High-fat diets on the enteric nervous system: Possible interactions and mechanisms underlying dysmotility
Corresponding Author
Patricia Pereira Almeida
Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil
Correspondence
Patricia Pereira Almeida, Experimental Nutrition Laboratory, Department of Nutrition and Dietetics, Fluminense Federal University, Rua Mário Santos Braga 30, Niterói, RJ 24020-140, Brazil.
Email: [email protected]
Search for more papers by this authorLuisa Valdetaro
Postgraduate Program in Neurosciences, Fluminense Federal University, Niterói, Brazil
Search for more papers by this authorBeatriz Bastos de Moraes Thomasi
Postgraduate Program in Neurosciences, Fluminense Federal University, Niterói, Brazil
Search for more papers by this authorMilena Barcza Stockler-Pinto
Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil
Postgraduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
Search for more papers by this authorAna Lúcia Tavares-Gomes
Postgraduate Program in Neurosciences, Fluminense Federal University, Niterói, Brazil
Search for more papers by this authorCorresponding Author
Patricia Pereira Almeida
Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil
Correspondence
Patricia Pereira Almeida, Experimental Nutrition Laboratory, Department of Nutrition and Dietetics, Fluminense Federal University, Rua Mário Santos Braga 30, Niterói, RJ 24020-140, Brazil.
Email: [email protected]
Search for more papers by this authorLuisa Valdetaro
Postgraduate Program in Neurosciences, Fluminense Federal University, Niterói, Brazil
Search for more papers by this authorBeatriz Bastos de Moraes Thomasi
Postgraduate Program in Neurosciences, Fluminense Federal University, Niterói, Brazil
Search for more papers by this authorMilena Barcza Stockler-Pinto
Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil
Postgraduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
Search for more papers by this authorAna Lúcia Tavares-Gomes
Postgraduate Program in Neurosciences, Fluminense Federal University, Niterói, Brazil
Search for more papers by this authorPatricia Pereira Almeida, Luisa Valdetaro and Beatriz Bastos de Moraes Thomasi contributed equally to this study.
Funding information: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); State of Rio de Janeiro Carlos Chagas Filho Research Foundation (FAPERJ), Grant/Award Number: E-26/203.269/2017
Summary
Obesity is a chronic disease that affects various physiological systems. Among them, the gastrointestinal tract appears to be a main target of this disease. High-fat diet (HFD) animal models can help recapitulate the classic signs of obesity and present a series of gastrointestinal alterations, mainly dysmotility. Because intestinal motility is governed by the enteric nervous system (ENS), enteric neurons, and glial cells have been studied in HFD models. Given the importance of the ENS in general gut physiology, this review aims to discuss the relationship between HFD-induced neuroplasticity and gut dysmotility observed in experimental models. Furthermore, we highlight components of the gut environment that might influence enteric neuroplasticity, including gut microbiota, enteric glio-epithelial unit, serotonin release, immune cells, and disturbances such as inflammation and oxidative stress.
CONFLICT OF INTEREST
The authors declare that there are no conflicts of interest.
REFERENCES
- 1Meldrum DR, Morris MA, Gambone JC. Obesity pandemic: causes, consequences, and solutions—but do we have the will? Fertil Steril. 2017; 107(4): 833-839.
- 2 Collaboration NCDRF. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017; 390: 2627-2642.
- 3Piche ME, Poirier P, Lemieux I, Despres JP. Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update. Prog Cardiovasc Dis. 2018; 61(2): 103-113.
- 4Chobot A, Gorowska-Kowolik K, Sokolowska M, Jarosz-Chobot P. Obesity and diabetes—not only a simple link between two epidemics. Diabetes Metab Res Rev. 2018; 34(7):e3042.
- 5Le Pluart D, Sabate JM, Bouchoucha M, Hercberg S, Benamouzig R, Julia C. Functional gastrointestinal disorders in 35,447 adults and their association with body mass index. Aliment Pharmacol Ther. 2015; 41(8): 758-767.
- 6Fysekidis M, Bouchoucha M, Bihan H, Reach G, Benamouzig R, Catheline JM. Prevalence and co-occurrence of upper and lower functional gastrointestinal symptoms in patients eligible for bariatric surgery. Obes Surg. 2012; 22(3): 403-410.
