Deep Divergence and Phenotypic Stasis of a Paleogene Relic Species Complex of Bullhead Catfish Within Eastern China
Weihan Shao
Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
Search for more papers by this authorXingwei Cai
Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
Search for more papers by this authorCorresponding Author
Jianyong Wu
Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
Correspondence:
Jianyong Wu ([email protected])
E. Zhang ([email protected])
Search for more papers by this authorCorresponding Author
E. Zhang
Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
Correspondence:
Jianyong Wu ([email protected])
E. Zhang ([email protected])
Search for more papers by this authorWeihan Shao
Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
Search for more papers by this authorXingwei Cai
Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
Search for more papers by this authorCorresponding Author
Jianyong Wu
Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
Correspondence:
Jianyong Wu ([email protected])
E. Zhang ([email protected])
Search for more papers by this authorCorresponding Author
E. Zhang
Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
Correspondence:
Jianyong Wu ([email protected])
E. Zhang ([email protected])
Search for more papers by this authorFunding: This work was supported by the National Natural Science Foundation of China.
ABSTRACT
Aim
The bullhead catfish Tachysurus argentivittatus, an early-diverging clade within the genus Tachysurus, exhibits characteristics indicative of an ancient origin and potential cryptic divergence. This study aims to elucidate the evolutionary processes underlying T. argentivittatus s.l. by examining the impacts of complex paleotectonic and drainage rearrangements in East Asia. Additionally, we aim to uncover potential cryptic diversity within this widespread species and explore the mechanisms behind its conserved morphology.
Location
East China.
Taxon
Bullhead catfish Tachysurus argentivittatus (Siluriformes: Bagridae).
Methods
We sampled 302 individuals of the currently recognised T. argentivittatus from nine localities across East China, covering over 5000 km of its latitudinal range. A concatenated dataset of two mitochondrial and four nuclear genes was used for phylogenetic reconstruction using Bayesian inference (BI) and Maximum Likelihood (ML) methods. Divergence times between main lineages of T. argentivittatus s.l. were estimated with a mitochondrial two-gene concatenated dataset in BEAST v.2.5.2, applying four secondary calibration points. A 3D principal component analysis (PCA) of 26 morphological traits was employed to diagnose molecular operational taxonomic units (OTUs) identified in the phylogenetic analysis.
Results
Molecular phylogenetic analyses revealed deep divergences within T. argentivittatus s.l., dating back to at least the early Miocene, resulting in three geographically isolated lineages. Coupled morphometric and meristic analyses indicate the subtle but consistent phenotypic differences among lineages. Our findings support the hypothesis that T. argentivittatus s.l. represents a species complex comprising three phenotypically similar yet distinct species. While T. argentivittatus s. str. is restricted to the Pearl River basin, populations from the Yangtze and Amur Rivers are recognised as a distinct species, T. mica, previously considered a synonym of T. argentivittatus. The population from Hainan Island represents a novel taxon, which should be formally described in future studies. We also discuss the biogeographical implications of our findings.
Main Conclusions
Time-calibrated phylogenetic analyses suggest that the ancestor of T. argentivittatus s.l. originated during the Paleogene. The uplift of the Tibetan Plateau since the Oligocene/Miocene boundary, leading to topographic inversion and fluctuations in sea levels, has significantly influenced the dispersal and diversification of the T. argentivittatus complex, including rearrangements and intermittent connections of large East Asian rivers. The reduction in phenotypic variation among these lineages of T. argentivittatus may be explained by phylogenetic niche conservatism and niche tracking.
Conflicts of Interest
The authors declare no competing financial interests.
Open Research
Data Availability Statement
The data that supports the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
jbi15144-sup-0001-FigureS1.jpgJPEG image, 2.1 MB |
Figure S1. Lateral views of live individuals for T. mica (a), T. argentivittatus (b), and T. aff. argentivittatus (c). |
jbi15144-sup-0002-TableS1.docxWord 2007 document , 100.1 KB |
Table S1. |
jbi15144-sup-0003-TableS2.docWord document, 27 KB |
Table S2. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Akaike, H. 1974. “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control 19, no. 6: 716–723. https://doi.org/10.1109/tac.1974.1100705.
