In vitro effects of phytogenic feed additive on Piscirickettsia salmonis growth and biofilm formation
Natacha Santibáñez
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
Contribution: Methodology, Validation, Writing - original draft, Formal analysis
Search for more papers by this authorMatías Vega
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
Contribution: Methodology, Validation, Investigation
Search for more papers by this authorTatiana Pérez
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
Contribution: Investigation, Methodology, Validation
Search for more papers by this authorRicardo Enriquez
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Contribution: Conceptualization, Supervision
Search for more papers by this authorCarla Estefanía Escalona
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
Contribution: Investigation, Methodology, Validation
Search for more papers by this authorCristian Oliver
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Contribution: Writing - original draft, Writing - review & editing, Formal analysis, Validation, Conceptualization
Search for more papers by this authorCorresponding Author
Alex Romero
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
Correspondence
Alex Romero, Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Isla Teja s/n. Valdivia, Chile.
Email: [email protected]
Contribution: Conceptualization, Writing - original draft, Writing - review & editing, Validation, Methodology, Formal analysis
Search for more papers by this authorNatacha Santibáñez
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
Contribution: Methodology, Validation, Writing - original draft, Formal analysis
Search for more papers by this authorMatías Vega
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
Contribution: Methodology, Validation, Investigation
Search for more papers by this authorTatiana Pérez
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
Contribution: Investigation, Methodology, Validation
Search for more papers by this authorRicardo Enriquez
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Contribution: Conceptualization, Supervision
Search for more papers by this authorCarla Estefanía Escalona
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
Contribution: Investigation, Methodology, Validation
Search for more papers by this authorCristian Oliver
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Contribution: Writing - original draft, Writing - review & editing, Formal analysis, Validation, Conceptualization
Search for more papers by this authorCorresponding Author
Alex Romero
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
Correspondence
Alex Romero, Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Isla Teja s/n. Valdivia, Chile.
Email: [email protected]
Contribution: Conceptualization, Writing - original draft, Writing - review & editing, Validation, Methodology, Formal analysis
Search for more papers by this authorAbstract
Piscirickettsiosis is the main cause of mortality in salmonids of commercial importance in Chile, which is caused by Piscirickettsia salmonis, a Gram-negative, γ-proteobacteria that can produce biofilm as one of its virulence factors. The Chilean salmon industry uses large amounts of antibiotics to control piscirickettsiosis outbreaks, which has raised concern about its environmental impact and the potential to induce antibiotic resistance. Thus, the use of phytogenic feed additives (PFA) with antibacterial activity emerges as an interesting alternative to antimicrobials. Our study describes the antimicrobial action of an Andrographis paniculate-extracted PFA on P. salmonis planktonic growth and biofilm formation. We observed complete inhibition of planktonic and biofilm growth with 500 and 400 μg/mL of PFA for P. salmonis LF-89 and EM-90-like strains, respectively. Furthermore, 500 μg/mL of PFA was bactericidal for both evaluated bacterial strains. Sub-inhibitory doses of PFA increase the transcript levels of stress (groEL), biofilm (pslD), and efflux pump (acrB) genes for both P. salmonis strains in planktonic and sessile conditions. In conclusion, our results demonstrate the antibacterial effect of PFA against P. salmonis in vitro, highlighting the potential of PFA as an alternative to control Piscirickettsiosis.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
REFERENCES
- Albornoz, R., Valenzuela, K., Pontigo, J. P., Sanchez, P., Ruiz, P., Avendano-Herrera, R., Romero, A., Oliver, C., & Yanez, A. (2017). Identification of chemotaxis operon cheYZA and cheA gene expression under stressful conditions in Piscirickettsia salmonis. Microbial Pathogenesis, 107, 436–441.
- Alguel, Y., Meng, C., Teran, W., Krell, T., Ramos, J. L., Gallegos, M. T., & Zhang, X. (2007). Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. Journal of Molecular Biology, 369, 829–840.
- Al-Karablieh, N., Weingart, H., & Ullrich, M. S. (2009). The outer membrane protein TolC is required for phytoalexin resistance and virulence of the fire blight pathogen Erwinia amylovora. Microbial Biotechnology, 2, 465–475.
