Transl Med. 2018; 6(8):148. doi:10.21037/atm.2018.03.16
- 25Castaneda D, Popov VB, Wander P, Thompson CC. Risk of suicide and self-harm is increased after bariatric surgery—a systematic review and meta-analysis. Obes Surg. 2019; 29(1): 322-333. doi:10.1007/s11695-018-3493-4
- 26Yu EW, Gao L, Stastka P, et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med. 2020; 17(3):e1003051. doi:10.1371/journal.pmed.1003051
- 27Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013; 341(6150):1241214. doi:10.1126/science.1241214
- 28Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012; 143(4): 913-916.e7. doi:10.1053/j.gastro.2012.06.031
- 29Telles S, Gangadhar BN, Chandwani KD. Lifestyle modification in the prevention and management of obesity. J Obes. 2016; 2016:5818601. doi:10.1155/2016/5818601
- 30Son JW, Kim S. Comprehensive review of current and upcoming anti-obesity drugs. Diabetes Metab J. 2020; 44(6): 802-818. doi:10.4093/dmj.2020.0258
- 31Piché ME, Poirier P, Lemieux I, Després JP. Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update. Prog Cardiovasc Dis. 2018; 61(2): 103-113. doi:10.1016/j.pcad.2018.06.004
- 32Melvin A, O'Rahilly S, Savage DB. Genetic syndromes of severe insulin resistance. Curr Opin Genet Dev. 2018; 50: 60-67. doi:10.1016/j.gde.2018.02.002
- 33Mohammed SH, Habtewold TD, Birhanu MM, et al. Neighbourhood socioeconomic status and overweight/obesity: a systematic review and meta-analysis of epidemiological studies. BMJ Open. 2019; 9(11):e028238. doi:10.1136/bmjopen-2018-028238
- 34Ruban A, Stoenchev K, Ashrafian H, Teare J. Current treatments for obesity. Clin Med (Lond). 2019; 19(3): 205-212. doi:10.7861/clinmedicine.19-3-205
- 35Berdigaliyev N, Aljofan M. An overview of drug discovery and development. Future Med Chem. 2020; 12(10): 939-947. doi:10.4155/fmc-2019-0307
- 36Ringel MS, Scannell JW, Baedeker M, Schulze U. Breaking Eroom's law. Nat Rev Drug Discov. 2020; 19(12): 833-834. doi:10.1038/d41573-020-00059-3
- 37Kushner RF. Weight loss strategies for treatment of obesity: lifestyle management and pharmacotherapy. Prog Cardiovasc Dis. 2018; 61(2): 246-252. doi:10.1016/j.pcad.2018.06.001
- 38Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal of anti-obesity medicinal products because of adverse drug reactions: a systematic review. BMC Med. 2016; 14(1): 191. doi:10.1186/s12916-016-0735-y
- 39Siebenhofer A, Winterholer S, Jeitler K, et al. Long-term effects of weight-reducing drugs in people with hypertension. Cochrane Database Syst Rev. 2021; 1(1):Cd007654. doi:10.1002/14651858.CD007654.pub5
- 40Tak YJ, Lee SY. Long-term efficacy and safety of anti-obesity treatment: where do we stand? Curr Obes Rep. 2021; 10(1): 14-30. doi:10.1007/s13679-020-00422-w
- 41Coulter AA, Rebello CJ, Greenway FL. Centrally acting agents for obesity: past, present, and future. Drugs. 2018; 78(11): 1113-1132. doi:10.1007/s40265-018-0946-y
- 42Parvathaneni V, Kulkarni NS, Muth A, Gupta V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today. 2019; 24(10): 2076-2085. doi:10.1016/j.drudis.2019.06.014
- 43Nosengo N. Can you teach old drugs new tricks? Nature. 2016; 534(7607): 314-316. doi:10.1038/534314a
- 44Sun G, Dong D, Dong Z, et al. Drug repositioning: a bibliometric analysis. Front Pharmacol. 2022; 13:974849. doi:10.3389/fphar.2022.974849