- Bandelt, H. J., P. Forster, and A. Rohl. 1999. “Median-Joining Networks for Inferring Intraspecific Phylogenies.” Molecular Biology and Evolution 16, no. 1: 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036.
- Beltrán-López, R. G., O. Domínguez-Domínguez, K. R. Piller, H. Mejía-Mojica, A. F. Mar-Silva, and I. Doadrio. 2021. “Genetic Differentiation Among Populations of the Blackfin Goodea Goodea atripinnis (Cyprinodontiformes: Goodeidae): Implications for Its Evolutionary History.” Journal of Fish Biology 98, no. 5: 1253–1266. https://doi.org/10.1111/jfb.14654.
- Blanton, R. E., L. M. Page, and S. A. Hilber. 2013. “Timing of Clade Divergence and Discordant Estimates of Genetic and Morphological Diversity in the Slender Madtom, Noturus exilis (Ictaluridae).” Molecular Phylogenetics and Evolution 66, no. 3: 679–693. https://doi.org/10.1016/j.ympev.2012.10.022.
- Bogutskaya, N. G., A. M. Naseka, S. V. Shedko, et al. 2008. “The Fishes of the Amur River: Updated Check-List and Zoogeography.” Ichthyological Exploration of Freshwaters 19, no. 4: 301–366. https://doi.org/10.1093/icesjms/fsn132.
- Bouckaert, R., T. G. Vaughan, J. Barido-Sottani, et al. 2019. “BEAST 2.5: An Advanced Software Platform for Bayesian Evolutionary Analysis.” PLoS Computational Biology 15, no. 4: e1006650. https://doi.org/10.1371/journal.pcbi.1006650.
- Brownstein, C. D., D. Kim, O. D. Orr, et al. 2022. “Hidden Species Diversity in an Iconic Living Fossil Vertebrate.” Biology Letters 18, no. 11: 20220395. https://doi.org/10.1101/2022.07.25.500718.
- Cao, L., L. Shao, P. Qiao, Z. Zhao, and D. J. J. van Hinsbergen. 2018. “Early Miocene Birth of Modern Pearl River Recorded Low-Relief, High-Elevation Surface Formation of SE Tibetan Plateau.” Earth and Planetary Science Letters 496: 120–131. https://doi.org/10.1016/j.epsl.2018.05.039.
- Cao, L., W. H. Shao, W. J. Yi, and E. Zhang. 2024. “A Review of Conservation Status of Freshwater Fish Diversity in China.” Journal of Fish Biology 104, no. 2: 345–364. https://doi.org/10.1111/jfb.15606.
- Cassemiro, F. A., J. S. Albert, A. Antonelli, et al. 2023. “Landscape Dynamics and Diversification of the Megadiverse South American Freshwater Fish Fauna.” Proceedings of the National Academy of Sciences 120, no. 2: e2211974120. https://doi.org/10.1073/pnas.2211974120.
- Cerca, J., C. Meyer, D. Stateczny, et al. 2020. “Deceleration of Morphological Evolution in a Cryptic Species Complex and Its Link to Paleontological Stasis.” Evolution 74, no. 1: 116–131. https://doi.org/10.1111/evo.13884.
- Chang, M. M., D. S. Miao, and N. Wang. 2010. “ Ascent With Modification: Fossil Fishes Witnessed Their Own Group's Adaptation to the Uplift of the Tibetan Plateau During the Late Cenozoic.” In Darwin's Heritage Today, edited by M. Y. Long, H. Y. Gu, and Z. H. Zhou, 60–75. Higher Education Press.
- Chang, M. M., and J. J. Zhou. 1993. “A Brief Survey of the Chinese Eocene Ichthyofauna.” Kaupia 2: 157–162.
- Chen, G. J., and J. Liu. 2007. “First Fossil Barbin (Cyprinidae, Teleostei) From Oligocene of Qaidam Basin in Northern Tibetan Plateau.” Vertebrata PalAsiatica 45, no. 4: 330–341.
- Chen, W., Z. Zhong, W. Dai, Q. Fan, and S. He. 2017. “Phylogeographic Structure, Cryptic Speciation and Demographic History of the Sharpbelly (Hemiculter leucisculus), a Freshwater Habitat Generalist From Southern China.” BMC Evolutionary Biology 17, no. 1: 1–3. https://doi.org/10.1186/s12862-017-1058-0.