- Avendaño-Herrera, R., Mancilla, M., & Miranda, C. D. (2023). Use of antimicrobials in Chilean Salmon farming: Facts, myths and perspectives. Reviews in Aquaculture, 15, 89–111.
- Banerjee, M., Parai, D., Chattopadhyay, S., & Mukherjee, S. K. (2017). Andrographolide: Antibacterial activity against common bacteria of human health concern and possible mechanism of action. Folia Microbiologica, 62, 237–244.
- Barry, A. L., & Brown, S. D. (1999). Parameters for quality control of antimicrobial susceptibility tests of roxithromycin. Clinical Microbiology and Infection, 5, 233–234.
- Bravo, C., & Martinez, V. (2016). Whole-genome comparative analysis of the pathogen Piscirickettsia salmonis. Veterinary Microbiology, 196, 36–43.
- Bulfon, C., Volpatti, D., & Galeotti, M. (2015). Current research on the use of plant-derived products in farmed fish. Aquaculture Research, 46, 513–551.
- Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94, 223–253.
- Campisano, A., Schroeder, C., Schemionek, M., Overhage, J., & Rehm Bernd, H. A. (2006). PslD is a secreted protein required for biofilm formation by Pseudomonas aeruginosa. Applied and Environmental Microbiology, 72, 3066–3068.
- Cañon-Jones, H., Cortes, H., Castillo-Ruiz, M., Schlotterbeck, T., & San Martín, R. (2020). Quillaja saponaria (Molina) extracts inhibits in vitro Piscirickettsia salmonis infections. Animals (Basel), 10, 2286.
- Contreras-Lynch, S., Olmos, P., Vargas, A., Figueroa, J., Gonzalez-Stegmaier, R., Enriquez, R., & Romero, A. (2015). Identification and genetic characterization of Piscirickettsia salmonis in native fish from southern Chile. Diseases of Aquatic Organisms, 115, 233–244.
- Cortés, H., Castillo-Ruiz, M., Cañon-Jones, H., Schlotterbeck, T., San Martín, R., & Padilla, L. (2023). In vivo efficacy of purified quillaja saponin extracts in protecting against piscirickettsia salmonis infections in Atlantic Salmon (Salmo salar). Animals (Basel), 13, 2845.
- CSARP. (2022). Retrieved May 2022, from https://www.csarp.cl/_files/ugd/8bb58b_06b5b16606a04c9199f9746dfa1180e6.pdf
- Dai, Y., Chen, S.-R., Chai, L., Zhao, J., Wang, Y., & Wang, Y. (2019). Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Critical Reviews in Food Science and Nutrition, 59, S17–S29.
- Dhara, L., & Tripathi, A. (2020). Cinnamaldehyde: A compound with antimicrobial and synergistic activity against ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae. European Journal of Clinical Microbiology & Infectious Diseases, 39, 65–73.
- Epstein, A. K., Pokroy, B., Seminara, A., & Aizenberg, J. (2011). Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proceedings of the National Academy of Sciences of the United States of America, 108, 995–1000.
- Exner, M., Bhattacharya, S., Christiansen, B., Gebel, J., Goroncy-Bermes, P., Hartemann, P., Heeg, P., Ilschner, C., Kramer, A., Larson, E., Merkens, W., Mielke, M., Oltmanns, P., Ross, B., Rotter, M., Schmithausen, R. M., Sonntag, H. G., & Trautmann, M. (2017). Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hygiene and Infection Control, 12, Doc05.
- Figueroa, J., Cárcamo, J., Yañez, A., Olavarria, V., Ruiz, P., Manríquez, R., Muñoz, C., Romero, A., & Avendaño-Herrera, R. (2019). Addressing viral and bacterial threats to salmon farming in Chile: Historical contexts and perspectives for management and control. Reviews in Aquaculture, 11, 299–324.
- Flores-Herrera, P., Arredondo-Zelada, O., Marshall, S. H., & Gómez, F. A. (2018). Selection and validation of reliable housekeeping genes to evaluate Piscirickettsia salmonis gene expression. Infection, Genetics and Evolution, 63, 151–157.