- 45Tomiyama AJ. Stress and obesity. Annu Rev Psychol. 2019; 70(1): 703-718. doi:10.1146/annurev-psych-010418-102936
- 46Martins LB, Monteze NM, Calarge C, Ferreira AVM, Teixeira AL. Pathways linking obesity to neuropsychiatric disorders. Nutrition. 2019; 66: 16-21. doi:10.1016/j.nut.2019.03.017
- 47Song Z, Wang Y, Zhang F, Yao F, Sun C. Calcium signaling pathways: key pathways in the regulation of obesity. Int J Mol Sci. 2019; 20(11):2768. doi:10.3390/ijms20112768
- 48Kort E, Jovinge S. Drug repurposing: claiming the full benefit from drug development. Curr Cardiol Rep. 2021; 23(6): 62. doi:10.1007/s11886-021-01484-5
- 49Patton K, Borshoff DC. Adverse drug reactions. Anaesthesia. 2018; 73(Suppl 1): 76-84. doi:10.1111/anae.14143
- 50Goldstein I, Burnett AL, Rosen RC, Park PW, Stecher VJ. The serendipitous story of sildenafil: an unexpected oral therapy for erectile dysfunction. Sex Med Rev. 2019; 7(1): 115-128. doi:10.1016/j.sxmr.2018.06.005
- 51Bhogal S, Khraisha O, Al Madani M, Treece J, Baumrucker SJ, Paul TK. Sildenafil for pulmonary arterial hypertension. Am J Ther. 2019; 26(4): e520-e526. doi:10.1097/mjt.0000000000000766
- 52Schein CH. Repurposing approved drugs on the pathway to novel therapies. Med Res Rev. 2020; 40(2): 586-605. doi:10.1002/med.21627
- 53Hurt RD, Sachs DP, Glover ED, et al. A comparison of sustained-release bupropion and placebo for smoking cessation. N Engl J Med. 1997; 337(17): 1195-1202. doi:10.1056/nejm199710233371703
- 54Tanoli Z, Seemab U, Scherer A, Wennerberg K, Tang J, Vähä-Koskela M. Exploration of databases and methods supporting drug repurposing: a comprehensive survey. Brief Bioinform. 2021; 22(2): 1656-1678. doi:10.1093/bib/bbaa003
- 55Kumar R, Harilal S, Gupta SV, et al. Exploring the new horizons of drug repurposing: a vital tool for turning hard work into smart work. Eur J Med Chem. 2019; 182:111602. doi:10.1016/j.ejmech.2019.111602
- 56Simsek M, Meijer B, van Bodegraven AA, de Boer NKH, Mulder CJJ. Finding hidden treasures in old drugs: the challenges and importance of licensing generics. Drug Discov Today. 2018; 23(1): 17-21. doi:10.1016/j.drudis.2017.08.008
- 57Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019; 18(1): 41-58. doi:10.1038/nrd.2018.168
- 58Lan N, Lu Y, Zhang Y, et al. FTO—a common genetic basis for obesity and cancer. Front Genet. 2020; 11:559138. doi:10.3389/fgene.2020.559138
- 59Hysi PG, Mangino M, Christofidou P, et al. Metabolome genome-wide association study identifies 74 novel genomic regions influencing plasma metabolites levels. Metabolites. 2022; 12(1):61. doi:10.3390/metabo12010061
- 60Israeli H, Degtjarik O, Fierro F, et al. Structure reveals the activation mechanism of the MC4 receptor to initiate satiation signaling. Science. 2021; 372(6544): 808-814. doi:10.1126/science.abf7958
- 61Timmins KA, Green MA, Radley D, Morris MA, Pearce J. How has big data contributed to obesity research? A review of the literature. Int J Obes (Lond). 2018; 42(12): 1951-1962. doi:10.1038/s41366-018-0153-7
- 62Mazzolari A, Gervasoni S, Pedretti A, Fumagalli L, Matucci R, Vistoli G. Repositioning dequalinium as potent muscarinic allosteric ligand by combining virtual screening campaigns and experimental binding assays. Int J Mol Sci. 2020; 21(17):5961. doi:10.3390/ijms21175961
