ATP-binding cassette (ABC) transporters in cancer: A review of recent updates
Jing-Quan Wang
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorZhuo-Xun Wu
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorYuqi Yang
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorQiu-Xu Teng
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorYi-Dong Li
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorZi-Ning Lei
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorKhushboo A Jani
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorNeeraj Kaushal
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorCorresponding Author
Zhe-Sheng Chen
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Correspondence
Zhe-Sheng Chen, Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439.
Email: [email protected]
Search for more papers by this authorJing-Quan Wang
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorZhuo-Xun Wu
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorYuqi Yang
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorQiu-Xu Teng
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorYi-Dong Li
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorZi-Ning Lei
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
Search for more papers by this authorKhushboo A Jani
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorNeeraj Kaushal
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Search for more papers by this authorCorresponding Author
Zhe-Sheng Chen
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
Correspondence
Zhe-Sheng Chen, Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439.
Email: [email protected]
Search for more papers by this authorAbstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest membrane protein families existing in wide spectrum of organisms from prokaryotes to human. ABC transporters are also known as efflux pumps because they mediate the cross-membrane transportation of various endo- and xenobiotic molecules energized by ATP hydrolysis. Therefore, ABC transporters have been considered closely to multidrug resistance (MDR) in cancer, where the efflux of structurally distinct chemotherapeutic drugs causes reduced itherapeutic efficacy. Besides, ABC transporters also play other critical biological roles in cancer such as signal transduction. During the past decades, extensive efforts have been made in understanding the structure-function relationship, transportation profile of ABC transporters, as well as the possibility to overcome MDR via targeting these transporters. In this review, we discuss the most recent knowledge regarding ABC transporters and cancer drug resistance in order to provide insights for the development of more effective therapies.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES
- 1Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta Biomembr. 1976; 455(1): 152-162.
- 2Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 2010; 10(2): 147-156.
- 3Cui Q, Yang Y, Ji N, et al. Gaseous signaling molecules and their application in resistant cancer treatment: from invisible to visible. Future Med Chem. 2019; 11(4): 323-336.
- 4Kadioglu O, Saeed MEM, Munder M, Spuller A, Greten HJ, Efferth T. Effect of ABC transporter expression and mutational status on survival rates of cancer patients. Biomed. 2020; 131:110718.
- 5Dvorak P, Pesta M, Soucek P. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer. Tumour Biol: J Int Soc Oncodev Biol Med. 2017; 39(5):1010428317699800.
10.1177/1010428317699800 Google Scholar
- 6Chen XY, Wang JQ, Yang Y, Li J, Chen ZS. Natural product as substrates of ABC transporters: a review. Recent Pat Anticancer Drug Discov. Feb 18, 2021; 16(1): 1–17.
- 7Albrecht C, Viturro E. The ABCA subfamily–gene and protein structures, functions and associated hereditary diseases. Pflug Arch Eur J Phy. 2007; 453(5): 581-589.
- 8Arnould I, Schriml LM, Prades C, et al. Identifying and characterizing a five-gene cluster of ATP-binding cassette transporters mapping to human chromosome 17q24: a new subgroup within the ABCA subfamily. GeneScreen. 2001; 1(3): 157-164.
10.1046/j.1466-920x.2001.00038.x Google Scholar
- 9Quazi F, Lenevich S, Molday RS. ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer. Nat Commun. 2012; 3: 925.
- 10Bullard JE, Wert SE, Whitsett JA, Dean M, Nogee LM. ABCA3 mutations associated with pediatric interstitial lung disease. Am J Respir Crit Care Med. 2005; 172(8): 1026-1031.
- 11Allikmets R, Singh N, Sun H, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997; 15(3): 236-246.
- 12Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: multifaceted players with incipient potentialities in cancer. Semin Cancer Biol. 2020; 60: 57-71.
- 13Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP. Structure of the human multidrug transporter ABCG2. Nature. 2017; 546(7659): 504-509.
- 14Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X. Structure of the human lipid exporter ABCA1. Cell. 2017; 169(7): 1228-1239.e10.
- 15Nagao K, Takahashi K, Azuma Y, et al. ATP hydrolysis-dependent conformational changes in the extracellular domain of ABCA1 are associated with apoA-I binding. J Lipid Res. 2012; 53(1): 126-136.
- 16Yamano G, Funahashi H, Kawanami O, et al. ABCA3 is a lamellar body membrane protein in human lung alveolar type II cells. Febs Lett. 2001; 508(2): 221-225.
- 17Petry F, Kotthaus A, Hirsch-Ernst KI. Cloning of human and rat ABCA5/Abca5 and detection of a human splice variant. Biochem Biophys Res Commun. 2003; 300(2): 343-350.
- 18Wang N, Chen W, Linsel-Nitschke P, et al. A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J Clin Invest. 2003; 111(1): 99-107.
- 19Aguirre-Portolés C, Feliu J, Reglero G, Ramírez de Molina A. ABCA1 overexpression worsens colorectal cancer prognosis by facilitating tumour growth and caveolin-1-dependent invasiveness, and these effects can be ameliorated using the BET inhibitor apabetalone. Mol Oncol. 2018; 12(10): 1735-1752.
- 20Sekine Y, Demosky SJ, Stonik JA, et al. High-density lipoprotein induces proliferation and migration of human prostate androgen-independent cancer cells by an ABCA1-dependent mechanism. Mol Cancer Res. 2010; 8(9): 1284-1294.
- 21Smith B, Land H. Anticancer activity of the cholesterol exporter ABCA1 gene. Cell Rep. 2012; 2(3): 580-590.
- 22Moon SH, Huang CH, Houlihan SL, et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell. 2019; 176(3): 564-580.e19.
- 23Boonstra R, Timmer-Bosscha H, van Echten-Arends J, et al. Mitoxantrone resistance in a small cell lung cancer cell line is associated with ABCA2 upregulation. Br J Cancer. 2004; 90(12): 2411-2417.
- 24Efferth T, Gillet JP, Sauerbrey A, et al. Expression profiling of ATP-binding cassette transporters in childhood T-cell acute lymphoblastic leukemia. Mol Cancer Therap. 2006; 5(8): 1986-1994.
- 25Yang C, Yuan H, Gu J, et al. ABCA8-mediated efflux of taurocholic acid contributes to gemcitabine insensitivity in human pancreatic cancer via the S1PR2-ERK pathway. Cell Death Discov. 2021; 7(1): 6.
- 26Hedditch EL, Gao B, Russell AJ, et al. ABCA transporter gene expression and poor outcome in epithelial ovarian cancer. J Nat Cancer Inst. 2014; 106(7): 1–11.
10.1093/jnci/dju149 Google Scholar
- 27Elsnerova K, Bartakova A, Tihlarik J, et al. Gene expression profiling reveals novel candidate markers of ovarian carcinoma intraperitoneal metastasis. J Cancer. 2017; 8(17): 3598-3606.
- 28Kap EJ, Seibold P, Scherer D, et al. SNPs in transporter and metabolizing genes as predictive markers for oxaliplatin treatment in colorectal cancer patients. Int J Cancer. 2016; 138(12): 2993-3001.
- 29Hlavata I, Mohelnikova-Duchonova B, Vaclavikova R, et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis. 2012; 27(2): 187-196.
- 30Schimanski S, Wild PJ, Treeck O, et al. Expression of the lipid transporters ABCA3 and ABCA1 is diminished in human breast cancer tissue. Horm Metab Res. 2010; 42(2): 102-109.
- 31Araújo TM, Seabra AD, Lima EM, et al. Recurrent amplification of RTEL1 and ABCA13 and its synergistic effect associated with clinicopathological data of gastric adenocarcinoma. Mol Cytogenet. 2016; 9: 52.
- 32Karatas OF, Guzel E, Duz MB, Ittmann M, Ozen M. The role of ATP-binding cassette transporter genes in the progression of prostate cancer. Prostate. 2016; 76(5): 434-444.
- 33Yun EJ, Zhou J, Lin CJ, et al. The network of DAB2IP-miR-138 in regulating drug resistance of renal cell carcinoma associated with stem-like phenotypes. Oncotarget. 2017; 8(40): 66975-66986.
- 34Bjoern C, Melanie P, Ulf R, et al. ABC transporter A3 facilitates lysosomal sequestration of imatinib and modulates susceptibility of chronic myeloid leukemia cell lines to this drug. Haematologica. 2009; 94(11): 1528-1536.