- Fryer, J. L., & Hedrick, R. P. (2003). Piscirickettsia salmonis: A Gram-negative intracellular bacterial pathogen of fish. Journal of Fish Diseases, 26, 251–262.
- Geetha, S., & Rajeswari, S. (2019). A preliminary study on phytochemical screening, proximate analysis and anti-bacterial activities of Andrographis paniculata seed extract. Research Journal of Pharmacy and Technology, 12, 2083–2088.
10.5958/0974-360X.2019.00345.7 Google Scholar
- Guo, X., Zhang, L. Y., Wu, S. C., Xia, F., Fu, Y. X., Wu, Y. L., Leng, C. Q., Yi, P. F., Shen, H. Q., Wei, X. B., & Fu, B. D. (2014). Andrographolide interferes quorum sensing to reduce cell damage caused by avian pathogenic Escherichia coli. Veterinary Microbiology, 174, 496–503.
- Humnabadkar, S. S., & Kareppa, B. M. (2012). In vitro study of antibacterial activity of Andrographis paniculata against clinically important pathogens. International Journal of Advanced Biological Research, 2, 584–586.
- Karatas, S., Mikalsen, J., Steinum, T. M., Taksdal, T., Bordevik, M., & Colquhoun, D. J. (2008). Real time PCR detection of Piscirickettsia salmonis from formalin-fixed paraffin-embedded tissues. Journal of Fish Diseases, 31, 747–753.
- Koohsari, H., Ghaemi, E. A., Sadegh Sheshpoli, M., Jahedi, M., & Zahiri, M. (2015). The investigation of antibacterial activity of selected native plants from north of Iran. Journal of Medicine and Life, 8, 38–42.
- Kupper, M., Gupta, S. K., Feldhaar, H., & Gross, R. (2014). Versatile roles of the chaperonin GroEL in microorganism-insect interactions. FEMS Microbiology Letters, 353, 1–10.
- Lagos, F., Cartes, C., Vera, T., Haussmann, D., & Figueroa, J. (2017). Identification of genomic islands in Chilean Piscirickettsia salmonis strains and analysis of gene expression involved in virulence. Journal of Fish Diseases, 40, 1321–1331.
- Larenas, J. J., Bartholomew, J., Troncoso, O., Fernández, S., Ledezma, H., Sandoval, N., Vera, P., Contreras, J., & Smith, P. (2003). Experimental vertical transmission of Piscirickettsia salmonis and in vitro study of attachment and mode of entrance into the fish ovum. Diseases of Aquatic Organisms, 56, 25–30.
- Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Reviews in Aquaculture, 12, 640–663.
- Majumdar, M., Misra, T. K., & Roy, D. N. (2020). In vitro anti-biofilm activity of 14-deoxy-11,12-didehydroandrographolide from Andrographis paniculata against Pseudomonas aeruginosa. Brazilian Journal of Microbiology, 51, 15–27.
- Marshall, S. H., Gomez, F. A., Ramirez, R., Nilo, L., & Henriquez, V. (2012). Biofilm generation by Piscirickettsia salmonis under growth stress conditions: A putative in vivo survival/persistence strategy in marine environments. Research in Microbiology, 163, 557–566.
- Mary, R., & Banu, N. (2017). Antiquorum sensing potential of andrographolide from Andrographis paniculata in Vibrio harveyi. Research Journal of Pharmacy and Technology, 10, 449.
10.5958/0974-360X.2017.00090.7 Google Scholar
- Memariani, H., Memariani, M., & Ghasemian, A. (2019). An overview on anti-biofilm properties of quercetin against bacterial pathogens. World Journal of Microbiology and Biotechnology, 35, 143.
- Miranda, C. D., Godoy, F. A., & Lee, M. R. (2018). Current status of the use of antibiotics and the antimicrobial resistance in the Chilean Salmon farms. Frontiers in Microbiology, 9, 1284.
- Mishra, P. K., Singh, R. K., Gupta, A., Chaturvedi, A., Pandey, R., Tiwari, S. P., & Mohapatra, T. M. (2013). Antibacterial activity of Andrographis paniculata (Burm. f.) wall ex Nees leaves against clinical pathogens. Journal of Pharmacy Research, 7, 459–462.