- 63Mendez D, Gaulton A, Bento AP, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019; 47(D1): D930-d940. doi:10.1093/nar/gky1075
- 64Samart K, Tuyishime P, Krishnan A, Ravi J. Reconciling multiple connectivity scores for drug repurposing. Brief Bioinform. 2021; 22(6). doi:10.1093/bib/bbab161
- 65Rai S, Bhatia V, Bhatnagar S. Drug repurposing for hyperlipidemia associated disorders: an integrative network biology and machine learning approach. Comput Biol Chem. 2021; 92:107505. doi:10.1016/j.compbiolchem.2021.107505
- 66Wei B, Zhang Y, Gong X. DeepLPI: a novel deep learning-based model for protein-ligand interaction prediction for drug repurposing. Sci Rep. 2022; 12(1): 18200. doi:10.1038/s41598-022-23014-1
- 67Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. Drug databases and their contributions to drug repurposing. Genomics. 2020; 112(2): 1087-1095. doi:10.1016/j.ygeno.2019.06.021
- 68Sam E, Athri P. Web-based drug repurposing tools: a survey. Brief Bioinform. 2019; 20(1): 299-316. doi:10.1093/bib/bbx125
- 69Yuniwati C, Ramli N, Purwita E, et al. Molecular docking for active compounds of Scurrula atropurpurea as anti-inflammatory candidate in endometriosis. Acta Inform Med. 2018; 26(4): 254-257. doi:10.5455/aim.2018.26.254-257
- 70Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019; 20(18):4331. doi:10.3390/ijms20184331
- 71Zhong F, Wu X, Yang R, et al. Drug target inference by mining transcriptional data using a novel graph convolutional network framework. Protein Cell. 2022; 13(4): 281-301. doi:10.1007/s13238-021-00885-0
- 72Tworowski D, Gorohovski A, Mukherjee S, et al. COVID19 drug repository: text-mining the literature in search of putative COVID19 therapeutics. Nucleic Acids Res. 2021; 49(D1): D1113-d1121. doi:10.1093/nar/gkaa969
- 73Zhu H. Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol. 2020; 60(1): 573-589. doi:10.1146/annurev-pharmtox-010919-023324
- 74Nogales C, Mamdouh ZM, List M, Kiel C, Casas AI, Schmidt H. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci. 2022; 43(2): 136-150. doi:10.1016/j.tips.2021.11.004
- 75Stansfield C, O'Mara-Eves A, Thomas J. Text mining for search term development in systematic reviewing: a discussion of some methods and challenges. Res Synth Methods. 2017; 8(3): 355-365. doi:10.1002/jrsm.1250
- 76DeGregory KW, Kuiper P, DeSilvio T, et al. A review of machine learning in obesity. Obes Rev. 2018; 19(5): 668-685. doi:10.1111/obr.12667
- 77Zhu J, Wang J, Wang X, et al. Prediction of drug efficacy from transcriptional profiles with deep learning. Nat Biotechnol. 2021; 39(11): 1444-1452. doi:10.1038/s41587-021-00946-z
- 78Guan W, Lan W, Zhang J, et al. COVID-19: antiviral agents, antibody development and traditional Chinese medicine. Virol Sin. 2020; 35(6): 685-698. doi:10.1007/s12250-020-00297-0
- 79Jones LH, Bunnage ME. Applications of chemogenomic library screening in drug discovery. Nat Rev Drug Discov. 2017; 16(4): 285-296. doi:10.1038/nrd.2016.244
- 80Li C, Zhang H, Li X. The mechanism of traditional Chinese medicine for the treatment of obesity. Diab Metab Syndr Obes. 2020; 13: 3371-3381. doi:10.2147/dmso.S274534