- 35Chapuy B, Koch R, Radunski U, et al. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia. 2008; 22(8): 1576-1586.
- 36Dean M. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001; 11(7): 1156-1166.
- 37Wu ZX, Teng QX, Cai CY, et al. Tepotinib reverses ABCB1-mediated multidrug resistance in cancer cells. Biochem Pharmacol. 2019; 166: 120-127.
- 38Seyffer F, Tampé R. ABC transporters in adaptive immunity. Biochim Biophys Acta. 2015; 1850(3): 449-460.
- 39Morita S, Terada T. Molecular mechanisms for biliary phospholipid and drug efflux mediated by ABCB4 and bile salts. Marunaka Y, editor. J Biomed Biotechnol. 2014; 2014:954781.
10.1155/2014/954781 Google Scholar
- 40Garzel B, Yang H, Zhang L, Huang SM, Polli JE, Wang H. The role of bile salt export pump gene repression in drug-induced cholestatic liver toxicity. Drug Metab Dispos. 2014; 42(3): 318-322.
- 41Wilson BJ, Saab KR, Ma J, et al. ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit. Cancer Res. 2014; 74(15): 4196-4207.
- 42Krishnamurthy PC, Du G, Fukuda Y, et al. Identification of a mammalian mitochondrial porphyrin transporter. Nature. 2006; 443(7111): 586-589.
- 43Pondarré C, Antiochos BB, Campagna DR, et al. The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis. Human Mol Genet. 2006; 15(6): 953-964.
- 44Tang L, Bergevoet SM, Bakker-Verweij G, et al. Human mitochondrial ATP-binding cassette transporter ABCB10 is required for efficient red blood cell development. Br J Haematol. 2012; 157(1): 151-154.
- 45Demirel Ö, Jan I, Wolters D, et al. The lysosomal polypeptide transporter TAPL is stabilized by interaction with LAMP-1 and LAMP-2. J Cell Sci. 2012; 125(Pt 18): 4230-4240.
- 46Szöllősi D, Rose-Sperling D, Hellmich UA, Stockner T. Comparison of mechanistic transport cycle models of ABC exporters. Biochim Biophys Acta—Biomembr. 2018; 1860(4): 818-832.
- 47To KKW, Wu M, Tong CWS, Yan W. Chapter 2—drug transporters in the development of multidrug resistance in colorectal cancer. In: CH Cho, T Hu, editors. Drug Resistance in Colorectal Cancer: Molecular Mechanisms and Therapeutic Strategies. Academic Press; 2020: 35-55.
10.1016/B978-0-12-819937-4.00002-9 Google Scholar
- 48Nosol K, Romane K, Irobalieva RN, et al. Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1. Proc Natl Acad Sci U S A. 2020; 117(42): 26245-26253.
- 49Oldham ML, Grigorieff N, Chen J. Structure of the transporter associated with antigen processing trapped by herpes simplex virus. eLife. 2016; 5: 1–16.
- 50Olsen JA, Alam A, Kowal J, Stieger B, Locher KP. Structure of the human lipid exporter ABCB4 in a lipid environment. Nat Struct Mol Biol. 2020; 27(1): 62-70.
- 51Wang C, Cao C, Wang N, Wang X, Wang X, Zhang XC. Cryo-electron microscopy structure of human ABCB6 transporter. Protein Sci. 2020; 29(12): 2363-2374.
- 52Wang L, Hou WT, Chen L, et al. Cryo-EM structure of human bile salts exporter ABCB11. Cell Res. 2020; 30(7): 623-625.
- 53Ward A, Reyes CL, Yu J, Roth CB, Chang G. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci U S A. 2007; 104(48): 19005-19010.
- 54Dawson RJP, Locher KP. Structure of a bacterial multidrug ABC transporter. Nature. 2006; 443(7108): 180-185.
- 55Mi W, Li Y, Yoon SH, Ernst RK, Walz T, Liao M. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature. 2017; 549(7671): 233-237.
- 56Alam A, Küng R, Kowal J, et al. Structure of a zosuquidar and UIC2-bound human-mouse chimeric ABCB1. Proc Natl Acad Sci U S A. 2018; 115(9): E1973-e1982.
- 57Choudhuri S, Klaassen CD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol. 2006; 25(4): 231-259.
- 58Wu ZX, Yang Y, Wang JQ, et al. Elevated ABCB1 expression confers acquired resistance to aurora kinase inhibitor GSK-1070916 in cancer cells. Front Pharmacol. 2020; 11:615824.
- 59Wang J, Yang DH, Yang Y, et al. Overexpression of ABCB1 transporter confers resistance to mTOR inhibitor WYE-354 in cancer cells. Int J Mol Sci. 2020; 21(4): 1387.
- 60Rajamani BM, Benjamin ESB, Abraham A, et al. Plasma imatinib levels and ABCB1 polymorphism influences early molecular response and failure-free survival in newly diagnosed chronic phase CML patients. Sci Rep. 2020; 10(1):20640.
- 61Katoh SY, Ueno M, Takakura N. Involvement of MDR1 function in proliferation of tumour cells. J Biochem. 2008; 143(4): 517-524.
- 62Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW. The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci U S A. 1998; 95(12): 7024-7029.
- 63Ji N, Yang Y, Cai CYet al. Selonsertib (GS-4997), an ASK1 inhibitor, antagonizes multidrug resistance in ABCB1- and ABCG2-overexpressing cancer cells. Cancer Lett. 2019; 440-441: 82-93.
- 64Ji N, Yang Y, Cai CY, et al. VS-4718 antagonizes multidrug resistance in ABCB1- and ABCG2-overexpressing cancer cells by inhibiting the efflux function of ABC transporters. Front Pharmacol, [Internet]. Oct 30. 2018. 10.3389/fphar.2018.01236/full
10.3389/fphar.2018.01236/full Google Scholar
- 65Cui Q, Cai CY, Wang JQ, et al. Chk1 inhibitor MK-8776 restores the sensitivity of chemotherapeutics in P-glycoprotein overexpressing cancer cells. Int J Mol Sci. 2019; 20(17), 4095.
- 66Ji N, Yang Y, Cai CY, et al. Midostaurin reverses ABCB1-mediated multidrug resistance, an in vitro study. Front Oncol. [Internet]. 2019. 10.3389/fonc.2019.00514/full
- 67Zhang M, Chen XY, Dong XD, et al. NVP-CGM097, an HDM2 inhibitor, antagonizes ATP-binding cassette subfamily B member 1-mediated drug resistance. Front Oncol. [Internet]. 2020. 10.3389/fonc.2020.01219/full
- 68Zhang Y, Wu ZX, Yang Y, et al. Poziotinib inhibits the efflux activity of the ABCB1 and ABCG2 transporters and the expression of the ABCG2 transporter protein in multidrug resistant colon cancer cells. Cancers. 2020; 12(11): 3249.
- 69Liao D, Zhang W, Gupta P, et al. Tetrandrine interaction with ABCB1 reverses multidrug resistance in cancer cells through competition with anti-cancer drugs followed by downregulation of ABCB1 expression. Molecules (Basel, Switzerl). 2019; 24(23), (4383).
- 70Huang BY, Zeng Y, Li YJ, et al. Uncaria alkaloids reverse ABCB1-mediated cancer multidrug resistance. Int J Oncol. 2017; 51(1): 257-268.
- 71Wang B, Ma LY, Wang JQ, et al. Discovery of 5-cyano-6-phenylpyrimidin derivatives containing an acylurea moiety as orally bioavailable reversal agents against P-glycoprotein-mediated mutidrug resistance. J Med Chem. 2018; 61(14): 5988-6001.
- 72Luo X, Teng QX, Dong JY, et al. Antimicrobial peptide reverses ABCB1-mediated chemotherapeutic drug resistance. Front Pharmacol. [Internet]. 2020. 10.3389/fphar.2020.01208/full
- 73Teng QX, Luo X, Lei ZN, et al. The multidrug resistance-reversing activity of a novel antimicrobial peptide. Cancers. 2020; 12(7): 1963.
- 74Huang JF, Wen CJ, Zhao GZ, et al. Overexpression of ABCB4 contributes to acquired doxorubicin resistance in breast cancer cells in vitro. Cancer Chemother Pharmacol. 2018; 82(2): 199-210.