- Chen, Z., H. Li, X. Zhai, Y. Zhu, and X. Chen. 2019. “Phylogeography, Speciation and Demographic History: Contrasting Evidence From Mitochondrial and Nuclear Markers of the Odorrana graminea Sensu Lato (Anura, Ranidae) in China.” Molecular Phylogenetics and Evolution 144, no. 6: 106701. https://doi.org/10.1016/j.ympev.2019.106701.
- Cheng, J. L., H. Ishihara, and E. Zhang. 2008. “Pseudobagrus Brachyrhabdion, a New Catfish (Teleostei: Bagridae) From the Middle Yangtze River Drainage, South China.” Ichthyological Research 55, no. 2: 112–123. https://doi.org/10.1007/s10228-007-0020-3.
- Cheng, J. L., W. H. Shao, J. A. Lopez, et al. 2021. “Tachysurus Lani, a New Catfish Species (Teleostei: Bagridae) From the Pearl River Basin, South China.” Ichthyological Exploration of Freshwaters 1156: 1–17. https://doi.org/10.23788/IEF-1156.
10.23788/IEF?1156 Google Scholar
- Chenuil, A., A. E. Cahill, N. Délémontey, E. du Salliant du Luc, and H. Fanton. 2019. “ Problems and Questions Posed by Cryptic Species: A Framework to Guide Future Studies.” In In “From Assessing to Conserving Biodiversity: Conceptual and Practical Challenges”, edited by E. Casetta, J. Silva, and D. Vecchi, 77–106. Springer Press.
10.1007/978-3-030-10991-2_4 Google Scholar
- Chu, X. L., B. S. Zheng, and D. Y. Dai. 1999. FAUNA SINICA Osteichthys Siluriformes. Science Press (in Chinese).
- Clark, M. K., L. M. Schoenbohm, L. H. Royden, et al. 2004. “Surface Uplift, Tectonics, and Erosion of Eastern Tibet From Large-Scale Drainage Patterns.” Tectonics 23, no. 1: TC1006. https://doi.org/10.1029/2002TC001402.
- Collins, D. S., A. Avdis, P. A. Allison, H. D. Johnson, J. Hill, and M. D. Piggott. 2018. “Controls on Tidal Sedimentation and Preservation: Insights From Numerical Tidal Modelling in the Late Oligocene-Miocene South China Sea, Southeast Asia.” Sedimentology 65, no. 7: 2468–2505. https://doi.org/10.1111/sed.12474.
- Cooke, G. M., N. L. Chao, and L. B. Beheregaray. 2012. “Five Cryptic Species in the Amazonian Catfish Centromochlus existimatus Identified Based on Biogeographic Predictions and Genetic Data.” PLoS One 7, no. 11: e48800. https://doi.org/10.1371/journal.pone.0048800.
- Cooper, C. D., K. R. Piller, and T. Y. Chu. 2017. “Let's Jump in: A Phylogenetic Study of the Great Basin Springfishes and Poolfishes, Crenichthys and Empetrichthys (Cyprinodontiformes: Goodeidae).” PLoS One 12, no. 10: e0185425. https://doi.org/10.1371/journal.pone.0185425.
- Cui, Y. C., P. Shao, J. Qiao, et al. 2018. “Upper Miocene-Pliocene Provenance Evolution of the Central Canyon in Northwestern South China Sea.” Marine Geophysical Research 40, no. 2: 223–235. https://doi.org/10.1007/s11001-018-9359-2.
- Darriba, D., G. L. Taboada, R. Doallo, and D. Posada. 2012. “Jmodeltest 2: More Models, New Heuristics and Parallel Computing.” Nature Methods 9, no. 8: 772. https://doi.org/10.1038/nmeth.2109.
- Edgar, R. C. 2004. “MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput.” Nucleic Acids Research 32, no. 5: 1792–1797. https://doi.org/10.1093/nar/gkh340.
