Habitat-Forming Species: Buffers or Amplifiers for Mutualistic Organisms in Response to Climate Change?
Junmei Qu
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
University of Chinese Academy of Sciences, Beijing, People's Republic of China
Search for more papers by this authorCorresponding Author
Zhixin Zhang
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
University of Chinese Academy of Sciences, Beijing, People's Republic of China
Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, People's Republic of China
Correspondence:
Zhixin Zhang ([email protected])
Geng Qin ([email protected])
Search for more papers by this authorShaobo Ma
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
South China Sea Ecological Center, Ministry of Natural Resources, Guangzhou, China
Search for more papers by this authorYaqi Wang
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
University of Chinese Academy of Sciences, Beijing, People's Republic of China
Search for more papers by this authorXiaoyu Tang
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Search for more papers by this authorJianping Yin
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Search for more papers by this authorCorresponding Author
Geng Qin
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
University of Chinese Academy of Sciences, Beijing, People's Republic of China
Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, People's Republic of China
Correspondence:
Zhixin Zhang ([email protected])
Geng Qin ([email protected])
Search for more papers by this authorQiang Lin
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
University of Chinese Academy of Sciences, Beijing, People's Republic of China
Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, People's Republic of China
Search for more papers by this authorJunmei Qu
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
University of Chinese Academy of Sciences, Beijing, People's Republic of China
Search for more papers by this authorCorresponding Author
Zhixin Zhang
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
University of Chinese Academy of Sciences, Beijing, People's Republic of China
Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, People's Republic of China
Correspondence:
Zhixin Zhang ([email protected])
Geng Qin ([email protected])
Search for more papers by this authorShaobo Ma
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
South China Sea Ecological Center, Ministry of Natural Resources, Guangzhou, China
Search for more papers by this authorYaqi Wang
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
University of Chinese Academy of Sciences, Beijing, People's Republic of China
Search for more papers by this authorXiaoyu Tang
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Search for more papers by this authorJianping Yin
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Search for more papers by this authorCorresponding Author
Geng Qin
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
University of Chinese Academy of Sciences, Beijing, People's Republic of China
Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, People's Republic of China
Correspondence:
Zhixin Zhang ([email protected])
Geng Qin ([email protected])
Search for more papers by this authorQiang Lin
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
University of Chinese Academy of Sciences, Beijing, People's Republic of China
Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, People's Republic of China
Search for more papers by this authorFunding: National Key Research and Development Program of China (2023YFC3108800). Youth Innovation Promotion Association CAS (2023360). National Natural Science Foundation of China (42276126). Development Fund of South China Sea Institute of Oceanology. Chinese Academy of Sciences (SCSIO202203 and SCSIO202208). Science and Technology Planning Project of Guangdong Province, China (2023B1212060047).
ABSTRACT
Aim
Habitat-forming species play a critical role in coral reef ecosystems by creating complex physical structures for marine species. Driven by climate change, these habitat-forming species are undergoing considerable shifts in their geographical distribution, which might trigger cascading effects via protection mutualisms, leading to alterations in the relationships between species. We examined the role of habitat-forming species in regulating spatial distributions of their mutualistic protectors' influence.
Location
Global coastal ocean.
Methods
We used species distribution models to examine how suitable habitats for organisms that form mutualistic relationships with habitat-forming species respond to climate change, focusing on two representative macrosymbiotic relationships in coral reefs: Coral–coral crab and sea anemone–clownfish.
Results
The results revealed that corals are more sensitive to climate change than sea anemones, experiencing greater range contractions under projected future conditions. Consequently, the distribution ranges of both coral-mutualistic crabs and sea anemone-mutualistic clownfishes are expected to reduce even further when protection mutualisms are considered. Coral crabs are projected to undergo a more rapid range size loss than clownfishes.