- 75Hu H, Wang M, Guan X, et al. Loss of ABCB4 attenuates the caspase-dependent apoptosis regulating resistance to 5-Fu in colorectal cancer. Biosci Rep. 2018; 38(1): 1–10.
- 76Louphrasitthiphol P, Chauhan J, Goding CR. ABCB5 is activated by MITF and β-catenin and is associated with melanoma differentiation. Pigment Cell Melan Res. 2020; 33(1): 112-118.
- 77Wang S, Tang L, Lin J, et al. ABCB5 promotes melanoma metastasis through enhancing NF-κB p65 protein stability. Biochem Biophys Res Commun. 2017; 492(1): 18-26.
- 78Leung IC, Chong CC, Cheung TT, et al. Genetic variation in ABCB5 associates with risk of hepatocellular carcinoma. J Cell Mol Med. 2020; 24(18): 10705-10713.
- 79Grimm M, Krimmel M, Polligkeit J, et al. ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma. Euro J Cancer. 2012; 48(17): 3186-3197.
- 80Murakami M, Izumi H, Kurita T, Koi C, Morimoto Y, Yoshino K. UBE2L6 is involved in cisplatin resistance by regulating the transcription of ABCB6. Anti-Cancer Agents Med Chem. 2020; 20(12): 1487-1496.
- 81Zhang YK, Dai C, Yuan CG, et al. Establishment and characterization of arsenic trioxide resistant KB/ATO cells. Acta Pharm Sin B. 2017; 7(5): 564-570.
- 82Minami K, Kamijo Y, Nishizawa Y, et al. Expression of ABCB6 is related to resistance to 5-FU, SN-38 and vincristine. Anticancer Res. 2014; 34(9): 4767-4773.
- 83Elliott AM, Al-Hajj MA. ABCB8 mediates doxorubicin resistance in melanoma cells by protecting the mitochondrial genome. Mol Cancer Res. 2009; 7(1): 79-87.
- 84Gong JP, Yang L, Tang JW, et al. Overexpression of microRNA-24 increases the sensitivity to paclitaxel in drug-resistant breast carcinoma cell lines via targeting ABCB9. Oncol Lett. 2016; 12(5): 3905-3911.
- 85Dong Z, Zhong Z, Yang L, Wang S, Gong Z. MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. Cancer Lett. 2014; 343(2): 249-257.
- 86Wang JQ, Yang Y, Cai CY, et al. Multidrug resistance proteins (MRPs): structure, function and the overcoming of cancer multidrug resistance. Drug Resis Updates. 2021; 54:100743.
- 87Schuetz JD, Connelly MC, Sun D, et al. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med. 1999; 5(9): 1048-1051.
- 88Kriebel PW, Majumdar R, Jenkins LM, et al. Extracellular vesicles direct migration by synthesizing and releasing chemotactic signals. J Cell Biol. 2018; 217(8): 2891-2910.
- 89Chen ZS, Hopper-Borge E, Belinsky MG, Shchaveleva I, Kotova E, Kruh GD. Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol Pharmacol. 2003; 63(2): 351-358.
- 90Kruh GD, Guo Y, Hopper-Borge E, Belinsky MG, Chen ZS. ABCC10, ABCC11, and ABCC12. Pflug Arch Eur J Phy. 2007; 453(5): 675-684.
- 91Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev. 2010; 42(3): 482-538.
- 92Wang L, Johnson ZL, Wasserman MR, Levring J, Chen J, Liu S. Characterization of the kinetic cycle of an ABC transporter by single-molecule and cryo-EM analyses. eLife. 2020; 9: 1–20.
- 93Martin GM, Sung MW, Yang Z, et al. Mechanism of pharmacochaperoning in a mammalian K(ATP) channel revealed by cryo-EM. eLife. 2019; 8: 1–26.
- 94Wang JQ, Cui Q, Lei ZN, et al. Insights on the structure–function relationship of human multidrug resistance protein 7 (MRP7/ABCC10) from molecular dynamics simulations and docking studies. MedComm. 2021; 1: 1-15.
- 95Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Nat Cancer Inst. 2000; 92(16): 1295-1302.
- 96Bakos E, Evers R, Szakács G, et al. Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain. J Biol Chem. 1998; 273(48): 32167-32175.
- 97Wilkens S. Structure and mechanism of ABC transporters. F1000prime Rep. 2015; 7: 14.
- 98Mohammad IS, He W, Yin L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed. 2018; 100: 335-348.
- 99Chen XY, Yang Y, Wang JQ, Wu ZX, Li J, Chen ZS. Overexpression of ABCC1 confers drug resistance to betulin. Front Oncol. 2021; 11:640656.
- 100Deeley RG, Cole SP. Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). Febs Lett. 2006; 580(4): 1103-1111.
- 101Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci. 1992; 17(11): 463-468.
- 102Yin JY, Huang Q, Yang Y, et al. Characterization and analyses of multidrug resistance-associated protein 1 (MRP1/ABCC1) polymorphisms in Chinese population. Pharmacog Genom. 2009; 19(3): 206-216.
- 103Gupta P, Xie M, Narayanan S, et al. GSK1904529A, a potent IGF-IR inhibitor, reverses MRP1-mediated multidrug resistance: gSK1904529A as MRP1 angatonist. J Cell Biochem. 2017; 118(10): 3260-3267.
- 104Chen ZS, Furukawa T, Sumizawa T, Ono K, Ueda K, Seto K, Akiyama SI. ATP-dependent efflux of CPT-11 and SN-38 by the multidrug resistance protein (MRP) and its inhibition by PAK-104P. Mol Pharmacol. 1999; 55(5): 921-928.
- 105Roy S, Kenny E, Kennedy S, et al. MDR1/P-glycoprotein and MRP-1 mRNA and protein expression in non-small cell lung cancer. Anticancer Res. 2007; 27(3a): 1325-1330.
- 106 M Schwab, editor. ABC drug-transporters. In: Encyclopedia of Cancer. Berlin, Heidelberg: Springer Berlin Heidelberg; 2017: 12-12.
- 107Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: what is the way forward? World J Gastroenterol. 2018; 24(29): 3222-3238.
- 108Yoh K, Ishii G, Yokose T, et al. Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. 2004; 10: 1691–1697.
- 109Zhao Y, Lu H, Yan A, et al. ABCC3 as a marker for multidrug resistance in non-small cell lung cancer. Sci Rep. 2013; 3(1), 3120.
- 110Dvorak P, Hlavac V, Mohelnikova-Duchonova B, Liska V, Pesta M, Soucek P. Downregulation of ABC transporters in non-neoplastic tissues confers better prognosis for pancreatic and colorectal cancer patients. J Cancer. 2017; 8(11): 1959-1971.
- 111Domenichini A, Adamska A, Falasca M. ABC transporters as cancer drivers: potential functions in cancer development. Biochim Biophys Acta Gen Subj. 2019; 1863(1): 52-60.
- 112Morita M, Imanaka T. Peroxisomal ABC transporters: structure, function and role in disease. Biochim Biophy Acta. 2012; 1822(9): 1387-1396.
- 113Xu D, Feng Z, Hou WT, et al. Cryo-EM structure of human lysosomal cobalamin exporter ABCD4. Cell Res. 2019; 29(12): 1039-1041.
- 114Andreoletti P, Raas Q, Gondcaille C, Cherkaoui-Malki M, Trompier D, Savary S. Predictive structure and topology of peroxisomal ATP-binding cassette (ABC) transporters. Int J Mol Sci. 2017; 18(7): 1593–1608.
- 115Contreras M, Sengupta TK, Sheikh F, Aubourg P, Singh I. Topology of ATP-binding domain of adrenoleukodystrophy gene product in peroxisomes. Arch Biochem Biophys. 1996; 334(2): 369-379.
- 116ter Beek J, Guskov A, Slotboom DJ. Structural diversity of ABC transporters. J Gen Physiol. 2014; 143(4): 419-435.
- 117Alexander SPH, Kelly E, Mathie A, et al. The concise guide to pharmacology 2019/20: transporters. Br J Pharmacol. 2019; 176 (Suppl 1):S397-S 493.
- 118Kemp S, Theodoulou FL, Wanders RJ. Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br J Pharmacol. 2011; 164(7): 1753-1766.
- 119Kashiwayama Y, Seki M, Yasui A, et al. 70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH2-terminal hydrophobic property determines the subcellular localization of ABC subfamily D proteins. Exp Cell Res. 2009; 315(2): 190-205.
