Gene expression profiles of oral soft tissue-derived fibroblast from healing wounds: correlation with clinical outcome, autophagy activation and fibrotic markers expression
Corresponding Author
Mariana Andrea Rojas
Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Rome, Italy
Correspondence
Mariana Andrea Rojas, Section of Periodontics, Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 6 Caserta Street, Rome 00161, Italy.
Email: [email protected]
Search for more papers by this authorSimona Ceccarelli
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorGiulia Gerini
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorEnrica Vescarelli
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorLorenzo Marini
Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorCinzia Marchese
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorAndrea Pilloni
Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorCorresponding Author
Mariana Andrea Rojas
Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Rome, Italy
Correspondence
Mariana Andrea Rojas, Section of Periodontics, Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 6 Caserta Street, Rome 00161, Italy.
Email: [email protected]
Search for more papers by this authorSimona Ceccarelli
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorGiulia Gerini
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorEnrica Vescarelli
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorLorenzo Marini
Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorCinzia Marchese
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorAndrea Pilloni
Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorRojas and Ceccarelli are contributed equally.
Funding information
The study was self-funded by the authors and their institution.
Abstract
Aim
Our aim was to evaluate gene expression profiling of fibroblasts from human alveolar mucosa (M), buccal attached gingiva (G) and palatal (P) tissues during early wound healing, correlating it with clinical response.
Materials and Methods
M, G and P biopsies were harvested from six patients at baseline and 24 hr after surgery. Clinical response was evaluated through Early wound Healing Score (EHS). Fibrotic markers expression and autophagy were assessed on fibroblasts isolated from those tissues by Western blot and qRT-PCR. Fibroblasts from two patients were subjected to RT2 profiler array, followed by network analysis of the differentially expressed genes. The expression of key genes was validated with qRT-PCR on all patients.
Results
At 24 hr after surgery, EHS was higher in P and G than in M. In line with our clinical results, no autophagy and myofibroblast differentiation were observed in G and P. We observed significant variations in mRNA expression of key genes: RAC1, SERPINE1 and TIMP1, involved in scar formation; CDH1, ITGA4 and ITGB5, contributing to myofibroblast differentiation; and IL6 and CXCL1, involved in inflammation.
Conclusions
We identified some genes involved in periodontal soft tissue clinical outcome, providing novel insights into the molecular mechanisms of oral repair (ClinicalTrial.gov-NCT04202822).
CONFLICT OF INTEREST
The authors declare that they have no conflict of interests.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
jcpe13439-sup-0001-AppendixS1.docxWord document, 416.1 KB | Appendix S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., & Tomic-Canic, M. (2008). Growth factors and cytokines in wound healing. Wound Repair and Regeneration, 16(5), 585–601. https://doi.org/10.1111/j.1524-475X.2008.00410.x.
- Basso, F. G., Pansani, T. N., Turrioni, A. P., Soares, D. G., de Souza Costa, C. A., & Hebling, J. (2016). Tumor Necrosis Factor-α and Interleukin (IL)-1β, IL-6, and IL-8 Impair In Vitro Migration and Induce Apoptosis of Gingival Fibroblasts and Epithelial Cells, Delaying Wound Healing. Journal of Periodontology, 87(8), 990–996. https://doi.org/10.1902/jop.2016.150713.
- Buskermolen, J. K., Roffel, S., & Gibbs, S. (2017). Stimulation of oral fibroblast chemokine receptors identifies CCR3 and CCR4 as potential wound healing targets. Journal of Cellular Physiology, 232(11), 2996–3005. https://doi.org/10.1002/jcp.25946.
- Castilho, R. M., Squarize, C. H., Leelahavanichkul, K., Zheng, Y., Bugge, T., & Gutkind, J. S. (2010). Rac1 is required for epithelial stem cell function during dermal and oral mucosal wound healing but not for tissue homeostasis in mice. PLoS One, 5(5), e10503. https://doi.org/10.1371/journal.pone.0010503.
- Chaushu, L., Rahmanov Gavrielov, M., Chaushu, G., & Vered, M. (2020). Palatal wound healing with primary intention in a rat model-histology and immunohistomorphometry. Medicina, 56(4), 200. https://doi.org/10.3390/medicina56040200.