- 81Sun Y, Jin C, Zhang X, Jia W, Le J, Ye J. Restoration of GLP-1 secretion by Berberine is associated with protection of colon enterocytes from mitochondrial overheating in diet-induced obese mice. Nutr Diabetes. 2018; 8(1): 53. doi:10.1038/s41387-018-0061-x
- 82Xiao S, Zhang Z, Chen M, et al. Xiexin Tang ameliorates dyslipidemia in high-fat diet-induced obese rats via elevating gut microbiota-derived short chain fatty acids production and adjusting energy metabolism. J Ethnopharmacol. 2019; 241:112032. doi:10.1016/j.jep.2019.112032
- 83Gong G, Han G, He H, Dong TTX, Tsim KWK, Zheng Y. An ancient Chinese herbal decoction containing Angelicae Sinensis Radix, Astragali Radix, Jujuba Fructus, and Zingiberis Rhizoma Recens stimulates the browning conversion of white adipocyte in cultured 3T3-L1 cells. Evid Based Complement Alternat Med. 2019; 2019:3648685. doi:10.1155/2019/3648685
- 84Fan Q, Xu F, Liang B, Zou X. The anti-obesity effect of traditional Chinese medicine on lipid metabolism. Front Pharmacol. 2021; 12:696603. doi:10.3389/fphar.2021.696603
- 85Sham TT, Chan CO, Wang YH, Yang JM, Mok DK, Chan SW. A review on the traditional Chinese medicinal herbs and formulae with hypolipidemic effect. Biomed Res Int. 2014; 2014:925302. doi:10.1155/2014/925302
- 86Wang S, Moustaid-Moussa N, Chen L, et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014; 25(1): 1-18. doi:10.1016/j.jnutbio.2013.09.001
- 87Martel J, Ojcius DM, Chang CJ, et al. Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol. 2017; 13(3): 149-160. doi:10.1038/nrendo.2016.142
- 88Sonaye HV, Sheikh RY, Doifode CA. Drug repurposing: iron in the fire for older drugs. Biomed Pharmacother. 2021; 141:111638. doi:10.1016/j.biopha.2021.111638
- 89Bellera CL, Di Ianni ME, Sbaraglini ML, Castro EA, Bruno-Blanch LE, Talevi A. Chapter 2—knowledge-based drug repurposing: a rational approach towards the identification of novel medical applications of known drugs. In: Z Ul-Haq, JD Madura, eds. Frontiers in Computational Chemistry. Bentham Science Publishers; 2015: 44-81. doi:10.2174/9781608058648115010004
10.2174/9781608058648115010004 Google Scholar
- 90Nelson CA, Butte AJ, Baranzini SE. Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings. Nat Commun. 2019; 10(1): 3045. doi:10.1038/s41467-019-11069-0
- 91Yu GR, Lee SJ, Kim DH, et al. Literature-based drug repurposing in traditional Chinese medicine: reduced inflammatory M1 macrophage polarization by Jisil Haebaek Gyeji-Tang alleviates cardiovascular disease in vitro and ex vivo. Evid Based Complement Alternat Med. 2020; 2020(1):8881683. doi:10.1155/2020/8881683
- 92Mujwar S, Kumar V. Computational drug repurposing approach to identify potential fatty acid-binding protein-4 inhibitors to develop novel antiobesity therapy. Assay Drug Dev Technol. 2020; 18(7): 318-327. doi:10.1089/adt.2020.976
- 93Thompson KJ, Austin RG, Nazari SS, Gersin KS, Iannitti DA, McKillop IH. Altered fatty acid-binding protein 4 (FABP4) expression and function in human and animal models of hepatocellular carcinoma. Liver Int. 2018; 38(6): 1074-1083. doi:10.1111/liv.13639
- 94Liu S, Wu D, Fan Z, et al. FABP4 in obesity-associated carcinogenesis: novel insights into mechanisms and therapeutic implications. Front Mol Biosci. 2022; 9:973955. doi:10.3389/fmolb.2022.973955