- Egge, J. J. D., and A. M. Simons. 2009. “Molecules, Morphology, Missing Data and the Phylogenetic Position of a Recently Extinct Madtom Catfish (Actinopterygii: Ictaluridae).” Zoological Journal of the Linnean Society 155, no. 1: 60–75. https://doi.org/10.1111/j.1096-3642.2008.00432.x.
- Esquerré, D., S. C. Donnellan, C. J. Pavón-Vázquez, J. Fenker, and J. S. Keogh. 2021. “Phylogeography, Historical Demography and Systematics of the World's Smallest Pythons (Pythonidae, Antaresia).” Molecular Phylogenetics and Evolution 161: 107181. https://doi.org/10.1016/j.ympev.2021.107181.
- Esquerré, D., D. Ramírez-Álvarez, C. J. Pavón-Vázquez, et al. 2019. “Speciation Across Mountains: Phylogenomics, Species Delimitation and Taxonomy of the Liolaemus leopardinus Clade (Squamata, Liolaemidae).” Molecular Phylogenetics and Evolution 139: 106524. https://doi.org/10.1016/j.ympev.2019.106524.
- Fišer, C., C. T. Robinson, and F. Malard. 2018. “Cryptic Species as a Window Into the Paradigm Shift of the Species Concept.” Molecular Ecology 27, no. 3: 613–635. https://doi.org/10.1111/mec.14486.
- Flot, J. F. 2010. “Seqphase: A Web Tool for Interconverting Phase Input/Output Files and Fasta Sequence Alignments.” Molecular Ecology Resources 10, no. 1: 162–166. https://doi.org/10.1111/j.1755-0998.2009.02732.x.
- Fu, X., W. Zhu, J. Geng, et al. 2020. “The Present-Day Yangtze River Was Established in the Late Miocene: Evidence From Detrital Zircon Ages.” Journal of Asian Earth Sciences 205: 104600. https://doi.org/10.1016/j.jseaes.2020.104600.
10.1016/j.jseaes.2020.104600 Google Scholar
- Gong, B., Y. Wang, J. A. Zhang, et al. 2024. “Effects of Altitude on Thyroid Disorders According to Chinese Three-Rung, Ladder-Like Topography: National Cross-Sectional Study.” BMC Public Health 24, no. 1: 26. https://doi.org/10.1186/s12889-023-17569-5.
- Goodier, S. A., F. P. Cotterill, C. O'Ryan, et al. 2011. “Cryptic Diversity of African Tigerfish (Genus Hydrocynus) Reveals Palaeogeographic Signatures of Linked Neogene Geotectonic Events.” PLoS One 6, no. 12: e28775. https://doi.org/10.1371/journal.pone.0028775.
- Gromov, I. A. 1970. “A New Species of Bagrid Catfish [Mystus mica Gromov, sp. n. (Pisces, Bagridae)] in the Amur Basin.” Voprosy Ikhtiologii 10: 400–405 (in Russian).
- He, D. K., X. Y. Sui, H. Sun, et al. 2020. “Diversity, Pattern and Ecological Drivers of Freshwater Fish in China and Adjacent Areas.” Reviews in Fish Biology and Fisheries 30, no. 2: 387–404. https://doi.org/10.1007/s11160-020-09600-4.
- Jiang, X. L., E. M. Gardner, H. H. Meng, M. Deng, and G. B. Xu. 2019. “Land Bridges in the Pleistocene Contributed to Flora Assembly on the Continental Islands of South China: Insights From the Evolutionary History of Quercus Championii.” Molecular Phylogenetics and Evolution 132: 31–45. https://doi.org/10.1016/j.ympev.2018.11.021.
- Kappas, I., S. Vittas, C. N. Pantzartzi, E. Drosopoulou, and Z. G. Scouras. 2016. “A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes).” PLoS One 11, no. 12: e0166988. https://doi.org/10.1371/journal.pone.0166988.
- Kong, G. S., S. C. Park, H. C. Han, J. H. Chang, and A. Mackensen. 2006. “Late Quaternary Paleoenvironmental Changes in the Southeastern Yellow Sea, Korea.” Quaternary International 144, no. 1: 38–52. https://doi.org/10.1016/j.quaint.2005.05.011.