10.1016/j.jopr.2013.05.009 Google Scholar
- Morris, A. J., Jackson, L., Cw Yau, Y., Reichhardt, C., Beaudoin, T., Uwumarenogie, S., Guttman, K. M., Lynne Howell, P., Parsek, M. R., Hoffman, L. R., Nguyen, D., DiGiandomenico, A., Guttman, D. S., Wozniak, D. J., & Waters, V. J. (2021). The role of Psl in the failure to eradicate Pseudomonas aeruginosa biofilms in children with cystic fibrosis. npj Biofilms and Microbiomes, 7, 63.
- Neckers, L., & Tatu, U. (2008). Molecular chaperones in pathogen virulence: Emerging new targets for therapy. Cell Host & Microbe, 4, 519–527.
- Niu, C., & Gilbert, E. S. (2004). Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Applied and Environmental Microbiology, 70, 6951–6956.
- Nourdin-Galindo, G., Sanchez, P., Molina, C. F., Espinoza-Rojas, D. A., Oliver, C., Ruiz, P., Vargas-Chacoff, L., Carcamo, J. G., Figueroa, J. E., Mancilla, M., Maracaja-Coutinho, V., & Yanez, A. J. (2017). Comparative pan-genome analysis of Piscirickettsia salmonis reveals genomic divergences within genogroups. Frontiers in Cellular and Infection Microbiology, 7, 459.
- Ohene-Agyei, T., Mowla, R., Rahman, T., & Venter, H. (2014). Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. Microbiology Open, 3, 885–896.
- Oliver, C., Céspedes, C., Santibañez, N., Ruiz, P., & Romero, A. (2023). Subinhibitory concentrations of florfenicol increase the biofilm formation of Piscirickettsia salmonis. Journal of Fish Diseases, 46, 591–596.
- Oliver, C., Hernández, M. A., Tandberg, J. I., Valenzuela, K. N., Lagos, L. X., Haro, R. E., Sánchez, P., Ruiz, P. A., Sanhueza-Oyarzún, C., Cortés, M. A., Villar, M. T., Artigues, A., Winther-Larsen, H. C., Avendaño-Herrera, R., & Yáñez, A. J. (2017). The proteome of biologically active membrane vesicles from Piscirickettsia salmonis LF-89 type strain identifies plasmid-encoded putative toxins. Frontiers in Cellular and Infection Microbiology, 7, 420.
- Pandey, J., Saini, V., Tiwari, S., & Raja, W. (2019). A study of antibacterial activity of andrographis paniculata leaf and stem bark extracts against some clinical pathogenic bacteria's. Asian Journal of Pharmaceutical and Biological Research, 7, 65–70.
- Periasamy, S., Nair, H. A., Lee, K. W., Ong, J., Goh, J. Q., Kjelleberg, S., & Rice, S. A. (2015). Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance. Frontiers in Microbiology, 6, 851.
- Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.
- Preena, P. G., Swaminathan, T. R., Kumar, V. J. R., & Singh, I. S. B. (2020). Antimicrobial resistance in aquaculture: A crisis for concern. Biologia, 75, 1497–1517.
- Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7, 493–512.
- Rattanachaikunsopon, P., & Phumkhachorn, P. (2009). Prophylactic effect of Andrographis paniculata extracts against Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). Journal of Bioscience and Bioengineering, 107, 579–582.
- Romero, A., Pérez, T., Santibáñez, N., Vega, M., & Miranda, P. (2021). Phytogenic feed additive (PFA) standardized in labdane diterpens have a protective effect in Salmo salar against Piscirickettsia salmonis. Aquaculture, 533, 736170.
- Rozas, M., & Enríquez, R. (2014). Piscirickettsiosis and piscirickettsia salmonis in fish: A review. Diseases of Aquatic Organisms, 37, 163–188.
- Ruiz, P., Sepulveda, D., Vidal, J. M., Romero, R., Contreras, D., Barros, J., Carrasco, C., Ruiz-Tagle, N., Romero, A., Urrutia, H., & Oliver, C. (2021). Piscirickettsia salmonis produces a N-acetyl-l-Homoserine lactone as a bacterial quorum sensing system-related molecule. Frontiers in Cellular and Infection Microbiology, 11, 755496.