Main Conclusion
These findings highlight the importance of incorporating interspecific interactions among habitat-forming species into predictions of potential shifts in the biogeographic distributions of mutualistic protectors under climate change.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The occurrences' records of corals and coral crabs are available in Zhang et al. (2024). The other distribution dates and R codes to produce the models are available from https://figshare.com/s/2a41c0d3a17a8da3834d. The predictor variables from the Bio-ORACLE version 3.0 database (https://bio-oracle.org).
Supporting Information
Filename | Description |
---|---|
jbi15174-sup-0001-FigureS1-S10.docxWord 2007 document , 1.3 MB |
Figures S1–S10. |
jbi15174-sup-0002-TableS1-S8.xlsxExcel 2007 spreadsheet , 522.5 KB |
Tables S1–S8. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Allouche, O., A. Tsoar, and R. Kadmon. 2006. “Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS).” Journal of Applied Ecology 43: 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x.
- Álvarez-Noriega, M., S. C. Burgess, J. E. Byers, J. M. Pringle, J. P. Wares, and D. J. Marshall. 2020. “Global Biogeography of Marine Dispersal Potential.” Nature Ecology & Evolution 4: 1196–1203. https://doi.org/10.1038/s41559-020-1238-y.
- Araújo, M. B., R. P. Anderson, A. Márcia Barbosa, et al. 2019. “Standards for Distribution Models in Biodiversity Assessments.” Science Advances 5, no. 1: eaat4858. https://doi.org/10.1126/sciadv.aat4858.
- Arenas-Castro, S., A. Regos, I. Martins, J. Honrado, and J. Alonso. 2022. “Effects of Input Data Sources on Species Distribution Model Predictions Across Species With Different Distributional Ranges.” Journal of Biogeography 49: 1299–1312.
- Assis, J., S. J. Fernández Bejarano, V. W. Salazar, et al. 2024. “Bio-ORACLE v3. 0. Pushing Marine Data Layers to the CMIP6 Earth System Models of Climate Change Research.” Global Ecology and Biogeography 33: e13813. https://doi.org/10.1111/geb.13813.
- Bal, A., F. Panda, S. G. Pati, K. Das, P. K. Agrawal, and B. Paital. 2021. “Modulation of Physiological Oxidative Stress and Antioxidant Status by Abiotic Factors Especially Salinity in Aquatic Organisms.” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 241: 108971. https://doi.org/10.1016/j.cbpc.2020.108971.
- Bascompte, J. 2019. “Mutualism and Biodiversity.” Current Biology 29: R467–R470. https://doi.org/10.1016/10.1016/j.cub.2019.03.062.
- Bastolla, U., M. A. Fortuna, A. Pascual-García, A. Ferrera, B. Luque, and J. Bascompte. 2009. “The Architecture of Mutualistic Networks Minimizes Competition and Increases Biodiversity.” Nature 458: 1018–1020. https://doi.org/10.1038/nature07950.
- Bateman, B. L., H. T. Murphy, A. E. Reside, K. Mokany, and J. VanDerWal. 2013. “Appropriateness of Full-, Partial-and No-Dispersal Scenarios in Climate Change Impact Modelling.” Diversity and Distributions 19: 1224–1234. https://doi.org/10.1111/ddi.12107.
- Begon, M., C. R. Townsend, and J. L. Harper. 2006. Ecology: From Individuals to Ecosystems. Blackwell Pub.
- Blackall, L. L., B. Wilson, and M. J. Van Oppen. 2015. “Coral—The World's Most Diverse Symbiotic Ecosystem.” Molecular Ecology 24: 5330–5347. https://doi.org/10.1111/mec.13400.
- Bürkner, P. C. 2017. “Brms: An R Package for Bayesian Multilevel Models Using Stan.” Journal of Statistical Software 80: 1–28. https://doi.org/10.18637/jss.v080.i01.