- Chen, L., Arbieva, Z. H., Guo, S., Marucha, P. T., Mustoe, T. A., & DiPietro, L. A. (2010). Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics, 11, 471. https://doi.org/10.1186/1471-2164-11-471.
- Chen, L., Simões, A., Chen, Z., Zhao, Y., Wu, X., Dai, Y., DiPietro, L. A., & Zhou, X. (2019). Overexpression of the oral mucosa-specific microRNA-31 promotes skin wound closure. International Journal of Molecular Sciences, 20(15), 3679. https://doi.org/10.3390/ijms20153679.
- Chiquet, M., Katsaros, C., & Kletsas, D.. (2015). Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair. Periodontology 2000, 68(1), 21–40. https://doi.org/10.1111/prd.12076.
- D'Amici, S., Ceccarelli, S., Vescarelli, E., Romano, F., Frati, L., Marchese, C., & Angeloni, A. (2013). TNFα modulates Fibroblast Growth Factor Receptor 2 gene expression through the pRB/E2F1 pathway: identification of a non-canonical E2F binding motif. PloSOone, 8(4), e61491. https://doi.org/10.1371/journal.pone.0061491.
- El Ayadi, A., Jay, J. W., & Prasai, A. (2020). Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. International Journal of Molecular Sciences, 21(3), 1105. https://doi.org/10.3390/ijms21031105.
- Fan, B., Wang, T., Bian, L., Jian, Z., Wang, D. D., Li, F., Wu, F., Bai, T., Zhang, G., Muller, N., Holwerda, B., Han, G., & Wang, X. J. (2018). Topical application of Tat-Rac1 promotes cutaneous wound healing in normal and diabetic mice. International Journal of Biological Sciences, 14(10), 1163–1174. https://doi.org/10.7150/ijbs.25920.
- Häkkinen, L., Larjava, H., & Fournier, B. P. (2014). Distinct phenotype and therapeutic potential of gingival fibroblasts. Cytotherapy, 16(9), 1171–1186. https://doi.org/10.1016/j.jcyt.2014.04.004.
- Hämmerle, C. H., & Giannobile, W. (2014). Working Group 1 of the European Workshop on Periodontology. Biology of soft tissue wound healing and regeneration–consensus report of Group 1 of the 10th European Workshop on Periodontology. Journal of Clinical Periodontology, 41(Suppl. 15), S1–S5.
- Han, G., Bian, L., Li, F., Cotrim, A., Wang, D., Lu, J., Deng, Y., Bird, G., Sowers, A., Mitchell, J. B., Gutkind, J. S., Zhao, R., Raben, D., ten Dijke, P., Refaeli, Y., Zhang, Q., & Wang, X. J. (2013). Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nature Medicine, 19(4), 421–428. https://doi.org/10.1038/nm.3118.
- Hill, C., Li, J., Liu, D., Conforti, F., Brereton, C. J., Yao, L., Zhou, Y., Alzetani, A., Chee, S. J., Marshall, B. G., Fletcher, S. V., Hancock, D., Ottensmeier, C. H., Steele, A. J., Downward, J., Richeldi, L., Lu, X., Davies, D. E., Jones, M. G., & Wang, Y. (2019). Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death & Disease, 10(8), 591. https://doi.org/10.1038/s41419-019-1820-x.
- Iglesias-Bartolome, R., Uchiyama, A., Molinolo, A. A., Abusleme, L., Brooks, S. R., Callejas-Valera, J. L., Edwards, D., Doci, C., Asselin-Labat, M.-L., Onaitis, M. W., Moutsopoulos, N. M., Silvio Gutkind, J., & Morasso, M. I. (2018). Transcriptional signature primes human oral mucosa for rapid wound healing. Science Translational Medicine, 10(451), eaap8798.
- Jakhu, H., Gill, G., & Singh, A. (2018). Role of integrins in wound repair and its periodontal implications. Journal of Oral Biology and Craniofacial Research, 8(2), 122–125. https://doi.org/10.1016/j.jobcr.2018.01.002.
- Jiang, D., & Rinkevich, Y. (2020). Scars or Regeneration? — Dermal fibroblasts as drivers of diverse skin wound responses. International Journal of Molecular Sciences, 21(2), 617. https://doi.org/10.3390/ijms21020617.