- Sah, S. K., Rasool, U., & Hemalatha, S. (2020). Andrographis paniculata extract inhibit growth, biofilm formation in multidrug resistant strains of Klebsiella pneumoniae. Journal of Traditional and Complementary Medicine, 10, 599–604.
- Sánchez, E., Rivas Morales, C., Castillo, S., Leos-Rivas, C., García-Becerra, L., & Ortiz Martínez, D. M. (2016). Antibacterial and antibiofilm activity of methanolic plant extracts against nosocomial microorganisms. Evidence-Based Complementary and Alternative Medicine, 2016, 1572697.
- Sandoval, R., Oliver, C., Valdivia, S., Valenzuela, K., Haro, R. E., Sánchez, P., Olavarría, V. H., Valenzuela, P., Avendaño-Herrera, R., Romero, A., Cárcamo, J. G., Figueroa, J. E., & Yáñez, A. J. (2016). Resistance-nodulation-division efflux pump acrAB is modulated by florfenicol and contributes to drug resistance in the fish pathogen Piscirickettsia salmonis. FEMS Microbiology Letters, 363, fnw102.
- Santibanez, N., Vega, M., Perez, T., Yanez, A., Gonzalez-Stegmaier, R., Figueroa, J., Enriquez, R., Oliver, C., & Romero, A. (2020). Biofilm produced in vitro by Piscirickettsia salmonis generates differential cytotoxicity levels and expression patterns of immune genes in the Atlantic salmon cell line SHK-1. Microorganisms, 8, 1609.
- SERNAPESCA. (2022a). Retrieved May 2022, from http://www.sernapesca.cl/sites/default/files/informe_sanitario_con_informacion_sanitaria_de_agua_dulce_y_marenero-junio-ano_2022.pdf
- SERNAPESCA. (2022b). Retrieved May 2022, from http://www.sernapesca.cl/sites/default/files/informe_sobre_el_uso_de_antimicrobianos_en_la_salmonicultura_nacional_-_primer_semestre_-_ano_2022_v20221026.pdf
- Shi, M. D., Lin, H. H., Lee, Y. C., Chao, J. K., Lin, R. A., & Chen, J. H. (2008). Inhibition of cell-cycle progression in human colorectal carcinoma lovo cells by andrographolide. Chemico-Biological Interactions, 174, 201–210.
- Singha, P. K., Roy, S., & Dey, S. (2003). Antimicrobial activity of Andrographis paniculata. Fitoterapia, 74, 692–694.
- Stepanovic, S., Vukovic, D., Hola, V., Di Bonaventura, G., Djukic, S., Cirkovic, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 115, 891–899.
- Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21, 1199–1218.
- Tote, K., Horemans, T., Vanden Berghe, D., Maes, L., & Cos, P. (2010). Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 76, 3135–3142.
- Vera, T., Isla, A., Cuevas, A., & Figueroa, J. (2012). A new liquid medium for the pathogen Piscirickettsia salmonis. Archivos de Medicina Veterinaria, 44, 273–277.
- Vidal, J. M., Ruiz, P., Carrasco, C., Barros, J., Sepúlveda, D., Ruiz-Tagle, N., Romero, A., Urrutia, H., & Oliver, C. (2022). Piscirickettsia salmonis forms a biofilm on nylon surface using a CDC biofilm reactor. Journal of Fish Diseases, 45, 1099–1107.
- Yanez, A. J., Silva, H., Valenzuela, K., Pontigo, J. P., Godoy, M., Troncoso, J., Romero, A., Figueroa, J., Carcamo, J. G., & Avendano-Herrera, R. (2013). Two novel blood-free solid media for the culture of the salmonid pathogen Piscirickettsia salmonis. Journal of Fish Diseases, 36, 587–591.
- Zhang, L., Bao, M., Liu, B., Zhao, H., Zhang, Y., Ji, X., Zhao, N., Zhang, C., He, X., Yi, J., Tan, Y., Li, L., & Lu, C. (2020). Effect of andrographolide and its analogs on bacterial infection: A review. Pharmacology, 105, 123–134.