- 120Szakács G, Annereau JP, Lababidi S, et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell. 2004; 6(2): 129-137.
- 121Hlaváč V, Brynychová V, Václavíková R, et al. The expression profile of ATP-binding cassette transporter genes in breast carcinoma. Pharmacogenomics. 2013; 14(5): 515-529.
- 122Hour TC, Kuo YZ, Liu GY, et al. Downregulation of ABCD1 in human renal cell carcinoma. Int J Biol Markers. 2009; 24(3): 171-178.
- 123Mohelnikova-Duchonova B, Brynychova V, Oliverius M, et al. Differences in transcript levels of ABC transporters between pancreatic adenocarcinoma and nonneoplastic tissues. Pancreas. 2013; 42(4): 707-716.
- 124LaCroix B, Gamazon ER, Lenkala D, et al. Integrative analyses of genetic variation, epigenetic regulation, and the transcriptome to elucidate the biology of platinum sensitivity. Bmc Genom [Electr Resour]. 2014; 15(1): 292.
- 125Navarro-Quiles C, Mateo-Bonmatí E, Micol JL. ABCE proteins: from molecules to development. Front Plant Sci. 2018; 9: 1125.
- 126Ren Y, Li Y, Tian D. Role of the ABCE1 gene in human lung adenocarcinoma. Oncol Rep. 2012; 27(4): 965-970.
- 127Karcher A, Büttner K, Märtens B, Jansen RP, Hopfner KP. X-ray structure of RLI, an essential twin cassette ABC ATPase involved in ribosome biogenesis and HIV capsid assembly. Structure (Lond, Engl). 2005; 13(4): 649-659.
- 128Barthelme D, Dinkelaker S, Albers SV, Londei P, Ermler U, Tampé R. Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc Natl Acad Sci U S A., 2011; 108(8): 3228-3233.
- 129Oswald C, Holland IB, Schmitt L. The motor domains of ABC-transporters. What can structures tell us? Naunyn—Schmied Arch Pharmacol. 2006; 372(6): 385-399.
- 130Ford RC, Hellmich UA. What monomeric nucleotide binding domains can teach us about dimeric ABC proteins. FEBS Lett. 2020; 594(23): 3857-3875.
- 131Andersen DS, Leevers SJ. The essential Drosophila ATP-binding cassette domain protein, pixie, binds the 40 S ribosome in an ATP-dependent manner and is required for translation initiation. J Biol Chem. 2007; 282(20): 14752-14760.
- 132Becker T, Franckenberg S, Wickles S, et al. Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature. 2012; 482(7386): 501-506.
- 133Hellen CUT. Translation termination and ribosome recycling in eukaryotes. Cold Spring Harb Perspect Biol. 2018; 10(10): 1–18.
- 134Mancera-Martínez E, Brito Querido J, Valasek LS, Simonetti A, Hashem Y. ABCE1: a special factor that orchestrates translation at the crossroad between recycling and initiation. RNA Biol. 2017; 14(10): 1279-1285.
- 135Stehling O, Wilbrecht C, Lill R. Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie. 2014; 100: 61-77.
- 136Heuer A, Gerovac M, Schmidt C, et al. Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat Struct Mol Biol. 2017; 24(5): 453-460.
- 137Hopfner KP. Rustless translation. Biol Chem. 2012; 393(10): 1079-1088.
- 138Seifert FU, Lammens K, Stoehr G, Kessler B, Hopfner KP. Structural mechanism of ATP-dependent DNA binding and DNA end bridging by eukaryotic Rad50. EMBO J. 2016; 35(7): 759-772.
- 139Wei D, Yang L, Lv B, Chen L. Genistein suppresses retinoblastoma cell viability and growth and induces apoptosis by upregulating miR-145 and inhibiting its target ABCE1. Mol Vis. 2017; 23: 385-394.
- 140Tian Y, Tian X, Han X, et al. ABCE1 plays an essential role in lung cancer progression and metastasis. Tumour Biol : J Int Soc Oncodev Biol Med. 2016; 37(6): 8375-8382.
- 141Tian Y, Tian X, Han X, et al. Expression of ATP binding cassette E1 enhances viability and invasiveness of lung adenocarcinoma cells in vitro. Mol Med Rep. 2016; 14(2): 1345-1350.
- 142Han X, Tian Y, Tian D. Tumor metastatic promoter ABCE1 interacts with the cytoskeleton protein actin and increases cell motility. Oncol Rep. 2016; 35(6): 3623-3629.
- 143Yu Q, Han X, Tian DL. Deficiency of functional iron-sulfur domains in ABCE1 inhibits the proliferation and migration of lung adenocarcinomas by Regulating the biogenesis of beta-actin in vitro. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol. 2017; 44(2): 554-566.
- 144Wang L, Lv X, Fu X, Su L, Yang T, Xu P. MiR-153 inhibits the resistance of lung cancer to gefitinib via modulating expression of ABCE1. Cancer Biomark. 2019; 25(4): 361-369.
- 145Huang B, Zhou H, Lang X, Liu Z. siRNA-induced ABCE1 silencing inhibits proliferation and invasion of breast cancer cells. Mol Med Rep. 2014; 10(4): 1685-1690.
- 146Zhang P, Chen XB, Ding BQ, Liu HL, He T. Down-regulation of ABCE1 inhibits temozolomide resistance in glioma through the PI3K/Akt/NF-κB signaling pathway. Biosci Rep. 2018; 38(6): 1–10.
- 147Heimerl S, Bosserhoff AK, Langmann T, Ecker J, Schmitz G. Mapping ATP-binding cassette transporter gene expression profiles in melanocytes and melanoma cells. Melanoma Res. 2007; 17(5): 265-273.
- 148Seborova K, Vaclavikova R, Soucek P, et al. Association of ABC gene profiles with time to progression and resistance in ovarian cancer revealed by bioinformatics analyses. Cancer Med. 2019; 8(2): 606-616.
- 149Liu X, Li S, Peng W, et al. Genome-wide identification, characterization and phylogenetic analysis of ATP-binding cassette (ABC) transporter genes in common carp (Cyprinus carpio). Plos One. 2016; 11(4):e0153246.
- 150Xiong J, Feng J, Yuan D, Zhou J, Miao W. Tracing the structural evolution of eukaryotic ATP binding cassette transporter superfamily. Sci Rep. 2015; 5:16724.
- 151Crowe-McAuliffe C, Graf M, Huter P, et al. Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR. Proc Natl Acad Sci U S A. 2018; 115(36): 8978-8983.
- 152Murina V, Kasari M, Takada H, et al. ABCF ATPases involved in protein synthesis, ribosome assembly and antibiotic resistance: structural and functional diversification across the tree of life. J Mol Biol. 2019; 431(18): 3568-3590.
- 153Wilcox SM, Arora H, Munro L, et al. The role of the innate immune response regulatory gene ABCF1 in mammalian embryogenesis and development. PLOS One. 2017; 12(5):e0175918.
- 154Arora H, Wilcox SM, Johnson LA, et al. The ATP-binding cassette gene ABCF1 functions as an E2 ubiquitin-conjugating enzyme controlling macrophage polarization to dampen lethal septic shock. Immunity. 2019; 50(2): 418-431.e6.
- 155Cao QT, Aguiar JA, Tremblay BJ-M, et al. ABCF1 regulates dsDNA-induced immune responses in human airway epithelial cells. Front Cell Infect Microbiol. 2020; 10(487): 1-17.
- 156Fung SW, Cheung PF, Yip CW, et al. The ATP-binding cassette transporter ABCF1 is a hepatic oncofetal protein that promotes chemoresistance, EMT and cancer stemness in hepatocellular carcinoma. Cancer Lett. 2019; 457: 98-109.
- 157Ogawa K, Yumoto R, Hamada N, Nagai J, Takano M. Interaction of valproic acid and carbapenem antibiotics with multidrug resistance-associated proteins in rat erythrocyte membranes. Epilepsy Res. 2006; 71(1): 76-87.
- 158Nishimura S, Tsuda H, Ito K, et al. Differential expression of ABCF2 protein among different histologic types of epithelial ovarian cancer and in clear cell adenocarcinomas of different organs. Human Pathol. 2007; 38(1): 134-139.
- 159Nishimura S, Tsuda H, Miyagi Y, et al. Can ABCF2 protein expression predict the prognosis of uterine cancer? Br J Cancer. 2008; 99(10): 1651-1655.