- 7Kleinert M, Clemmensen C, Hofmann SM, et al. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol. 2018; 14(3): 140-162.
- 8Fernandes MR, Lima NV, Rezende KS, Santos IC, Silva IS, Guimaraes RC. Animal models of obesity in rodents. An integrative review. Acta Cir Bras. 2016; 31(12): 840-844.
- 9Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993; 123(11): 1939-1951.
- 10Antonioli L, D'Antongiovanni V, Pellegrini C, et al. Colonic dysmotility associated with high-fat diet-induced obesity: role of enteric glia. FASEB J. 2020; 34(4): 5512-5524.
- 11Antonioli L, Pellegrini C, Fornai M, et al. Colonic motor dysfunctions in a mouse model of high-fat diet-induced obesity: an involvement of A2B adenosine receptors. Purinergic Signal. 2017; 13(4): 497-510.
- 12Wan X, Yin J, Chen J. Characteristics of intestinal myoelectrical and motor activities in diet-induced obese rats: obesity and motility. Dig Dis Sci. 2019; 64(6): 1478-1485.
- 13Antonioli L, Caputi V, Fornai M, et al. Interplay between colonic inflammation and tachykininergic pathways in the onset of colonic dysmotility in a mouse model of diet-induced obesity. Int J Obes (Lond). 2019; 43(2): 331-343.
- 14Anitha M, Reichardt F, Tabatabavakili S, et al. Intestinal dysbiosis contributes to the delayed gastrointestinal transit in high-fat diet fed mice. Cell Mol Gastroenterol Hepatol. 2016; 2(3): 328-339.
- 15Fayfman M, Flint K, Srinivasan S. Obesity, motility, diet, and intestinal microbiota—connecting the dots. Curr Gastroenterol Rep. 2019; 21(4): 15.
- 16Lebouvier T, Chaumette T, Paillusson S, et al. The second brain and Parkinson's disease. Eur J Neurosci. 2009; 30(5): 735-741.
- 17Furness JB. The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterol Motil. 2008; 20(Suppl 1): 32-38.
- 18de Giorgio R, Blandizzi C. Targeting enteric neuroplasticity: diet and bugs as new key factors. Gastroenterology. 2010; 138(5): 1663-1666.
- 19Nyavor Y, Estill R, Edwards H, et al. Intestinal nerve cell injury occurs prior to insulin resistance in female mice ingesting a high-fat diet. Cell Tissue Res. 2019; 376(3): 325-340.
- 20Mushref MA, Srinivasan S. Effect of high fat-diet and obesity on gastrointestinal motility. J Transl Med. 2013; 1:14.
- 21Nilsson M, Johnsen R, Ye W, Hveem K, Lagergren J. Obesity and estrogen as risk factors for gastroesophageal reflux symptoms. JAMA. 2003; 290(1): 66-72.
- 22vd Baan-Slootweg OH, Liem O, Bekkali N, et al. Constipation and colonic transit times in children with morbid obesity. J Pediatr Gastroenterol Nutr. 2011; 52(4): 442-445.
- 23Gallagher TK, Baird AW, Winter DC. Constitutive basal and stimulated human small bowel contractility is enhanced in obesity. Ann Surg Innov Res. 2009; 3(1): 4.
- 24Li J, Ma W, Wang S. Slower gastric emptying in high-fat diet induced obese rats is associated with attenuated plasma ghrelin and elevated plasma leptin and cholecystokinin concentrations. Regul Pept. 2011; 171(1-3): 53-57.
- 25Clyburn C, Travagli RA, Browning KN. Acute high-fat diet upregulates glutamatergic signaling in the dorsal motor nucleus of the vagus. Am J Physiol Gastrointest Liver Physiol. 2018; 314(5): G623-G634.
- 26Asakawa A, Inui A, Ueno N, et al. Ob/ob mice as a model of delayed gastric emptying. J Diabetes Complications. 2003; 17(1): 27-28.