10.1016/j.quaint.2005.05.011 Google Scholar
- Ku, X. Y., Z. G. Peng, R. Diogo, X. Ku, Z. Peng, and S. He. 2007. “MtDNA Phylogeny Provides Evidence of Generic Polyphyleticism for East Asian Bagrid Catfishes.” Hydrobiologia 579, no. 1: 147–159. https://doi.org/10.1007/s10750-006-0401-z.
- Leroy, B., M. S. Dias, E. Giraud, et al. 2019. “Global Biogeographical Regions of Freshwater Fish Species.” Journal of Biogeography 46, no. 11: 2407–2419. https://doi.org/10.1111/jbi.13674.
- Li, J., X. Fang, C. Song, B. Pan, Y. Ma, and M. Yan. 2014. “Late Miocene Quaternary Rapid Stepwise Uplift of the NE Tibetan Plateau and Its Effects on Climatic and Environmental Changes.” Quaternary Research 81, no. 3: 400–423.
- Li, X. J., Z. X. Sun, W. Q. Tang, and Y. H. Zhao. 2022. “Revalidation and Redescription of Sarcocheilichthys sciistius (Abbott, 1901) (Cypriniformes: Cyprinidae) From the Northern China.” Zootaxa 5141, no. 4: 341–357. https://doi.org/10.11646/zootaxa.5141.4.3.
- Lu, Y., Y. Cui, P. Qiao, et al. 2024. “New Understanding on the Interplay of Longitudinal and Transverse Sediment Dispersal: Combination of 3D Seismic Profile and U-Pb Ages of Detrital Zircons of the Northern South China Sea Paleogene Sedimentary Rocks.” Journal of Asian Earth Sciences 275: 106290. https://doi.org/10.1016/j.jseaes.2024.106290.
10.1016/j.jseaes.2024.106290 Google Scholar
- Martin, S. D., and R. M. Bonett. 2015. “Biogeography and Divergent Patterns of Body Size Disparification in North American Minnows.” Molecular Phylogenetics and Evolution 93: 17–28. https://doi.org/10.1016/j.ympev.2015.07.006.
- Mathew, M., A. Makhankova, D. Menier, B. Sautter, C. Betzler, and B. Pierson. 2020. “The Emergence of Miocene Reefs in South China Sea and Its Resilient Adaptability Under Varying Eustatic, Climatic and Oceanographic Conditions.” Scientific Reports 10, no. 1: 7141.
- McDowall, R. M. 2008. “Jordan's and Other Ecogeographical Rules, and the Vertebral Number in Fishes.” Journal of Biogeography 35, no. 3: 501–508. https://doi.org/10.1111/j.1365-2699.2007.01823.x.
- Meng, X., L. Liu, X. T. Wang, W. Balsam, J. Chen, and J. Ji. 2018. “Mineralogical Evidence of Reduced East Asian Summer Monsoon Rainfall on the Chinese Loess Plateau During the Early Pleistocene Interglacials.” Earth and Planetary Science Letters 486: 61–69. https://doi.org/10.1016/j.epsl.2017.12.048.
- Morales, H. E., A. Pavlova, P. Sunnucks, et al. 2017. “Neutral and Selective Drivers of Colour Evolution in a Widespread Australian Passerine.” Journal of Biogeography 44, no. 3: 522–536. https://doi.org/10.1111/jbi.12942.
- Motta, P. J., K. B. Clifton, P. Hernandez, and B. T. Eggold. 1995. “Ecomorphological Correlates in Ten Species of Subtropical Seagrass Fishes: Diet and Microhabitat Utilization.” Environmental Biology of Fishes 44, no. 1-3: 37–60. https://doi.org/10.1007/BF00005906.
10.1007/BF00005906 Google Scholar
- Natusch, D. J., D. Esquerré, J. A. Lyons, et al. 2020. “Species Delimitation and Systematics of the Green Pythons (Morelia viridis Complex) of Melanesia and Australia.” Molecular Phylogenetics and Evolution 142: 106640. https://doi.org/10.1016/j.ympev.2019.106640.
- Ng, H. H. 2009. “Tachysurus Spilotus, a New Species of Catfish From Central Vietnam (Teleostei: Bagridae).” Zootaxa 2283: 16–28. https://doi.org/10.5281/zenodo.191228.