- 160L'Espérance S, Popa I, Bachvarova M, et al. Gene expression profiling of paired ovarian tumors obtained prior to and following adjuvant chemotherapy: molecular signatures of chemoresistant tumors. Int J Oncol. 2006; 29(1): 5-24.
- 161Tsuda H, Ito K, Yaegashi N, et al. Relationship between ABCF2 expression and response to chemotherapy or prognosis in clear cell adenocarcinoma of the ovary. Int J Gynecol Cancer. 2010; 20(5): 794-797.
- 162Yasui K, Mihara S, Zhao C, et al. Alteration in copy numbers of genes as a mechanism for acquired drug resistance. Cancer Res. 2004; 64(4): 1403-1410.
- 163Bao L, Wu J, Dodson M, et al. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells. Mol Carcinogen. 2017; 56(6): 1543-1553.
- 164Gao J, Dai C, Yu X, Yin XB, Zhou F. Circ-TCF4.85 silencing inhibits cancer progression through microRNA-486-5p-targeted inhibition of ABCF2 in hepatocellular carcinoma. Mol Oncol. 2020; 14(2): 447-461.
- 165Hendig D, Langmann T, Zarbock R, Schmitz G, Kleesiek K, Götting C. Characterization of the ATP-binding cassette transporter gene expression profile in Y79: a retinoblastoma cell line. Mol Cell Biochem. 2009; 328(1-2): 85-92.
- 166Takenaka S, Itoh T, Fujiwara R. Expression pattern of human ATP-binding cassette transporters in skin. Pharmacol Res Perspect. 2013; 1(1):e00005.
- 167Liang X, Wang C, Sun Y, et al. p62/mTOR/LXRα pathway inhibits cholesterol efflux mediated by ABCA1 and ABCG1 during autophagy blockage. Biochem Biophys Res Commun. 2019; 514(4): 1093-1100.
- 168Hegyi Z, Homolya L. Functional cooperativity between ABCG4 and ABCG1 isoforms. Plos One. 2016; 11(5):e0156516.
- 169Sag D, Cekic C, Wu R, Linden J, Hedrick CC. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commum. 2015; 6(1), 6354.
- 170Pandzic E, Gelissen IC, Whan R, et al. The ATP binding cassette transporter, ABCG1, localizes to cortical actin filaments. Sci Rep. 2017; 7(1):42025.
- 171Mo W, Zhang JT. Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol. 2012; 3(1): 1-27.
- 172Szakács G, Váradi A, Ozvegy-Laczka C, Sarkadi B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov Today. 2008; 13(9-10): 379-393.
- 173Cserepes J, Szentpétery Z, Seres L, et al. Functional expression and characterization of the human ABCG1 and ABCG4 proteins: indications for heterodimerization. Biochem Biophys Res Commun. 2004; 320(3): 860-867.
- 174Kobayashi A, Takanezawa Y, Hirata T, et al. Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J Lipid Res. 2006; 47(8): 1791-1802.
- 175Schumacher T, Benndorf RA. ABC Transport Proteins in Cardiovascular Disease—A Brief Summary. Molecules. 2017; 22(4):589. https://doi.org/10.3390/molecules22040589.
- 176Sano O, Tsujita M, Shimizu Y, et al. ABCG1 and ABCG4 suppress γ-secretase activity and amyloid β production. Plos One. 2016; 11(5):e0155400.
- 177Zhang Z, Li X, Wang X, et al. [The expression of ABCG4, V-ATPase and clinic significance of their correlation with NSCLC.]. Zhongguo fei ai za zhi = Chin J Lung Cancer. 2008; 11(5): 691-695.
- 178Imperio GE, Javam M, Lye P, et al. Gestational age-dependent gene expression profiling of ATP-binding cassette transporters in the healthy human placenta. J Cell Mol Med. 2019; 23(1): 610-618.
- 179Kerr ID, Hutchison E, Gerard L, Aleidi SM, Gelissen IC. Mammalian ABCG-transporters, sterols and lipids: to bind perchance to transport? Biochim Biophys acta Mol Cell Biol Lipids. 2021; 1866(3):158860.
- 180Graf GA, Yu L, Li WP, et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem. 2003; 278(48): 48275-48282.
- 181Lee JY, Kinch LN, Borek DM, et al. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature. 2016; 533(7604): 561-564.
- 182Zein AA, Kaur R, Hussein TOK, Graf GA, Lee JY. ABCG5/G8: a structural view to pathophysiology of the hepatobiliary cholesterol secretion. Biochem Soc Transact. 2019; 47(5): 1259-1268.
- 183Xavier BM, Zein AA, Venes A, Wang J, Lee JY. Transmembrane Polar Relay Drives the Allosteric Regulation for ABCG5/G8 Sterol Transporter. International Journal of Molecular Sciences. 2020; 21(22):8747. https://doi.org/10.3390/ijms21228747.
- 184Wang J, Mitsche MA, Lütjohann D, Cohen JC, Xie XS, Hobbs HH. Relative roles of ABCG5/ABCG8 in liver and intestine. J Lipid Res. 2015; 56(2): 319-330.
- 185Khunweeraphong N, Mitchell-White J, Szöllősi D, et al. Picky ABCG5/G8 and promiscuous ABCG2—a tale of fatty diets and drug toxicity. Febs Lett. 2020; 594(23): 4035-4058.
- 186Tian C, Huang D, Yu Y, Zhang J, Fang Q, Xie C. ABCG1 as a potential oncogene in lung cancer. Exp Ther Med. 2017; 13(6): 3189-3194.
- 187Roundhill EA, Jabri S, Burchill SA. ABCG1 and Pgp identify drug resistant, self-renewing osteosarcoma cells. Cancer Lett. 2019; 453: 142-157.
- 188Pan H, Zheng Y, Pan Q, et al. Expression of LXR-β, ABCA1 and ABCG1 in human triple-negative breast cancer tissues. Oncol Rep. 2019; 42(5): 1869-1877.
- 189Seeree P, Janvilisri T, Kangsamaksin T, Tohtong R, Kumkate S. Downregulation of ABCA1 and ABCG1 transporters by simvastatin in cholangiocarcinoma cells. Oncol Lett. 2019; 18(5): 5173-5184.
- 190Hasanabady MH, Kalalinia F. ABCG2 inhibition as a therapeutic approach for overcoming multidrug resistance in cancer. J Biosci. 2016; 41(2): 313-324.
- 191Toyoda Y, Takada T, Suzuki H. Inhibitors of human ABCG2: from technical background to recent updates with clinical implications. Front Pharmacol. [Internet]. 2019. 10.3389/fphar.2019.00208/full
- 192Jiang Y, He Y, Li H, et al. Expressions of putative cancer stem cell markers ABCB1, ABCG2, and CD133 are correlated with the degree of differentiation of gastric cancer. Gastric Cancer. 2012; 15(4): 440-450.
- 193Yan BL, Li XL, An JY. MicroRNA-328 acts as an anti-oncogene by targeting ABCG2 in gastric carcinoma. Euro Rev Med Pharmacol Sci. 2019; 23(14): 6148-6159.
- 194Ding M, Zhang H, Liu L, Liang R. Effect of NOS1 regulating ABCG2 expression on proliferation and apoptosis of cervical cancer cells. Oncol Lett. 2019; 17(2): 1531-1536.
- 195Li X, Zou Z, Tang J, et al. NOS1 upregulates ABCG2 expression contributing to DDP chemoresistance in ovarian cancer cells. Oncol Lett. 2019; 17(2): 1595-1602.
- 196Zhang Z, Gao S, Xu Y, Zhao C. Regulation of ABCG2 expression by Wnt5a through FZD7 in human pancreatic cancer cells. Mol Med Rep. 2021; 23(1): 1.
- 197Hsu HH, Chen MC, Baskaran R, et al. Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol. 2018; 233(7): 5458-5467.
- 198Nielsen DL, Palshof J, Brünner N, Stenvang J, Viuff BM. Implications of ABCG2 Expression on Irinotecan Treatment of Colorectal Cancer Patients: A Review. International Journal of Molecular Sciences. 2017; 18(9):1926. https://doi.org/10.3390/ijms18091926.
- 199Yang Y, Wu ZX, Wang JQ, et al. OTS964, a TOPK inhibitor, is susceptible to ABCG2-mediated drug resistance. Front Pharmacol. 2021; 12:620874.