- 95Iwata M, Hirose L, Kohara H, et al. Pathway-based drug repositioning for cancers: computational prediction and experimental validation. J Med Chem. 2018; 61(21): 9583-9595. doi:10.1021/acs.jmedchem.8b01044
- 96Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006; 313(5795): 1929-1935. doi:10.1126/science.1132939
- 97Chen S, Liu X, Peng C, et al. The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity. Cell Metab. 2021; 33(3): 565-580.e7. doi:10.1016/j.cmet.2021.02.007
- 98Costa G, Artese A, Ortuso F, Alcaro S. From homology modeling to the hit identification and drug repurposing: a structure-based approach in the discovery of novel potential anti-obesity compounds. Methods Mol Biol. 2021; 2266: 263-277. doi:10.1007/978-1-0716-1209-5_15
- 99Marlatt KL, Ravussin E. Brown adipose tissue: an update on recent findings. Curr Obes Rep. 2017; 6(4): 389-396. doi:10.1007/s13679-017-0283-6
- 100Kuryłowicz A, Puzianowska-Kuźnicka M. Induction of adipose tissue browning as a strategy to combat obesity. Int J Mol Sci. 2020; 21(17):6241. doi:10.3390/ijms21176241
- 101Wei G, Sun H, Liu JL, Dong K, Liu J, Zhang M. Indirubin, a small molecular deriving from connectivity map (CMAP) screening, ameliorates obesity-induced metabolic dysfunction by enhancing brown adipose thermogenesis and white adipose browning. Nutr Metab. 2020; 17(1):21. doi:10.1186/s12986-020-00440-4
10.1186/s12986-020-00440-4 Google Scholar
- 102Dotolo S, Marabotti A, Facchiano A, Tagliaferri R. A review on drug repurposing applicable to COVID-19. Brief Bioinform. 2021; 22(2): 726-741. doi:10.1093/bib/bbaa288
- 103Luo H, Li M, Wang S, Liu Q, Li Y, Wang J. Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Bioinformatics. 2018; 34(11): 1904-1912. doi:10.1093/bioinformatics/bty013
- 104Sun S, Cao X, Castro LFC, Monroig Ó, Gao J. A network-based approach to identify protein kinases critical for regulating srebf1 in lipid deposition causing obesity. Funct Integr Genomics. 2021; 21(5–6): 557-570. doi:10.1007/s10142-021-00798-5
- 105Reay WR, Cairns MJ. Advancing the use of genome-wide association studies for drug repurposing. Nat Rev Genet. 2021; 22(10): 658-671. doi:10.1038/s41576-021-00387-z
- 106Kim J, Yoo M, Shin J, Kim H, Kang J, Tan AC. Systems pharmacology-based approach of connecting disease genes in genome-wide association studies with traditional Chinese medicine. Int J Genomics. 2018; 2018:7697356. doi:10.1155/2018/7697356
- 107Gong Z, Huang C, Sheng X, et al. The role of tanshinone IIA in the treatment of obesity through peroxisome proliferator-activated receptor gamma antagonism. Endocrinology. 2009; 150(1): 104-113. doi:10.1210/en.2008-0322
- 108Misselbeck K, Parolo S, Lorenzini F, et al. A network-based approach to identify deregulated pathways and drug effects in metabolic syndrome. Nat Commun. 2019; 10(1): 5215. doi:10.1038/s41467-019-13208-z
- 109Dutta S, Natoli T, Chanda D, Rajavelu S, De D. A network based efficient drug repurposing strategy for targeting diabesity. Genes Dis. 2023; 10(2): 340-343. doi:10.1016/j.gendis.2022.02.015
- 110Bima AIH, Elsamanoudy AZ, Albaqami WF, et al. Integrative system biology and mathematical modeling of genetic networks identifies shared biomarkers for obesity and diabetes. Math Biosci Eng. 2022; 19(3): 2310-2329. doi:10.3934/mbe.2022107