- Carpenter, K. E., M. Abrar, G. Aeby, et al. 2008. “One-Third of Reef-Building Corals Face Elevated Extinction Risk From Climate Change and Local Impacts.” Science 321: 560–563. https://doi.org/10.1126/science.1159196.
- Chaves-Fonnegra, A., B. Riegl, S. Zea, et al. 2018. “Bleaching Events Regulate Shifts From Corals to Excavating Sponges in Algae-Dominated Reefs.” Global Change Biology 24: 773–785. https://doi.org/10.1111/gcb.13962.
- Chen, C., Q. Song, M. Proffit, J. M. Bessière, Z. Li, and M. Hossaert-McKey. 2009. “Private Channel: A Single Unusual Compound Assures Specific Pollinator Attraction in Ficus Semicordata.” Functional Ecology 23: 941–950. https://doi.org/10.1111/j.1365-2435.2009.01622.x.
- Chen, C. A., and C. F. Dai. 2004. “Local Phase Shift From Acropora-Dominant to Condylactis-Dominant Community in the Tiao-Shi Reef, Kenting National Park, Southern Taiwan.” Coral Reefs 23: 508. https://doi.org/10.1007/s00338-004-0423-9.
- Dehling, D. M., I. M. Bender, P. G. Blendinger, et al. 2021. “Specialists and Generalists Fulfil Important and Complementary Functional Roles in Ecological Processes.” Functional Ecology 35: 1810–1821. https://doi.org/10.1111/1365-2435.13815.
- Dhaneesh, K. V., K. N. Devi, T. A. Kumar, T. Balasubramanian, and K. Tissera. 2012. “Breeding, Embryonic Development and Salinity Tolerance of Skunk Clownfish Amphiprion akallopisos.” Journal of King Saud University, Science 24: 201–209. https://doi.org/10.1016/j.jksus.2011.03.005.
10.1016/j.jksus.2011.03.005 Google Scholar
- Dormann, C. F., J. Elith, S. Bacher, et al. 2013. “Collinearity: A Review of Methods to Deal With It and a Simulation Study Evaluating Their Performance.” Ecography 36: 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x.
- Engelhardt, E. K., E. L. Neuschulz, and C. Hof. 2020. “Ignoring Biotic Interactions Overestimates Climate Change Effects: The Potential Response of the Spotted Nutcracker to Changes in Climate and Resource Plants.” Journal of Biogeography 47: 143–154. https://doi.org/10.1111/jbi.13699.
- Engler, R., C. F. Randin, W. Thuiller, et al. 2011. “21st Century Climate Change Threatens Mountain Flora Unequally Across Europe.” Global Change Biology 17: 2330–2341. https://doi.org/10.1111/j.1365-2486.2010.02393.x.
- Fisher, R., R. A. O'Leary, S. Low-Choy, et al. 2015. “Species Richness on Coral Reefs and the Pursuit of Convergent Global Estimates.” Current Biology 25: 500–505. https://doi.org/10.1016/j.cub.2014.12.022.
- Fowler, J. C., M. L. Donald, J. L. Bronstein, and T. E. Miller. 2023. “The Geographic Footprint of Mutualism: How Mutualists Influence Species' Range Limits.” Ecological Monographs 93: e1558. https://doi.org/10.1002/ecm.1558.
- Froehlich, C. Y., O. S. Klanten, M. L. Hing, M. Dowton, and M. Y. Wong. 2021. “Uneven Declines Between Corals and Cryptobenthic Fish Symbionts From Multiple Disturbances.” Scientific Reports 11: 16420. https://doi.org/10.1038/s41598-021-95778-x.
- Gaiarsa, M. P., and P. R. Guimaraes. 2019. “Interaction Strength Promotes Robustness Against Cascading Effects in Mutualistic Networks.” Scientific Reports 9: 676. https://doi.org/10.1007/s12080-016-0319-7.
- Graham, N. A., and K. L. Nash. 2013. “The Importance of Structural Complexity in Coral Reef Ecosystems.” Coral Reefs 32: 315–326. https://doi.org/10.1007/s00338-012-0984-y.