- 27Stenkamp-Strahm CM, Kappmeyer AJ, Schmalz JT, Gericke M, Balemba O. High-fat diet ingestion correlates with neuropathy in the duodenum myenteric plexus of obese mice with symptoms of type 2 diabetes. Cell Tissue Res. 2013; 354(2): 381-394.
- 28Reichardt F, Baudry C, Gruber L, et al. Properties of myenteric neurones and mucosal functions in the distal colon of diet-induced obese mice. J Physiol. 2013; 591(20): 5125-5139.
- 29Furness JB, Callaghan BP, Rivera LR, Cho HJ. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014; 817: 39-71.
- 30Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol. 2020; 17(6): 338-351.
- 31Spear ET, Mawe GM. Enteric neuroplasticity and dysmotility in inflammatory disease: key players and possible therapeutic targets. Am J Physiol Gastrointest Liver Physiol. 2019; 317(6): G853-G861.
- 32Beraldi EJ, Borges SC, de Almeida FLA, Dos Santos A, Saad MJA, Buttow NC. Colonic neuronal loss and delayed motility induced by high-fat diet occur independently of changes in the major groups of microbiota in Swiss mice. Neurogastroenterol Motil. 2020; 32(2):e13745.
- 33Nyavor Y, Brands CR, May G, et al. High-fat diet-induced alterations to gut microbiota and gut-derived lipoteichoic acid contributes to the development of enteric neuropathy. Neurogastroenterol Motil. 2020; 32(7):e13838.
- 34Reichardt F, Chassaing B, Nezami BG, et al. Western diet induces colonic nitrergic myenteric neuropathy and dysmotility in mice via saturated fatty acid- and lipopolysaccharide-induced TLR4 signalling. J Physiol. 2017; 595(5): 1831-1846.
- 35Fu XY, Li Z, Zhang N, Yu HT, Wang SR, Liu JR. Effects of gastrointestinal motility on obesity. Nutr Metab. 2014; 11(1): 3.
10.1186/1743-7075-11-3 Google Scholar
- 36Nezami BG, Mwangi SM, Lee JE, et al. MicroRNA 375 mediates palmitate-induced enteric neuronal damage and high-fat diet-induced delayed intestinal transit in mice. Gastroenterology. 2014; 146: 473-483.e3.
- 37McMenamin CA, Clyburn C, Browning KN. High-fat diet during the perinatal period induces loss of myenteric nitrergic neurons and increases enteric glial density, prior to the development of obesity. Neuroscience. 2018; 393: 369-380.
- 38Stenkamp-Strahm C, Patterson S, Boren J, Gericke M, Balemba O. High-fat diet and age-dependent effects on enteric glial cell populations of mouse small intestine. Auton Neurosci. 2013; 177(2): 199-210.
- 39Beraldi EJ, Soares A, Borges SC, et al. High-fat diet promotes neuronal loss in the myenteric plexus of the large intestine in mice. Dig Dis Sci. 2015; 60(4): 841-849.
- 40Stenkamp-Strahm CM, Nyavor YE, Kappmeyer AJ, Horton S, Gericke M, Balemba OB. Prolonged high fat diet ingestion, obesity, and type 2 diabetes symptoms correlate with phenotypic plasticity in myenteric neurons and nerve damage in the mouse duodenum. Cell Tissue Res. 2015; 361(2): 411-426.
- 41Voss U, Sand E, Olde B, Ekblad E. Enteric neuropathy can be induced by high fat diet in vivo and palmitic acid exposure in vitro. PLoS ONE. 2013; 8(12):e81413.
- 42Linan-Rico A, Ochoa-Cortes F, Beyder A, et al. Mechanosensory signaling in enterochromaffin cells and 5-HT release: potential implications for gut inflammation. Front Neurosci. 2016; 10: 564.
- 43Bhattarai Y, Fried D, Gulbransen B, et al. High-fat diet-induced obesity alters nitric oxide-mediated neuromuscular transmission and smooth muscle excitability in the mouse distal colon. Am J Physiol Gastrointest Liver Physiol. 2016; 311(2): G210-G220.
- 44Hansen MB. The enteric nervous system II: gastrointestinal functions. Pharmacol Toxicol. 2003; 92(6): 249-257.