- 200Wu ZX, Yang Y, Teng QX, et al. Tivantinib, a c-Met inhibitor in clinical trials, is susceptible to ABCG2-mediated drug resistance. Cancers. 2020; 12(1): 186.
- 201Wei L-Y, Wu ZX, Yang Y, et al. Overexpression of ABCG2 confers resistance to pevonedistat, an NAE inhibitor. Exp Cell Res. 2020; 388(2):111858.
- 202Burger H, van Tol H, Boersma AWM, et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood. 2004; 104(9): 2940-2942.
- 203Ji N, Yang Y, Cai CY, et al. Abstract 3796: selonsertib, an ASK1 inhibitor, antagonizes ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. In: Experimental and Molecular Therapeutics [Internet]. American Association for Cancer Research; 2019. 10.1158/1538-7445.AM2019-3796
10.1158/1538-7445.AM2019-3796 Google Scholar
- 204Wu Z, Yang Y, Wang G, et al. Dual TTK/CLK2 inhibitor, CC-671, selectively antagonizes ABCG2-mediated multidrug resistance in lung cancer cells. Cancer Sci. 2020; 111(8): 2872-2882.
- 205Fan YF, Zhang W, Zeng L, et al. Dacomitinib antagonizes multidrug resistance (MDR) in cancer cells by inhibiting the efflux activity of ABCB1 and ABCG2 transporters. Cancer Lett. 2018; 421: 186-198.
- 206Zhang W, Fan YF, Cai CY, et al. Olmutinib (BI1482694/HM61713), a novel epidermal growth factor receptor tyrosine kinase inhibitor, reverses ABCG2-mediated multidrug resistance in cancer cells. Front Pharmacol. [Internet]. 2018. 10.3389/fphar.2018.01097/full
- 207Ji N, Yang Y, Lei ZN, et al. Ulixertinib (BVD-523) antagonizes ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Biochem Pharmacol. 2018; 158: 274-285.
- 208Yang G, Wang XJ, Huang LJ, et al. High ABCG4 expression is associated with poor prognosis in non-small-cell lung cancer patients treated with cisplatin-based chemotherapy. Plos One. 2015; 10(8):e0135576.
- 209Mallappa S, Neeli PK, Karnewar S, Kotamraju S. Doxorubicin induces prostate cancer drug resistance by upregulation of ABCG4 through GSH depletion and CREB activation: relevance of statins in chemosensitization. Mol Carcinogen. 2019; 58(7): 1118-1133.
- 210Bastida JM, Benito R, González-Porras JR, Rivera J. ABCG5 and ABCG8 gene variations associated with sitosterolemia and platelet dysfunction. Platelets. 2020; 1–5. https://doi.org/10.1080/09537104.2020.1779926.
- 211Reeskamp LF, Volta A, Zuurbier L, Defesche JC, Hovingh GK, Grefhorst A. ABCG5 and ABCG8 genetic variants in familial hypercholesterolemia. J Clin Lipidol. 2020; 14(2): 207-217.e7.
- 212Tada H, Nohara A, Inazu A, Sakuma N, Mabuchi H, Kawashiri MA. Sitosterolemia, hypercholesterolemia, and coronary artery disease. J Atheroscl Thromb. 2018; 25(9): 783-789.
- 213Patel SB, Graf GA, Temel RE. ABCG5 and ABCG8: more than a defense against xenosterols. J Lipid Res. 2018; 59(7): 1103-1113.
- 214Wang HH, Liu M, Portincasa P, Wang DQ. Recent advances in the critical role of the sterol efflux transporters ABCG5/G8 in health and disease. Adv Exp Med Biol. 2020; 1276: 105-136.
- 215Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells. 2002; 20(1): 11-20.
- 216Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998; 95(26): 15665-15670.
- 217Robey RW, Polgar O, Deeken J, To KW, Bates SE. ABCG2: determining its relevance in clinical drug resistance. Cancer Metastas Rev. 2007; 26(1): 39-57.
- 218Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol. 2009; 10(3): 218-227.
- 219Orelle C, Ayvaz T, Everly RM, Klug CS, Davidson AL. Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter. Proc Natl Acad Sci U S A. 2008; 105(35): 12837-12842.
- 220Davidson AL, Shuman HA, Nikaido H. Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc Natl Acad Sci U S A., 1992; 89(6): 2360-2364.
- 221Liu PQ, Liu CE, Ames GF. Modulation of ATPase activity by physical disengagement of the ATP-binding domains of an ABC transporter, the histidine permease. J Biol Chem. 1999; 274(26): 18310-18318.
- 222Austermuhle MI, Hall JA, Klug CS, Davidson AL. Maltose-binding protein is open in the catalytic transition state for ATP hydrolysis during maltose transport. J Biol Chem. 2004; 279(27): 28243-28250.
- 223Chen J, Sharma S, Quiocho FA, Davidson AL. Trapping the transition state of an ATP-binding cassette transporter: evidence for a concerted mechanism of maltose transport. Proc Natl Acad Sci U S A. 2001; 98(4): 1525-1530.
- 224Vigonsky E, Ovcharenko E, Lewinson O. Two molybdate/tungstate ABC transporters that interact very differently with their substrate binding proteins. Proc Natl Acad Sci USA. 2013; 110(14): 5440-5445.
- 225Berntsson RP, Smits SH, Schmitt L, Slotboom DJ, Poolman B. A structural classification of substrate-binding proteins. Febs Lett. 2010; 584(12): 2606-2617.
- 226Tirado-Lee L, Lee A, Rees DC, Pinkett HW. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA. Structure (Lond, Engl). 2011; 19(11): 1701-1710.
- 227Yu J, Ge J, Heuveling J, Schneider E, Yang M. Structural basis for substrate specificity of an amino acid ABC transporter. Proc Natl Acad Sci U S A., 2015; 112(16): 5243-5248.
- 228Joseph B, Jeschke G, Goetz BA, Locher KP, Bordignon E. Transmembrane gate movements in the type II ATP-binding cassette (ABC) importer BtuCD-F during nucleotide cycle. J Biol Chem. 2011; 286(47): 41008-41017.
- 229Korkhov VM, Mireku SA, Locher KP. Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature. 2012; 490(7420): 367-372.
- 230Sodani K, Patel A, Kathawala RJ, Chen ZS. Multidrug resistance associated proteins in multidrug resistance. Chin J Cancer. 2012; 31(2): 58-72.
- 231Anuchapreeda S, Leechanachai P, Smith MM, Ambudkar SV, Limtrakul P. Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem Pharmacol. 2002; 64(4): 573-582.
- 232Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science (New York, NY). 1992; 258(5088): 1650-1654.
- 233Munoz M, Henderson M, Haber M, Norris M. Role of the MRP1/ABCC1 multidrug transporter protein in cancer. Iubmb Life. 2007; 59(12): 752-757.
- 234Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006; 5(3): 219-234.
- 235Zhang H, Xu H, Ashby CR, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev. 2021; 41(1): 525-555.
- 236Ambudkar SV, Kim IW, Sauna ZE. The power of the pump: mechanisms of action of P-glycoprotein (ABCB1). Euro J Pharmaceut Sci. 2006; 27(5): 392-400.
- 237Wang JQ, Wang B, Lei ZN, et al. Derivative of 5-cyano-6-phenylpyrimidin antagonizes ABCB1- and ABCG2-mediated multidrug resistance. Euro J Pharmacol. 2019; 863:172611.
- 238Guo Q, Jing FJ, Qu HJ, et al. Ubenimex reverses mdr in gastric cancer cells by activating Caspase-3-mediated apoptosis and suppressing the expression of membrane transport proteins. BioMed Res Int. 2019; 2019:4390839.
- 239Cui Q, Wang JQ, Assaraf YG, et al. Modulating ROS to overcome multidrug resistance in cancer. Drug Resis Updates. 2018; 41: 1-25.
- 240Nasr R, Lorendeau D, Khonkarn R, et al. Molecular analysis of the massive GSH transport mechanism mediated by the human multidrug resistant protein 1/ABCC1. Sci Rep. 2020; 10(1): 7616.
- 241Whitt JD, Keeton AB, Gary BD, et al. Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion. J Biomed Res. 2016; 30(2): 120-133.