10.11646/zootaxa.2283.1.2 Google Scholar
- Pang, X., C. Chen, M. Zhu, et al. 2009. “Baiyun Movement: A Significant Tectonic Event on Oligocene/Miocene Boundary in the Northern South China Sea and Its Regional Implications.” Journal of Earth Science 20, no. 1: 49–56. https://doi.org/10.1007/s12583-009-0005-4.
- Qiao, P., Y. Cui, Q. Ma, Q. Yu, and L. Shao. 2024. “Paleogene Transgression Process and Environmental Evolution in the Deepwater Area of the Baiyun Depression in the Northern South China Sea.” Acta Oceanologica Sinica 43, no. 4: 15–24. https://doi.org/10.1007/s13131-024-2340-9.
- Qiu, S. W., G. Y. Sun, W. D. Li, et al. 1979. “The Discovery of the Fossil Hydrographic Net of Songhua-Jiang in the Three-River Plain.” Acta Geographica Sinica 34, no. 3: 265–274 (in Chinese).
- Regan, C. T. 1905. “Description de six poissons nouveaux faisant partie de la collection du Musée d'Histoire Naturelle de Genève.” Revue Suisse de Zoologie 13: 389–393.
10.5962/bhl.part.4786 Google Scholar
- Reist, J. D. 1985. “An Empirical Evaluation of Several Univariate Methods That Adjust for Size Variation in Morphometric Data.” Canadian Journal of Zoology 63, no. 6: 1429–1439. https://doi.org/10.1139/z85-213.
- Renaud, A. K., J. Savage, and S. J. Adamowicz. 2012. “DNA Barcoding of Northern Nearctic Muscidae (Diptera) Reveals High Correspondence Between Morphological and Molecular Species Limits.” BMC Ecology 12, no. 1: 1–15. https://doi.org/10.1186/1472-6785-12-24.
- Ronquist, F., and J. P. Huelsenbeck. 2003. “MrBayes 3: Bayesian Phylogenetic Inference Under Mixed Models.” Bioinformatics 19, no. 12: 1572–1574.
- Roxo, F. F., N. K. Lujan, V. A. Tagliacollo, et al. 2017. “Shift From Slow-To Fast-Water Habitats Accelerates Lineage and Phenotype Evolution in a Clade of Neotropical Suckermouth Catfishes (Loricariidae: Hypoptopomatinae).” PLoS One 12, no. 6: e0178240. https://doi.org/10.1371/journal.pone.0178240.
- Shao, L., Y. C. Cui, K. Stattegger, et al. 2018. “Drainage Control of Eocene to Miocene Sedimentary Records in the Southeastern Margin of Eurasian Plate.” GSA Bulletin 131, no. 3–4: 461–478. https://doi.org/10.1130/b32053.1.
10.1130/B32053.1 Google Scholar
- Shao, W. H., J. L. Cheng, and E. Zhang. 2021. “Eight in One: Hidden Diversity of the Bagrid Catfish Tachysurus albomarginatus s.l. (Rendhal, 1928) Widespread in Lowlands of South China.” Frontiers in Genetics 12: 2195. https://doi.org/10.3389/fgene.2021.713793.
- Shao, W. H., J. L. Cheng, and E. Zhang. 2024. “Tachysurus taeniatus (Günther, 1873), a Senior Synonym of the Congeneric Species T. Ondon (Shaw, 1934) (Teleostei, Bagridae) From Eastern China.” ZooKeys 1218: 131–144. https://doi.org/10.3897/zookeys.1218.135630.
10.3897/zookeys.1218.135630 Google Scholar
- Shao, W. H., and E. Zhang. 2023. “Tachysurus latifrontalis, a New Bagrid Species From the Jiulong-Jiang Basin in Fujian Province, South China (Teleostei: Bagridae).” Ichthyological Research 70, no. 1: 110–122. https://doi.org/10.1007/s10228-022-00867-0.
- Smith, S. A., P. R. Stephens, and J. J. Wiens. 2005. “Replicate Patterns of Species Richness, Historical Biogeography, and Phylogeny in Holarctic Treefrogs.” Evolution 59, no. 11: 2433–2450.