- 45Coelho-Aguiar J, Bon-Frauches AC, Gomes AL, et al. The enteric glia: identity and functions. Glia. 2015; 63(6): 921-935.
- 46Cheadle GA, Costantini TW, Bansal V, Eliceiri BP, Coimbra R. Cholinergic signaling in the gut: a novel mechanism of barrier protection through activation of enteric glia cells. Surg Infect (Larchmt). 2014; 15(4): 387-393.
- 47Xiao W, Wang W, Chen W, et al. GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation. Mol Neurobiol. 2014; 50(2): 274-289.
- 48Bach-Ngohou K, Mahe MM, Aubert P, et al. Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-12,14-prostaglandin J2. J Physiol. 2010; 588(14): 2533-2544.
- 49Savidge TC, Newman P, Pothoulakis C, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology. 2007; 132(4): 1344-1358.
- 50Neunlist M, Aubert P, Bonnaud S, et al. Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway. Am J Physiol Gastrointest Liver Physiol. 2007; 292(1): G231-G241.
- 51Meir M, Kannapin F, Diefenbacher M, et al. Intestinal epithelial barrier maturation by enteric glial cells is GDNF-dependent. Int J Mol Sci. 2021; 22(4):22.
- 52Chow AK, Gulbransen BD. Potential roles of enteric glia in bridging neuroimmune communication in the gut. Am J Physiol Gastrointest Liver Physiol. 2017; 312(2): G145-G152.
- 53Yoo BB, Mazmanian SK. The enteric network: interactions between the immune and nervous systems of the gut. Immunity. 2017; 46(6): 910-926.
- 54Gulbransen BD, Sharkey KA. Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology. 2009; 136(4): 1349-1358.
- 55Grubisic V, Gulbransen BD. Enteric glia: the most alimentary of all glia. J Physiol. 2016; 595(2): 557-570.
- 56McClain JL, Fried DE, Gulbransen BD. Agonist-evoked Ca2+ signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell Mol Gastroenterol Hepatol. 2015; 1(6): 631-645.
- 57McClain J, Grubisic V, Fried D, et al. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology. 2014; 146: 497-507.e1.
- 58Broadhead MJ, Bayguinov PO, Okamoto T, Heredia DJ, Smith TK. Ca2+ transients in myenteric glial cells during the colonic migrating motor complex in the isolated murine large intestine. J Physiol. 2012; 590(2): 335-350.
- 59Cirillo C, Sarnelli G, Esposito G, Turco F, Steardo L, Cuomo R. S100B protein in the gut: the evidence for enteroglial-sustained intestinal inflammation. World J Gastroenterol. 2011; 17(10): 1261-1266.
- 60von Boyen GB, Schulte N, Pfluger C, Spaniol U, Hartmann C, Steinkamp M. Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterol. 2011; 11(1):3.
- 61Cirillo C, Sarnelli G, Esposito G, et al. Increased mucosal nitric oxide production in ulcerative colitis is mediated in part by the enteroglial-derived S100B protein. Neurogastroenterol Motil. 2009; 21(11): 1209-e112.
- 62Refolo V, Stefanova N. Neuroinflammation and glial phenotypic changes in alpha-synucleinopathies. Front Cell Neurosci. 2019; 13:263.
- 63Brown IA, McClain JL, Watson RE, Patel BA, Gulbransen BD. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol. 2016; 2(1): 77-91.
- 64D'Antongiovanni V, Benvenuti L, Fornai M, et al. Glial A2B adenosine receptors modulate abnormal tachykininergic responses and prevent enteric inflammation associated with high fat diet-induced obesity. Cell. 2020; 9(5):1245.
- 65Antonioli L, Blandizzi C, Csoka B, Pacher P, Hasko G. Adenosine signalling in diabetes mellitus—pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2015; 11(4): 228-241.
- 66Cabarrocas J, Savidge TC, Liblau RS. Role of enteric glial cells in inflammatory bowel disease. Glia. 2003; 41(1): 81-93.
- 67Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci. 2020; 77(22): 4505-4522.
- 68Obata Y, Castano A, Boeing S, et al. Neuronal programming by microbiota regulates intestinal physiology. Nature. 2020; 578(7794): 284-289.