- Guareschi, S., T. Cancellario, F. J. Oficialdegui, and M. Clavero. 2024. “Insights From the Past: Invasion Trajectory and Niche Trends of a Global Freshwater Invader.” Global Change Biology 30: e17059. https://doi.org/10.1111/gcb.17059.
- Guisan, A., W. Thuiller, and N. E. Zimmermann. 2017. Habitat Suitability and Distribution Models: With Applications in R. Cambridge University Press. https://doi.org/10.1017/9781139028271.
10.1017/9781139028271 Google Scholar
- Hall, A. E., and M. J. Kingsford. 2021. “Habitat Type and Complexity Drive Fish Assemblages in a Tropical Seascape.” Journal of Fish Biology 99: 1364–1379. https://doi.org/10.1111/jfb.14843.
- Hastings, R. A., L. A. Rutterford, J. J. Freer, R. A. Collins, S. D. Simpson, and M. J. Genner. 2020. “Climate Change Drives Poleward Increases and Equatorward Declines in Marine Species.” Current Biology 30: 1572–1577. https://doi.org/10.1016/j.cub.2020.02.043.
- Hirzel, A. H., G. Le Lay, V. Helfer, C. Randin, and A. Guisan. 2006. “Evaluating the Ability of Habitat Suitability Models to Predict Species Presences.” Ecological Modelling 199: 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017.
- Hoegh-Guldberg, O., P. J. Mumby, A. J. Hooten, et al. 2007. “Coral Reefs Under Rapid Climate Change and Ocean Acidification.” Science 318: 1737–1742. https://doi.org/10.1126/science.1152509.
- Hu, Z. M., Q. S. Zhang, J. Zhang, et al. 2021. “Intraspecific Genetic Variation Matters When Predicting Seagrass Distribution Under Climate Change.” Molecular Ecology 30: 3840–3855. https://doi.org/10.1111/mec.15996.
- Huang, H., Z. Zhang, Á. Bede-Fazekas, et al. 2024. “Cross-Validation Matters in Species Distribution Models: A Case Study With Goatfish Species.” Ecography 2025: e07354. https://doi.org/10.1111/ecog.07354.
- Hughes, T. P., J. T. Kerry, M. Álvarez-Noriega, et al. 2017. “Global Warming and Recurrent Mass Bleaching of Corals.” Nature 543, no. 7645: 373–377. https://doi.org/10.1038/nature21707.
- Hughes, A. C., M. C. Orr, K. Ma, et al. 2021. “Sampling Biases Shape Our View of the Natural World.” Ecography 44: 1259–1269. https://doi.org/10.1111/ecog.05926.
- Hughes, T. P., J. T. Kerry, A. H. Baird, et al. 2018. “Global Warming Transforms Coral Reef Assemblages.” Nature 556: 492–496. https://doi.org/10.1038/s41586-018-0041-2.
- Jimenez, A. G., A. Guisan, O. Broennimann, T. Gaboriau, and N. Salamin. 2023. “Integrating Biotic Interactions in Niche Analyses Unravels Patterns of Community Composition in Clownfishes.” BioRxiv. 2023-03. https://doi.org/10.1101/2023.03.30.534900.
10.1101/2023.03.30.534900 Google Scholar
- Kass, J. M., R. Muscarella, P. J. Galante, et al. 2021. “ENMeval 2.0: Redesigned for Customizable and Reproducible Modeling of Species' Niches and Distributions.” Methods in Ecology and Evolution 12: 1602–1608. https://doi.org/10.1111/2041-210x.13628.
- Klein, S. G., C. Roch, and C. M. Duarte. 2024. “Systematic Review of the Uncertainty of Coral Reef Futures Under Climate Change.” Nature Communications 15: 2224. https://doi.org/10.1038/s41467-024-46255-2.