- 242Kumari M, Krishnamurthy PT, Sola P. Targeted drug therapy to overcome chemoresistance in triple-negative breast cancer. Curr Cancer Drug Targets. 2020; 20(8): 559-572.
- 243Zhao H, Chen S, Fu Q. Exosomes from CD133(+) cells carrying circ-ABCC1 mediate cell stemness and metastasis in colorectal cancer. J Cell Biochem. 2020; 121(5-6): 3286-3297.
- 244Wang L, Lin N, Li Y. The PI3K/AKT signaling pathway regulates ABCG2 expression and confers resistance to chemotherapy in human multiple myeloma. Oncol Rep. 2019; 41(3): 1678-1690.
- 245Spitzwieser M, Pirker C, Koblmüller B, et al. Promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in human cancer cell lines, multidrug-resistant cell models and tumor, tumor-adjacent and tumor-distant tissues from breast cancer patients. Oncotarget. 2016; 7(45): 73347-73369.
- 246Wu ZX, Peng Z, Yang Y, et al. M3814, a DNA-PK inhibitor, modulates ABCG2-mediated multidrug resistance in lung cancer cells. Front Oncol. [Internet]. 2020. 10.3389/fonc.2020.00674/full
- 247Wang JQ, Teng QX, Lei ZN, et al. Reversal of cancer multidrug resistance (MDR) mediated by ATP-binding cassette transporter G2 (ABCG2) by AZ-628, a RAF kinase inhibitor. Front Cell Dev Biol. 2020; 8:601400.
- 248Honjo Y, Hrycyna CA, Yan QW, et al. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res. 2001; 61(18): 6635-6639.
- 249Pozza A, Perez-Victoria JM, Sardo A, Ahmed-Belkacem A, Di Pietro A Purification of breast cancer resistance protein ABCG2 and role of arginine-482. Cellular Mol Life Sci. 2006; 63(16): 1912-1922.
- 250Shiozawa K, Oka M, Soda H, et al. Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. Int J Can. 2004; 108(1): 146-151.
- 251Wang JQ, Li JY, Teng QX, et al. Venetoclax, a BCL-2 inhibitor, enhances the efficacy of chemotherapeutic agents in wild-type ABCG2-overexpression-mediated MDR cancer cells. Cancers. 2020; 12(2): 466.
- 252Li J, Kumar P, Anreddy N, et al. Quizartinib (AC220) reverses ABCG2-mediated multidrug resistance: in vitro and in vivo studies. Oncotarget. 2017; 8(55): 93785-93799.
- 253Vaidyanathan A, Sawers L, Gannon AL, et al. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer. 2016; 115(4): 431-441.
- 254Eadie LN, Saunders VA, Branford S, White DL, Hughes TP. The new allosteric inhibitor asciminib is susceptible to resistance mediated by ABCB1 and ABCG2 overexpression in vitro. Oncotarget. 2018; 9(17): 13423-13437.
- 255González-Lobato L, Real R, Prieto JG, Alvarez AI, Merino G. Differential inhibition of murine Bcrp1/Abcg2 and human BCRP/ABCG2 by the mycotoxin fumitremorgin C. Euro J Pharmacol. 2010; 644(1-3): 41-48.
- 256de Bruin M, Miyake K, Litman T, Robey R, Bates SE. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Lett. 1999; 146(2): 117-126.
- 257Sparreboom A, Loos WJ, Burger H, et al. Effect of ABCG2 genotype on the oral bioavailability of topotecan. Cancer Biol Ther. 2005; 4(6): 650-658.
- 258Wang J, Wang JQ, Cai CY, et al. Reversal effect of ALK inhibitor NVP-TAE684 on ABCG2-overexpressing cancer cells. Front Oncol. [Internet]. 2020. 10.3389/fonc.2020.00228/full
- 259Dong XD, Zhang M, Ma X, Wang JQ, Lei ZN, Teng QX, et al. Bruton's Tyrosine kinase (BTK) inhibitor RN486 overcomes ABCB1-mediated multidrug resistance in cancer cells. Front Cell Dev Biol. [Internet]. 2020. 10.3389/fcell.2020.00865/full
- 260Yang Y, Ji N, Cai C, et al. Modulating the function of ABCB1: in vitro and in vivo characterization of sitravatinib, a tyrosine kinase inhibitor. Cancer Commun. 2020; 40(7): 285-300.
- 261Yang Y, Ji N, Teng QX, et al. Sitravatinib, a tyrosine kinase inhibitor, inhibits the transport function of ABCG2 and restores sensitivity to chemotherapy-resistant cancer cells in vitro. Front Oncol. [Internet]. 2020. 10.3389/fonc.2020.00700/full
- 262Feng W, Zhang M, Wu ZX, et al. Erdafitinib antagonizes ABCB1-mediated multidrug resistance in cancer cells. Front Oncol. [Internet]. 2020. 10.3389/fonc.2020.00955/full
- 263Nassar T, Rom A, Nyska A, Benita S. A novel nanocapsule delivery system to overcome intestinal degradation and drug transport limited absorption of P-glycoprotein substrate drugs. Pharmaceut Res. 2008; 25(9): 2019-2029.
- 264Zhang CG, Yang SD, Zhu WJ, et al. Distinctive polymer micelle designed for siRNA delivery and reversal of MDR1 gene-dependent multidrug resistance. J Biomed Mater Res Part B Appl Biomater. 2017; 105(7): 2093-2106.
- 265Felipe AV, Oliveira J, Moraes AA, França JP, Silva TD, Forones NM. Reversal of multidrug resistance in an epirubicin-resistant gastric cancer cell subline. Asian Pacific J Cancer Prev. 2018; 19(5): 1237-1242.
- 266Ee PL, He X, Ross DD, Beck WT. Modulation of breast cancer resistance protein (BCRP/ABCG2) gene expression using RNA interference. Mol Cancer Therap. 2004; 3(12): 1577-1583.
- 267Imai Y, Ishikawa E, Asada S, Sugimoto Y. Estrogen-mediated post transcriptional down-regulation of breast cancer resistance protein/ABCG2. Cancer Res. 2005; 65(2): 596-604.
- 268Vander Borght S, Komuta M, Libbrecht L, et al. Expression of multidrug resistance-associated protein 1 in hepatocellular carcinoma is associated with a more aggressive tumour phenotype and may reflect a progenitor cell origin. Liver Int. 2008; 28(10): 1370-1380.
- 269Filipits M, Suchomel RW, Dekan G, et al. MRP and MDR1 gene expression in primary breast carcinomas. Clin Cancer Res. 1996; 2(7): 1231-1237.
- 270Zöchbauer-Müller S, Filipits M, Rudas M, et al. P-glycoprotein and MRP1 expression in axillary lymph node metastases of breast cancer patients. Anticancer Res. 2001; 21(1A): 119-124.
- 271Weinstein RS, Jakate SM, Dominguez JM, et al. Relationship of the expression of the multidrug resistance gene product (P-glycoprotein) in human colon carcinoma to local tumor aggressiveness and lymph node metastasis. Cancer Res. 1991; 51(10): 2720-2726.
- 272Oda Y, Saito T, Tateishi N, et al. ATP-binding cassette superfamily transporter gene expression in human soft tissue sarcomas. Int J Cancer. 2005; 114(6): 854-862.
- 273Lopes EC, Garcia M, Benavides F, et al. Multidrug resistance modulators PSC 833 and CsA show differential capacity to induce apoptosis in lymphoid leukemia cell lines independently of their MDR phenotype. Leuk Res. 2003; 27(5): 413-423.
- 274Lehne G, Sørensen DR, Tjønnfjord GE, et al. The cyclosporin PSC 833 increases survival and delays engraftment of human multidrug-resistant leukemia cells in xenotransplanted NOD-SCID mice. Leukemia. 2002; 16(12): 2388-2394.
- 275Lehne G, De Angelis P, Den Boer M, Rugstad H. Growth inhibition, cytokinesis failure and apoptosis of multidrug-resistant leukemia cells after treatment with P-glycoprotein inhibitory agents. Leukemia. 1999; 13(5): 768-778.
- 276Tainton KM, Smyth MJ, Jackson JT, et al. Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death Differ. 2004; 11(9): 1028-1037.
- 277Alemán C, Annereau JP, Liang XJ, et al. P-glycoprotein, expressed in multidrug resistant cells, is not responsible for alterations in membrane fluidity or membrane potential. Cancer Res. 2003; 63(12): 3084-3091.