- 69McVey Neufeld KA, Mao YK, Bienenstock J, Foster JA, Kunze WA. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil. 2013; 25(2): 183-e88.
- 70Kabouridis PS, Lasrado R, McCallum S, et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015; 85(2): 289-295.
- 71Netto Candido TL, Bressan J, Alfenas RCG. Dysbiosis and metabolic endotoxemia induced by high-fat diet. Nutr Hosp. 2018; 35(6): 1432-1440.
- 72de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010; 299(2): G440-G448.
- 73Bihl F, Salez L, Beaubier M, et al. Overexpression of toll-like receptor 4 amplifies the host response to lipopolysaccharide and provides a survival advantage in transgenic mice. J Immunol. 2003; 170(12): 6141-6150.
- 74Di Liddo R, Bertalot T, Schuster A, et al. Anti-inflammatory activity of Wnt signaling in enteric nervous system: in vitro preliminary evidences in rat primary cultures. J Neuroinflammation. 2015; 12(1):23.
- 75An HM, Park SY, Lee DK, et al. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis. 2011; 10(1): 116.
- 76Bercik P, Park AJ, Sinclair D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011; 23(12): 1132-1139.
- 77Javed N, Furman D, Khubchandani J. The regulatory effects of Bifidobacterium infantis on the secretomotor activity of the enteric nervous system. Chron Young Sci. 2013; 4(2): 144-120.
10.4103/2229-5186.115550 Google Scholar
- 78Duan Y, Zeng L, Zheng C, et al. Inflammatory links between high fat diets and diseases. Front Immunol. 2018; 9: 2649.
- 79Kawano Y, Nakae J, Watanabe N, et al. Colonic pro-inflammatory macrophages cause insulin resistance in an intestinal Ccl2/Ccr2-dependent manner. Cell Metab. 2016; 24(2): 295-310.
- 80Margolis KG, Gershon MD. Enteric neuronal regulation of intestinal inflammation. Trends Neurosci. 2016; 39(9): 614-624.
- 81Shea-Donohue T, Urban JF Jr. Neuroimmune modulation of gut function. Handb Exp Pharmacol. 2017; 239: 247-267.
- 82Kermarrec L, Durand T, Gonzales J, et al. Rat enteric glial cells express novel isoforms of interleukine-7 regulated during inflammation. Neurogastroenterol Motil. 2019; 31(1):e13467.
- 83Li X, Wei X, Sun Y, et al. High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. Am J Physiol Gastrointest Liver Physiol. 2019; 317(4): G453-G462.
- 84Neunlist M, Dobreva G, Schemann M. Characteristics of mucosally projecting myenteric neurones in the guinea-pig proximal colon. J Physiol. 1999; 517(Pt 2): 533-546.
- 85Linden DR, Sharkey KA, Ho W, Mawe GM. Cyclooxygenase-2 contributes to dysmotility and enhanced excitability of myenteric AH neurones in the inflamed guinea pig distal colon. J Physiol. 2004; 557(1): 191-205.
- 86Linden DR, Sharkey KA, Mawe GM. Enhanced excitability of myenteric AH neurones in the inflamed guinea-pig distal colon. J Physiol. 2003; 547(2): 589-601.
- 87Lomax AE, Mawe GM, Sharkey KA. Synaptic facilitation and enhanced neuronal excitability in the submucosal plexus during experimental colitis in guinea-pig. J Physiol. 2005; 564(3): 863-875.
- 88Krauter EM, Linden DR, Sharkey KA, Mawe GM. Synaptic plasticity in myenteric neurons of the guinea-pig distal colon: presynaptic mechanisms of inflammation-induced synaptic facilitation. J Physiol. 2007; 581(2): 787-800.
- 89Gulbransen BD, Bashashati M, Hirota SA, et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med. 2012; 18(4): 600-604.
- 90Bassotti G, Villanacci V, Nascimbeni R, et al. Enteric neuroglial apoptosis in inflammatory bowel diseases. J Crohns Colitis. 2009; 3(4): 264-270.