- Kumar, A., N. Rajwar, and T. Tonk. 2024. Climate Change Effects on Plant-Pollinator Interactions, Reproductive Biology and Ecosystem Services. Springer Nature Singapore. https://doi.org/10.1007/978-981-97-3905-9_5.
10.1007/978-981-97-3905-9_5 Google Scholar
- Kunzmann, A., and V. C. Diemel. 2020. “The Effect of Spatial Position and Age Within an Egg-Clutch on Embryonic Development and Key Metabolic Enzymes in Two Clownfish Species, Amphiprion Ocellaris and Amphiprion frenatus.” PLoS One 15: e0226600. https://doi.org/10.1371/journal.pone.0226600.
- Litsios, G., P. B. Pearman, D. Lanterbecq, N. Tolou, and N. Salamin. 2014. “The Radiation of the Clownfishes Has Two Geographical Replicates.” Journal of Biogeography 41: 2140–2149. https://doi.org/10.1111/jbi.12370.
- Litsios, G., C. A. Sims, R. O. Wüest, P. B. Pearman, N. E. Zimmermann, and N. Salamin. 2012. “Mutualism With Sea Anemones Triggered the Adaptive Radiation of Clownfishes.” BMC Evolutionary Biology 12: 1–15. https://doi.org/10.1186/1471-2148-12-212.
- Lobo, J. M., A. Jiménez-Valverde, and J. Hortal. 2010. “The Uncertain Nature of Absences and Their Importance in Species Distribution Modelling.” Ecography 33: 103–114. https://doi.org/10.1111/j.1600-0587.2009.06039.x.
- Lubbock, R. 1980. “Why Are Clownfishes Not Stung by Sea Anemones?” Proceedings of the Royal Society of London, Series B: Biological Sciences 207: 35–61. https://doi.org/10.1098/rspb.1980.0013.
- Lyons, P. J. 2014. “Competition by Obligate and Facultative Mutualists for Partners in a Shrimp-Goby Association.” Environmental Biology of Fishes 97: 1347–1352. https://doi.org/10.1007/s10641-014-0224-0.
- Manca, F., L. Benedetti-Cecchi, C. J. Bradshaw, et al. 2024. “Projected Loss of Brown Macroalgae and Seagrasses With Global Environmental Change.” Nature Communications 15: 5344. https://doi.org/10.1038/s41467-024-48273-6.
- Marquis, M., I. del Toro, and S. L. Pelini. 2014. “Insect Mutualisms Buffer Warming Effects on Multiple Trophic Levels.” Ecology 95: 9–13. https://doi.org/10.1890/13-0760.1.
- McKeon, C. S., A. C. Stier, S. E. McIlroy, and B. M. Bolker. 2012. “Multiple Defender Effects: Synergistic Coral Defense by Mutualist Crustaceans.” Oecologia 169: 1095–1103. https://doi.org/10.1007/s00442-012-2275-2.
- Munday, P. L., G. P. Jones, M. S. Pratchett, and A. J. Williams. 2008. “Climate Change and the Future for Coral Reef Fishes.” Fish and Fisheries 9: 261–285. https://doi.org/10.1111/j.1467-2979.2008.00281.x.
- Naimi, B., C. Capinha, J. Ribeiro, et al. 2022. “Potential for Invasion of Traded Birds Under Climate and Land-Cover Change.” Global Change Biology 28: 5654–5666. https://doi.org/10.1111/gcb.16310.
- Nakamura, M., S. Watanabe, T. Kaneko, R. Masuda, K. Tsukamoto, and T. Otake. 2020. “Limited Adaptation to Non-Natal Osmotic Environments at High Water Temperature in Euryhaline Wanderer Fishes.” Environmental Biology of Fishes 103: 137–145. https://doi.org/10.1007/s10641-019-00940-0.