- 111Ng YL, Salim CK, Chu JJH. Drug repurposing for COVID-19: approaches, challenges and promising candidates. Pharmacol Ther. 2021; 228:107930. doi:10.1016/j.pharmthera.2021.107930
- 112Vergnes L, Lin JY, Davies GR, Church CD, Reue K. Induction of UCP1 and thermogenesis by a small molecule via AKAP1/PKA modulation. J Biol Chem. 2020; 295(44): 15054-15069. doi:10.1074/jbc.RA120.013322
- 113Giordano A, Frontini A, Cinti S. Convertible visceral fat as a therapeutic target to curb obesity. Nat Rev Drug Discov. 2016; 15(6): 405-424. doi:10.1038/nrd.2016.31
- 114Betz MJ, Enerbäck S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat Rev Endocrinol. 2018; 14(2): 77-87. doi:10.1038/nrendo.2017.132
- 115Qiu Y, Sun Y, Xu D, et al. Screening of FDA-approved drugs identifies Sutent as a modulator of UCP1 expression in brown adipose tissue. EBioMedicine. 2018; 37: 344-355. doi:10.1016/j.ebiom.2018.10.019
- 116Haerkens F, Kikken C, Kirkels L, et al. A new use for old drugs: identifying compounds with an anti-obesity effect using a high through-put semi-automated Caenorhabditis elegans screening platform. Heliyon. 2022; 8(8):e10108. doi:10.1016/j.heliyon.2022.e10108
- 117van Vonderen MG, van Agtmael MA, Hassink EA, et al. Zidovudine/lamivudine for HIV-1 infection contributes to limb fat loss. PLoS ONE. 2009; 4(5):e5647. doi:10.1371/journal.pone.0005647
- 118Lee YJ, Kim HS, Seo HS, et al. Stimulation of alpha1-adrenergic receptor ameliorates cellular functions of multiorgans beyond vasomotion through PPARδ. PPAR Res. 2020; 2020:3785137. doi:10.1155/2020/3785137
- 119Lee YJ, Jang YN, Kim HM, et al. Stimulation of alpha-1-adrenergic receptor ameliorates obesity-induced cataracts by activating glycolysis and inhibiting cataract-inducing factors. Endocrinol Metab (Seoul). 2022; 37(2): 221-232. doi:10.3803/EnM.2021.1237
- 120Kim NJ, Baek JH, Lee J, Kim H, Song JK, Chun KH. A PDE1 inhibitor reduces adipogenesis in mice via regulation of lipolysis and adipogenic cell signaling. Exp Mol Med. 2019; 51(1): 1-15. doi:10.1038/s12276-018-0198-7
10.1038/s12276?018?0198?7 Google Scholar
- 121Yuan XC, Tao YX. Fenoprofen—an old drug rediscovered as a biased allosteric enhancer for melanocortin receptors. ACS Chem Neurosci. 2019; 10(3): 1066-1074. doi:10.1021/acschemneuro.8b00347
- 122Wong SK. Repurposing new use for old drug chloroquine against metabolic syndrome: a review on animal and human evidence. Int J Med Sci. 2021; 18(12): 2673-2688. doi:10.7150/ijms.58147
- 123Omran Z, Sheikh R, Baothman OA, Zamzami MA, Alarjah M. Repurposing disulfiram as an anti-obesity drug: treating and preventing obesity in high-fat-fed rats. Diabetes Metab Syndr Obes. 2020; 13: 1473-1480. doi:10.2147/DMSO.S254267
- 124Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009; 374(9691): 685-694. doi:10.1016/s0140-6736(09)61255-1
- 125Fabbri LM, Calverley PM, Izquierdo-Alonso JL, et al. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet. 2009; 374(9691): 695-703. doi:10.1016/s0140-6736(09)61252-6
- 126Möllmann J, Kahles F, Lebherz C, et al. The PDE4 inhibitor roflumilast reduces weight gain by increasing energy expenditure and leads to improved glucose metabolism. Diabetes Obes Metab. 2017; 19(4): 496-508. doi:10.1111/dom.12839