- 91Margolis KG, Gershon MD, Bogunovic M. Cellular organization of neuroimmune interactions in the gastrointestinal tract. Trends Immunol. 2016; 37(7): 487-501.
- 92Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE. 2012; 7(10):e47713.
- 93Shen W, Wolf PG, Carbonero F, et al. Intestinal and systemic inflammatory responses are positively associated with sulfidogenic bacteria abundance in high-fat-fed male C57BL/6J mice. J Nutr. 2014; 144(8): 1181-1187.
- 94Gougeon PY, Lourenssen S, Han TY, Nair DG, Ropeleski MJ, Blennerhassett MG. The pro-inflammatory cytokines IL-1β and TNFα are neurotrophic for enteric neurons. J Neurosci. 2013; 33(8): 3339-3351.
- 95Kindt S, Vanden Berghe P, Boesmans W, Roosen L, Tack J. Prolonged IL-1beta exposure alters neurotransmitter and electrically induced Ca2+ responses in the myenteric plexus. Neurogastroenterol Motil. 2010; 22(3): 321-e85.
- 96Serino M, Luche E, Gres S, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012; 61(4): 543-553.
- 97Lam YY, Ha CW, Campbell CR, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE. 2012; 7(3):e34233.
- 98Neunlist M, Van Landeghem L, Mahe MM, Derkinderen P, des Varannes SB, Rolli-Derkinderen M. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol. 2013; 10(2): 90-100.
- 99Xie Y, Ding F, Di W, et al. Impact of a high-fat diet on intestinal stem cells and epithelial barrier function in middle-aged female mice. Mol Med Rep. 2020; 21(3): 1133-1144.
- 100Lasker S, Rahman MM, Parvez F, et al. High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Sci Rep. 2019; 9(1):20026.
- 101Monk JM, Wu W, Lepp D, et al. Navy bean supplemented high-fat diet improves intestinal health, epithelial barrier integrity and critical aspects of the obese inflammatory phenotype. J Nutr Biochem. 2019; 70: 91-104.
- 102Nascimento JC, Matheus VA, Oliveira RB, Tada SFS, Collares-Buzato CB. High-fat diet induces disruption of the tight junction-mediated paracellular barrier in the proximal small intestine before the onset of type 2 diabetes and endotoxemia. Dig Dis Sci. 2020; 66(10): 3359-3374.
- 103Nagpal R, Newman TM, Wang S, Jain S, Lovato JF, Yadav H. Obesity-linked gut microbiome dysbiosis associated with derangements in gut permeability and intestinal cellular homeostasis independent of diet. J Diabetes Res. 2018; 2018:3462092.
- 104Candido FG, Valente FX, Grzeskowiak LM, Moreira APB, Rocha D, Alfenas RCG. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. Int J Food Sci Nutr. 2018; 69(2): 125-143.
- 105Guedia J, Brun P, Bhave S, et al. HIV-1 Tat exacerbates lipopolysaccharide-induced cytokine release via TLR4 signaling in the enteric nervous system. Sci Rep. 2016; 6(1):31203.
- 106Turco F, Sarnelli G, Cirillo C, et al. Enteroglial-derived S100B protein integrates bacteria-induced toll-like receptor signalling in human enteric glial cells. Gut. 2014; 63(1): 105-115.
- 107Chow AK, Grubisic V, Gulbransen BD. Enteric glia regulate lymphocyte activation via autophagy-mediated MHC-II expression. Cell Mol Gastroenterol Hepatol. 2021; 12(4): 1215-1237.
- 108Park C, Cheung KP, Limon N, et al. Obesity modulates intestinal intraepithelial T cell persistence, CD103 and CCR9 expression, and outcome in dextran sulfate sodium-induced colitis. J Immunol. 2019; 203(12): 3427-3435.
- 109Tanaka S, Nemoto Y, Takei Y, et al. High-fat diet-derived free fatty acids impair the intestinal immune system and increase sensitivity to intestinal epithelial damage. Biochem Biophys Res Commun. 2020; 522(4): 971-977.
- 110Robles EF, Vázquez VP, Emiliano JR, Amaro RG, Briones SL. High fat diet induces alterations to intraepithelial lymphocyte and cytokine mRNA in the small intestine of C57BL/6 mice. RSC Adv. 2017; 7(9): 5322-5330.