- Noisette, F., C. Pansch, M. Wall, M. Wahl, and C. L. Hurd. 2022. “Role of Hydrodynamics in Shaping Chemical Habitats and Modulating the Responses of Coastal Benthic Systems to Ocean Global Change.” Global Change Biology 28: 3812–3829. https://doi.org/10.1111/gcb.16165.
- Ovaskainen, O., and N. Abrego. 2020. Joint Species Distribution Modelling: With Applications in R. Cambridge University Press. https://doi.org/10.1017/9781108591720.
10.1017/9781108591720 Google Scholar
- Paquette, A., and A. L. Hargreaves. 2021. “Biotic Interactions Are More Often Important at Species' Warm Versus Cool Range Edges.” Ecology Letters 24: 2427–2438. https://doi.org/10.1101/2021.04.07.438721.
- Pearson, R. G., C. J. Raxworthy, M. Nakamura, and A. Townsend Peterson. 2007. “Predicting Species Distributions From Small Numbers of Occurrence Records: A Test Case Using Cryptic Geckos in Madagascar.” Journal of Biogeography 34: 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x.
- Phillips, S. J., R. P. Anderson, M. Dudík, R. E. Schapire, and M. E. Blair. 2017. “Opening the Black Box: An Open-Source Release of Maxent.” Ecography 40: 887–893. https://doi.org/10.1111/ECOG.03049.
- Pinsky, M. L., A. M. Eikeset, D. J. McCauley, J. L. Payne, and J. M. Sunday. 2019. “Greater Vulnerability to Warming of Marine Versus Terrestrial Ectotherms.” Nature 569: 108–111. https://doi.org/10.1038/s41586-019-1132-4.
- Poloczanska, E. S., C. J. Brown, W. J. Sydeman, et al. 2013. “Global Imprint of Climate Change on Marine Life.” Nature Climate Change 3: 919–925. https://doi.org/10.1038/nclimate1958.
- Pryor, S. H., L. Andrews, B. P. Kelaher, A. Tagliafico, and A. Scott. 2021. “Ocean Temperature, but Not Acidification, Causes Sea Anemone Bleaching Under a Near-Future Climate Scenario.” Coral Reefs 40: 355–364. https://doi.org/10.1007/s00338-021-02050-9.
- Qu, J., G. Qin, H. Huang, et al. 2024. “Redistribution of Vocal Snapping Shrimps Under Climate Change.” Science of the Total Environment 954: 176191. https://doi.org/10.1016/j.scitotenv.2024.176191.
- Qu, M., Y. Zhang, Z. Gao, et al. 2023. “The Genetic Basis of the Leafy Seadragon's Unique Camouflage Morphology and Avenues for Its Efficient Conservation Derived From Habitat Modeling.” Science China. Life Sciences 66: 1213–1230. https://doi.org/10.1007/s11427-022-2317-6.
- Rosenfeld, J. S. 2002. “Functional Redundancy in Ecology and Conservation.” Oikos 98: 156–162. https://doi.org/10.1034/J.1600-0706.2002.980116.X.
- Ross, D. M. 1971. “Protection of Hermit Crabs (Dardanus spp.) From Octopus by Commensal Sea Anemones (Calliactis spp.).” Nature 230: 401–402. https://doi.org/10.1038/230401a0.
- Santini, L., A. Benítez-López, L. Maiorano, M. Čengić, and M. A. Huijbregts. 2021. “Assessing the Reliability of Species Distribution Projections in Climate Change Research.” Diversity and Distributions 27: 1035–1050. https://doi.org/10.1111/ddi.13252.
- Sarà, G., C. Giommi, A. Giacoletti, E. Conti, C. Mulder, and M. C. Mangano. 2021. “Multiple Climate-Driven Cascading Ecosystem Effects After the Loss of a Foundation Species.” Science of the Total Environment 770: 144749. https://doi.org/10.1016/j.scitotenv.2020.144749.