- Jinno, K., Takahashi, T., Tsuchida, K., Tanaka, E., & Moriyama, K. (2009). Acceleration of palatal wound healing in Smad3-deficient mice. Journal of Dental Research, 88(8), 757–761. https://doi.org/10.1177/0022034509341798.
- Kendall, R. T., & Feghali-Bostwick, C. A. (2014). Fibroblasts in fibrosis: novel roles and mediators. Frontiers in Pharmacology, 5, 123. https://doi.org/10.3389/fphar.2014.00123.
- Kuwahara, M., Hatoko, M., Tada, H., & Tanaka, A. (2001). E-cadherin expression in wound healing of mouse skin. Journal of Cutaneous Pathology, 28(4), 191–199. https://doi.org/10.1034/j.1600-0560.2001.028004191.x.
- Landry, N. M., Rattan, S. G., & Dixon, I. (2019). An improved method of maintaining primary murine cardiac fibroblasts in two-dimensional cell culture. Scientific Reports, 9(1), 12889. https://doi.org/10.1038/s41598-019-49285-9.
- Lang, N. P., & Bartold, P. M. (2018). Periodontal health. Journal of Clinical Periodontology, 45(Suppl 20), S9–S16. https://doi.org/10.1111/jcpe.12936.
- Larjava, H., Wiebe, C., Gallant-Behm, C., Hart, D. A., Heino, J., & Häkkinen, L. (2011). Exploring scarless healing of oral soft tissues. Journal (Canadian Dental Association), 77, b18.
- Liechty, K. W., Adzick, N. S., & Crombleholme, T. M. (2000). Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine, 12(6), 671–676. https://doi.org/10.1006/cyto.1999.0598.
- Liu, S., Kapoor, M., & Leask, A. (2009). Rac1 expression by fibroblasts is required for tissue repair in vivo. The American Journal of Pathology, 174(5), 1847–1856. https://doi.org/10.2353/ajpath.2009.080779.
- Lotti, L. V., Rotolo, S., Francescangeli, F., Frati, L., Torrisi, M. R., & Marchese, C. (2007). AKT and MAPK signaling in KGF-treated and UVB-exposed human epidermal cells. Journal of Cellular Physiology, 212(3), 633–642. https://doi.org/10.1002/jcp.21056.
- Mak, K., Manji, A., Gallant-Behm, C., Wiebe, C., Hart, D. A., Larjava, H., & Häkkinen, L. (2009). Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model. Journal of Dermatological Science, 5, 168–180.
- Marini, L., Rojas, M. A., Sahrmann, P., Aghazada, R., & Pilloni, A. (2018). Early Wound Healing Score: a system to evaluate the early healing of periodontal soft tissue wounds. Journal of Periodontal & Implant Science, 48(5), 274–283. https://doi.org/10.5051/jpis.2018.48.5.274.
- Marini, L., Sahrmann, P., Rojas, M. A., Cavalcanti, C., Pompa, G., Papi, P., & Pilloni, A. (2019). Early Wound Healing Score (EHS): An Intra- and Inter-Examiner Reliability Study. Dentistry Journal, 7(3), 86. https://doi.org/10.3390/dj7030086.
10.3390/dj7030086 Google Scholar
- Nodale, C., Ceccarelli, S., Giuliano, M., Cammarota, M., D'Amici, S., Vescarelli, E., Maffucci, D., Bellati, F., Panici, P. B., Romano, F., Angeloni, A., & Marchese, C. (2014). Gene expression profile of patients with Mayer-Rokitansky-Küster-Hauser syndrome: New insights into the potential role of developmental pathways. PLoS One, 9(3), e91010. https://doi.org/10.1371/journal.pone.0091010.
- Nodale, C., Vescarelli, E., D'Amici, S., Maffucci, D., Ceccarelli, S., Monti, M., Benedetti Panici, P., Romano, F., Angeloni, A., & Marchese, C. (2014). Characterization of human vaginal mucosa cells for autologous in vitro cultured vaginal tissue transplantation in patients with MRKH syndrome. BioMed Research International, 2014, 201518. https://doi.org/10.1155/2014/201518.
- Peake, M. A., Caley, M., Giles, P. J., Wall, I., Enoch, S., Davies, L. C., Kipling, D., Thomas, D. W., & Stephens, P. (2014). Identification of a transcriptional signature for the wound healing continuum. Wound Repair and Regeneration, 22(3), 399–405. https://doi.org/10.1111/wrr.12170.