- 127Hadjikoutis S, Pickersgill TP, Smith PE. Drug points: weight loss associated with levetiracetam. BMJ. 2003; 327(7420): 905. doi:10.1136/bmj.327.7420.905
- 128Gelisse P, Juntas-Morales R, Genton P, et al. Dramatic weight loss with levetiracetam. Epilepsia. 2008; 49(2): 308-315. doi:10.1111/j.1528-1167.2007.01273.x
- 129Abdelaziz SMH, Abdelgalil RM, Abdelmohsen SR. Morphological, biochemical, and histopathological effects of levetiracetam on pregnant albino rats and their offspring. Ultrastruct Pathol. 2023; 47(4): 278-291. doi:10.1080/01913123.2023.2185719
- 130Gommoll CP, Greenberg WM, Chen C. A randomized, double-blind, placebo-controlled study of flexible doses of levomilnacipran ER (40-120 mg/day) in patients with major depressive disorder. J Drug Assess. 2014; 3(1): 10-19. doi:10.3109/21556660.2014.884505
- 131Bakish D, Bose A, Gommoll C, et al. Levomilnacipran ER 40 mg and 80 mg in patients with major depressive disorder: a phase III, randomized, double-blind, fixed-dose, placebo-controlled study. J Psychiatry Neurosci. 2014; 39(1): 40-49. doi:10.1503/jpn.130040
- 132Asnis GM, Bose A, Gommoll CP, Chen C, Greenberg WM. Efficacy and safety of levomilnacipran sustained release 40 mg, 80 mg, or 120 mg in major depressive disorder: a phase 3, randomized, double-blind, placebo-controlled study. J Clin Psychiatry. 2013; 74(3): 242-248. doi:10.4088/JCP.12m08197
- 133Sambunaris A, Bose A, Gommoll CP, Chen C, Greenberg WM, Sheehan DV. A phase III, double-blind, placebo-controlled, flexible-dose study of levomilnacipran extended-release in patients with major depressive disorder. J Clin Psychopharmacol. 2014; 34(1): 47-56. doi:10.1097/jcp.0000000000000060
- 134Asnis GM, Henderson MA. Levomilnacipran for the treatment of major depressive disorder: a review. Neuropsychiatr Dis Treat. 2015; 11: 125-135. doi:10.2147/NDT.S54710
- 135Mago R, Forero G, Greenberg WM, Gommoll C, Chen C. Safety and tolerability of levomilnacipran ER in major depressive disorder: results from an open-label, 48-week extension study. Clin Drug Investig. 2013; 33(10): 761-771. doi:10.1007/s40261-013-0126-5
- 136Shiovitz T, Greenberg WM, Chen C, Forero G, Gommoll CP. A randomized, double-blind, placebo-controlled trial of the efficacy and safety of levomilnacipran ER 40-120mg/day for prevention of relapse in patients with major depressive disorder. Innov Clin Neurosci. 2014; 11(1–2): 10-22.
- 137Hayes AG, Nutt DJ. Compound asset sharing initiatives between pharmaceutical companies, funding bodies, and academia: learnings and successes. Pharmacol Res Perspect. 2019; 7(4):e00510. doi:10.1002/prp2.510
- 138Allison M. NCATS launches drug repurposing program. Nat Biotechnol. 2012; 30(7): 571-572. doi:10.1038/nbt0712-571a
- 139Kahin SA, Murriel AL, Pejavara A, O'Toole T, Petersen R. The high obesity program: a collaboration between public health and cooperative extension services to address obesity. Prev Chronic Dis. 2020; 17: E26. doi:10.5888/pcd17.190283
- 140Casanova D, Kushner RF, Ciemins EL, et al. Building successful models in primary care to improve the management of adult patients with obesity. Popul Health Manag. 2021; 24(5): 548-559. doi:10.1089/pop.2020.0340