- Schwalm, C. R., S. Glendon, and P. B. Duffy. 2020. “RCP8.5 Tracks Cumulative CO2 Emissions.” Proceedings of the National Academy of Sciences of the United States of America 117: 19656–19657. https://doi.org/10.1073/pnas.2007117117.
- Simões, M. V., H. Saeedi, M. E. Cobos, and A. Brandt. 2021. “Environmental Matching Reveals Non-Uniform Range-Shift Patterns in Benthic Marine Crustacea.” Climatic Change 168: 31. https://doi.org/10.1007/s10584-021-03240-8.
- Slatyer, R. A., M. Hirst, and J. P. Sexton. 2013. “Niche Breadth Predicts Geographical Range Size: A General Ecological Pattern.” Ecology Letters 16: 1104–1114. https://doi.org/10.1111/ele.12140.
- Smith, K. E., M. Aubin, M. T. Burrows, et al. 2024. “Global Impacts of Marine Heatwaves on Coastal Foundation Species.” Nature Communications 15: 5052. https://doi.org/10.1038/s41467-024-49307-9.
- Sobha, T. R., C. P. Vibija, and P. Fahima. 2023. Coral Reef: A Hot Spot of Marine Biodiversity. Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5841-0_8.
- Spalding, M. D., H. E. Fox, G. R. Allen, et al. 2007. “Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas.” Bioscience 57: 573–583. https://doi.org/10.1641/B570707.
- Stephan, P., B. Bramon Mora, and J. M. Alexander. 2021. “Positive Species Interactions Shape Species' Range Limits.” Oikos 130: 1611–1625. https://doi.org/10.1111/oik.08146.
- Swets, J. A. 1988. “Measuring the Accuracy of Diagnostic Systems.” Science 240: 1285–1293. https://doi.org/10.1126/science.3287615.
- Thuiller, W., M. Guéguen, J. Renaud, D. N. Karger, and N. E. Zimmermann. 2019. “Uncertainty in Ensembles of Global Biodiversity Scenarios.” Nature Communications 10: 1446. https://doi.org/10.1038/s41467-019-09519-w.
- Turner, M. G. 2010. “Disturbance and Landscape Dynamics in a Changing World.” Ecology 91: 2833–2849. https://doi.org/10.1890/10-0097.1.
- Velazco, S. J. E., M. B. Rose, P. De Marco Jr., H. M. Regan, and J. Franklin. 2023. “How Far Can I Extrapolate My Species Distribution Model? Exploring Shape, a Novel Method.” Ecography 2024: e06992. https://doi.org/10.1111/ecog.06992.
10.1111/ecog.06992 Google Scholar
- Wisz, M. S., R. J. Hijmans, J. Li, et al. 2008. “Effects of Sample Size on the Performance of Species Distribution Models.” Diversity and Distributions 14: 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x.
- Zhang, L., S. Liu, P. Sun, et al. 2015. “Consensus Forecasting of Species Distributions: The Effects of Niche Model Performance and Niche Properties.” PLoS One 10: e0120056.
- Zhang, Z., J. M. Kass, Á. Bede-Fazekas, et al. 2025. “Differences in Predictions of Marine Species Distribution Models Based on Expert Maps and Opportunistic Occurrences.” Conservation Biology 24: e70015. https://doi.org/10.1111/cobi.70015.
- Zhang, Z., J. M. Kass, S. Mammola, et al. 2021. “Lineage-Level Distribution Models Lead to More Realistic Climate Change Predictions for a Threatened Crayfish.” Diversity and Distributions 27: 684–695. https://doi.org/10.1111/ddi.13225.
- Zhang, Z., S. Ma, Á. Bede-Fazekas, et al. 2024. “Considering Biotic Interactions Exacerbates the Predicted Impacts of Climate Change on Coral-Dwelling Species.” Journal of Biogeography 51: 769–782. https://doi.org/10.1111/jbi.14789.