- 111Van Kaer L, Olivares-Villagomez D. Development, Homeostasis, and Functions of Intestinal Intraepithelial Lymphocytes. J Immunol. 2018; 200(7): 2235-2244.
- 112Fan H, Wang A, Wang Y, et al. Innate lymphoid cells: regulators of gut barrier function and immune homeostasis. J Immunol Res. 2019; 2019:2525984.
- 113Saetang J, Sangkhathat S. Role of innate lymphoid cells in obesity and metabolic disease (review). Mol Med Rep. 2018; 17(1): 1403-1412.
- 114Boulenouar S. High-fat diet causes rapid microbiota-dependent intestinal ILC3 loss and impairs tolerance and immunity. 2020; 204.
- 115Ibiza S, Garcia-Cassani B, Ribeiro H, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016; 535(7612): 440-443.
- 116Liu Z, Sun H, Liang M, et al. Enteric glial cells respond to a dietary change in the lamina propria in a MyD88-dependent manner. BioRxiv Preprint. 2020.
- 117Everard A, Geurts L, Caesar R, et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat Commun. 2014; 5(1):5648.
- 118Baudry C, Reichardt F, Marchix J, et al. Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell line-derived neurotrophic factor. J Physiol. 2012; 590(3): 533-544.
- 119Kabouridis PS, Lasrado R, McCallum S, et al. The gut microbiota keeps enteric glial cells on the move; prospective roles of the gut epithelium and immune system. Gut Microbes. 2015; 6(6): 398-403.
- 120Garcia MM, Goicoechea C, Molina-Alvarez M, Pascual D. Toll-like receptor 4: a promising crossroads in the diagnosis and treatment of several pathologies. Eur J Pharmacol. 2020; 874:172975.
- 121Terry N, Margolis KG. Serotonergic mechanisms regulating the GI tract: experimental evidence and therapeutic relevance. Handb Exp Pharmacol. 2017; 239: 319-342.
- 122Ye L, Mueller O, Bagwell J, Bagnat M, Liddle RA, Rawls JF. High fat diet induces microbiota-dependent silencing of enteroendocrine cells. Elife. 2019; 8:e48479.
- 123Le Beyec J, Pelletier AL, Arapis K, et al. Overexpression of gastric leptin precedes adipocyte leptin during high-fat diet and is linked to 5HT-containing enterochromaffin cells. Int J Obes (Lond). 2014; 38(10): 1357-1364.
- 124Peiris M, Aktar R, Raynel S, et al. Effects of obesity and gastric bypass surgery on nutrient sensors, endocrine cells, and mucosal innervation of the mouse colon. Nutrients. 2018; 10(10): 1529.
- 125Bertrand RL, Senadheera S, Tanoto A, et al. Serotonin availability in rat colon is reduced during a Western diet model of obesity. Am J Physiol Gastrointest Liver Physiol. 2012; 303(3): G424-G434.
- 126Jin B, Ha SE, Wei L, et al. Colonic motility is improved by the activation of 5-HT2B receptors on interstitial cells of Cajal in diabetic mice. Gastroenterology. 2021; 161(2): 608-622.e7.
- 127Stasi C, Bellini M, Bassotti G, Blandizzi C, Milani S. Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech Coloproctol. 2014; 18(7): 613-621.
- 128Westerberg S, Hagbom M, Rajan A, et al. Interaction of Human enterochromaffin cells with human enteric adenovirus 41 leads to serotonin release and subsequent activation of enteric glia cells. J Virol. 2018; 92(7): e00026-18.
- 129Bohorquez DV, Samsa LA, Roholt A, Medicetty S, Chandra R, Liddle RA. An enteroendocrine cell-enteric glia connection revealed by 3D electron microscopy. PLoS ONE. 2014; 9(2):e89881.
- 130Silva Figueiredo P, Carla Inada A, Marcelino G, et al. Fatty acids consumption: the role metabolic aspects involved in obesity and its associated disorders. Nutrients. 2017; 9(10): 1158.
- 131Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol. 2021; 18(8): 571-587.