- 278Peaston AE, Gardaneh M, Franco AV, et al. MRP1 gene expression level regulates the death and differentiation response of neuroblastoma cells. Br J Cancer. 2001; 85(10): 1564-1571.
- 279Kuss BJ, Corbo M, Lau WM, Fennell DA, Dean NM, Cotter FE. In vitro and in vivo downregulation of MRP1 by antisense oligonucleotides: a potential role in neuroblastoma therapy. J Cancer. 2002; 98(1): 128-133.
- 280Liesa M, Qiu W, Shirihai OS. Mitochondrial ABC transporters function: the role of ABCB10 (ABC-me) as a novel player in cellular handling of reactive oxygen species. Biochim Et Biophys Acta.. 2012; 1823(10): 1945-1957.
- 281Bhattacharya S, Das A, Mallya K, Ahmad I. Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling. J Cell Sci. 2007; 120(15): 2652-2662.
- 282Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008; 454(7203): 436-444.
- 283Dannenberg AJ, Subbaramaiah K, Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell. 2003; 4(6): 431-436.
- 284Gasparini G, Longo R, Sarmiento R, Morabito A, Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? Lancet Oncol. 2003; 4(10): 605-615.
- 285Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998; 93(5): 705-716.
- 286De Waart DR, Paulusma CC, Kunne C, Oude Elferink RP. Multidrug resistance associated protein 2 mediates transport of prostaglandin E2. Liver Int. 2006; 26(3): 362-368.
- 287Rius M, Thon WF, Keppler D, Nies AT. Prostanoid transport by multidrug resistance protein 4 (MRP4/ABCC4) localized in tissues of the human urogenital tract. J Urol. 2005; 174(6): 2409-2414.
- 288Evers R, Cnubben NH, Wijnholds J, van Deemter L, van Bladeren PJ, Borst P. Transport of glutathione prostaglandin A conjugates by the multidrug resistance protein 1. Febs Lett. 1997; 419(1): 112-116.
- 289Paumi CM, Wright M, Townsend AJ, Morrow CS. Multidrug resistance protein (MRP) 1 and MRP3 attenuate cytotoxic and transactivating effects of the cyclopentenone prostaglandin, 15-deoxy-Δ12, 14prostaglandin J2 in MCF7 breast cancer cells. Biochemistry. 2003; 42(18): 5429-5437.
- 290Kim GY, Lee JW, Cho SH, Seo JM, Kim JH. Role of the low-affinity leukotriene B4 receptor BLT2 in VEGF-induced angiogenesis. Arterioscl, Thromb, Vasc Biol. 2009; 29(6): 915-920.
- 291Lee MJ, Thangada S, Claffey KP, et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 1999; 99(3): 301-312.
- 292Kimura T, Watanabe T, Sato K, et al. Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem J. 2000; 348(1): 71-76.
- 293Ishii I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors: signaling and biology. Ann Rev Biochem. 2004; 73(1): 321-354.
- 294Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol. 2003; 4(5): 397-407.
- 295Kluk MJ, Hla T. Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim Et Biophys Acta. 2002; 1582(1-3): 72-80.
- 296Taha TA, Argraves KM, Obeid LM. Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochim Et Biophys Acta. 2004; 1682(1-3): 48-55.
- 297Visentin B, Vekich JA, Sibbald BJ, et al. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell. 2006; 9(3): 225-238.
- 298Pettus BJ, Bielawski J, Porcelli AM, et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-α. Faseb J. 2003; 17(11): 1411-1421.
- 299Sato K, Malchinkhuu E, Horiuchi Y, et al. Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. J Neurochem. 2007; 103(6): 2610-2619.
- 300Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci U S A.. 2006; 103(44): 16394-16399.
- 301Bussolati B, Biancone L, Cassoni P, et al. PAF produced by human breast cancer cells promotes migration and proliferation of tumor cells and neo-angiogenesis. Am J Pathol. 2000; 157(5): 1713-1725.
- 302Raggers RJ, Vogels I, van Meer G. Multidrug-resistance P-glycoprotein (MDR1) secretes platelet-activating factor. Biochem J. 2001; 357(3): 859-865.
- 303Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006; 12(8): 895-904.
- 304Miletti-González KE, Chen S, Muthukumaran N, et al. The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res. 2005; 65(15): 6660-6667.
- 305Colone M, Calcabrini A, Toccacieli L, et al. The multidrug transporter P-glycoprotein: a mediator of melanoma invasion? J Invest Dermatol. 2008; 128(4): 957-971.
- 306Gupta GP, Nguyen DX, Chiang AC, et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 2007; 446(7137): 765-770.
- 307Van Brocklyn JR, Young N, Roof R. Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Lett. 2003; 199(1): 53-60.
- 308Tazzyman S, Lewis CE, Murdoch C. Neutrophils: key mediators of tumour angiogenesis. Int J Exp Pathol. 2009; 90(3): 222-231.
- 309Begicevic R-R, Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci. 2017; 18(11): 2362.
- 310Quintana E, Shackleton M, Foster HR, et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell. 2010; 18(5): 510-523.
- 311Xiao J, Egger ME, McMasters KM, Hao H. Differential expression of ABCB5 in BRAF inhibitor-resistant melanoma cell lines. BMC Cancer [Electr Resour]. 2018; 18(1): 1-10.
- 312Monzani E, Facchetti F, Galmozzi E, et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Euro J Cancer. 2007; 43(5): 935-946.
- 313Stacy AE, Jansson PJ, Richardson DR. Molecular pharmacology of ABCG2 and its role in chemoresistance. Mol Pharmacol. 2013; 84(5): 655-669.
- 314Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer. 2007; 7(2): 79-94.
- 315Sassi Y, Lipskaia L, Vandecasteele G, et al. Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation. J Clin Invest. 2008; 118(8): 2747-2757.
- 316Lin ZP, Zhu YL, Johnson DR, et al. Disruption of cAMP and prostaglandin E2 transport by multidrug resistance protein 4 deficiency alters cAMP-mediated signaling and nociceptive response. Mol Pharmacol. 2008; 73(1): 243-251.
- 317Wielinga PR, van der Heijden I, Reid G, Beijnen JH, Wijnholds J, Borst P. Characterization of the MRP4- and MRP5-mediated transport of cyclic nucleotides from intact cells. J Biol Chem. 2003; 278(20): 17664-17671.
- 318Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem. 2000; 275(39): 30069-30074.
- 319Guo Y, Kotova E, Chen ZS, et al. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2′,3′-dideoxycytidine and 9′-(2′-phosphonylmethoxyethyl)adenine. J Biol Chem. 2003; 278(32): 29509-29514.
- 320De Wolf CJ, Yamaguchi H, Van Der Heijden I, et al. cGMP transport by vesicles from human and mouse erythrocytes. Febs J. 2007; 274(2): 439-450.
- 321Abe-Dohmae S, Ikeda Y, Matsuo M, et al. Human ABCA7 supports apolipoprotein-mediated release of cellular cholesterol and phospholipid to generate high density lipoprotein. J Biol Chem. 2004; 279(1): 604-611.
- 322Davis Jr W, Tew KD. ATP-binding cassette transporter-2 (ABCA2) as a therapeutic target. Biochem Pharmacol. 2018; 151: 188-200.
- 323Quazi F, Molday RS. Differential phospholipid substrates and directional transport by ATP-binding cassette proteins ABCA1, ABCA7, and ABCA4 and disease-causing mutants. J Biol Chem. 2013; 288(48): 34414-34426.
- 324Sag D, Cekic C, Wu R, Linden J, Hedrick CC. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun. 2015; 6(1): 1-4.
- 325Chen ML, Sun A, Cao W, et al. Physiological expression and function of the MDR1 transporter in cytotoxic T lymphocytes. J Exp Med. 2020; 217(5), e20191388.
- 326Liu XY, Wang JQ, Ashby Jr CR, Zeng L, Fan YF, Chen ZS. Gold nanoparticles: synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discovery Today. Feb 4. 2021. 10.1016/j.drudis.2021.01.030
- 327Reid G, Wielinga P, Zelcer N, et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. PNAS. 2003; 100(16): 9244-9249.
- 328Tarling EJ, Vallim TQ de A, Edwards PA. Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab. 2013; 24(7): 342-350.
- 329Greenhough A, Smartt HJ, Moore AE, et al. The COX-2/PGE 2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 30(3): 377-386.