- Romagnani, P., Lasagni, L., Annunziato, F., Serio, M., & Romagnani, S. (2004). CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends in Immunology, 25(4), 201–209. https://doi.org/10.1016/j.it.2004.02.006.
- Sandulache, V. C., Dohar, J. E., & Hebda, P. A. (2005). Adult-fetal fibroblast interactions: Effects on cell migration and implications for cell transplantation. Cell Transplantation, 14(5), 331–337. https://doi.org/10.3727/000000005783983025.
- Schrementi, M. E., Ferreira, A. M., Zender, C., & DiPietro, L. A. (2008). Site-specific production of TGF-beta in oral mucosal and cutaneous wounds. Wound Repair and Regeneration, 16(1), 80–86. https://doi.org/10.1111/j.1524-475X.2007.00320.x.
- Simões, A., Chen, L., Chen, Z., Zhao, Y., Gao, S., Marucha, P. T., Dai, Y., DiPietro, L. A., & Zhou, X. (2019). Differential microRNA profile underlies the divergent healing responses in skin and oral mucosal wounds. Scientific Reports, 9(1), 7160. https://doi.org/10.1038/s41598-019-43682-w.
- Simone, T., & Higgins, P. (2015). Inhibition of SERPINE1 function attenuates wound closure in response to tissue injury: A role for PAI-1 in re-epithelialization and granulation tissue formation. Journal of Developmental Biology, 3(1), 11–24. https://doi.org/10.3390/jdb3010011.
- Smith, P. C., Martínez, C., Martínez, J., & McCulloch, C. A. (2019). Role of fibroblast populations in periodontal wound healing and tissue remodeling. Frontiers in Physiology, 10, 270. https://doi.org/10.3389/fphys.2019.00270.
- Squier, C. A., & Finkelstein, M. W. (2003). Oral mucosa. In A. Nanci (Ed.), Ten Cate’s Oral Histology, (pp. 329–375). Mosby.
- Sriram, G., Bigliardi, P. L., & Bigliardi-Qi, M. (2015). Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. European Journal of Cell Biology, 94(11), 483–512. https://doi.org/10.1016/j.ejcb.2015.08.001.
- Szpaderska, A. M., Zuckerman, J. D., & DiPietro, L. A. (2003). Differential injury responses in oral mucosal and cutaneous wounds. Journal of Dental Research, 82(8), 621–626. https://doi.org/10.1177/154405910308200810.
- Torres, P., Castro, M., Reyes, M., & Torres, V. A. (2018). Histatins, wound healing, and cell migration. Oral Diseases, 24(7), 1150–1160. https://doi.org/10.1111/odi.12816.
- Vescarelli, E., Pilloni, A., Dominici, F., Pontecorvi, P., Angeloni, A., Polimeni, A., Ceccarelli, S., & Marchese, C. (2017). Autophagy activation is required for myofibroblast differentiation during healing of oral mucosa. Journal of Clinical Periodontology, 44(10), 1039–1050. https://doi.org/10.1111/jcpe.12767.
- Wang, Y., & Tatakis, D. N. (2017). Human gingiva transcriptome during wound healing. Journal of Clinical Periodontology, 44(4), 394–402. https://doi.org/10.1111/jcpe.12669.
- Warburton, G., Nares, S., Angelov, N., Brahim, J. S., Dionne, R. A., & Wahl, S. M. (2005). Transcriptional events in a clinical model of oral mucosal tissue injury and repair. Wound Repair and Regeneration, 13(1), 19–26. https://doi.org/10.1111/j.1067-1927.2005.130104.x.
- Wong, J. W., Gallant-Behm, C., Wiebe, C., Mak, K., Hart, D. A., Larjava, H., & Häkkinen, L. (2009). Wound healing in oral mucosa results in reduced scar formation as compared with skin: evidence from the red Duroc pig model and humans. Wound Repair and Regeneration, 17(5), 717–729. https://doi.org/10.1111/j.1524-475X.2009.00531.x.
- Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., & Janmey, P. A. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motility and the Cytoskeleton, 60(1), 24–34. https://doi.org/10.1002/cm.20041.