- Stamatakis, A. 2006. “RAxML-VI-HPC: Maximum Likelihood-Based Phylogenetic Analyses With Thousands of Taxa and Mixed Models.” Bioinformatics 22, no. 21: 2688–2690. https://doi.org/10.1093/bioinformatics/btl446.
- Stange, M., G. Aguirre-Fernández, and W. Salzburger. 2018. “Study of Morphological Variation of Northern Neotropical Ariidae Reveals Conservatism Despite Macrohabitat Transitions.” BMC Evolutionary Biology 18, no. 1: 1–12. https://doi.org/10.1186/s12862-018-1152-y.
- Struck, T. H., J. L. Feder, M. Bendiksby, et al. 2018. “Finding Evolutionary Processes Hidden in Cryptic Species.” Trends in Ecology & Evolution 33, no. 3: 153–163. https://doi.org/10.1016/j.tree.2017.11.007.
- Sun, X., and P. Wang. 2005. “How Old Is the Asian Monsoon System?—Palaeobotanical Records From China.” Palaeogeography, Palaeoclimatology, Palaeoecology 222, no. 3–4: 181–222. https://doi.org/10.1016/j.palaeo.2005.03.005.
- Taylor, R. S., M. Bolton, A. Beard, et al. 2019. “Cryptic Species and Independent Origins of Allochronic Populations Within a Seabird Species Complex (Hydrobates spp.).” Molecular Phylogenetics and Evolution 139: 106552. https://doi.org/10.1016/j.ympev.2019.106552.
- Van Steenberge, M. W., M. P. Vanhove, A. Chocha Manda, et al. 2020. “Unravelling the Evolution of Africa's Drainage Basins Through a Widespread Freshwater Fish, the African Sharptooth Catfish Clarias gariepinus.” Journal of Biogeography 47, no. 8: 1739–1754. https://doi.org/10.1111/jbi.13858.
- Vega-Sánchez, Y. M., L. F. Mendoza-Cuenca, and A. González-Rodríguez. 2019. “Complex Evolutionary History of the American Rubyspot Damselfly, Hetaerina americana (Odonata): Evidence of Cryptic Speciation.” Molecular Phylogenetics and Evolution 139: 106536. https://doi.org/10.1016/j.ympev.2019.106536.
- Wang, N., and F. Wu. 2015. “New Oligocene Cyprinid in the Central Tibetan Plateau Documents the Pre-Uplift Tropical Lowlands.” Ichthyological Research 62, no. 3: 274–285. https://doi.org/10.1007/s10228-014-0438-3.
- Wang, X. M., Z. D. Qiu, Q. Li, et al. 2007. “Vertebrate Paleontology, Biostratigraphy, Geochronology, and Paleoenvironment of Qaidam Basin in Northern Tibetan Plateau.” Palaeogeography, Palaeoclimatology, Palaeoecology 254, no. 3-4: 363–385. https://doi.org/10.1016/j.palaeo.2007.06.007.
- Ward, R. D., R. Hanner, and P. D. N. Hebert. 2009. “The Campaign to DNA Barcode all Fishes, FISH-BOL.” Journal of Fish Biology 74, no. 2: 329–356. https://doi.org/10.1111/j.1095-8649.2008.02080.x.
- Woerner, A. E., M. P. Cox, and M. F. Hammer. 2007. “Recombination-Filtered Genomic Datasets by Information Maximization.” Bioinformatics 23, no. 4: 1851–1853. https://doi.org/10.1093/bioinformatics/btm253.
- Wong, W. Y., K. Y. M, L. M. Tsang, and K. H. Chu. 2017. “Genetic Legacy of Tertiary Climatic Change: A Case Study of Two Freshwater Loaches, Schistura Fasciolata and Pseudogastromyzon myersi, in Hong Kong.” Heredity 119, no. 5: 360–370. https://doi.org/10.1038/hdy.2017.47.
- Xu, H., B. Qi, H. W. Paerl, et al. 2021. “Environmental Controls of Harmful Cyanobacterial Blooms in Chinese Inland Waters.” Harmful Algae 110: 102127. https://doi.org/10.1016/j.hal.2022.102190.
- Xu, L. F., H. Z. Huang, W. S. Fan, H. M. He, and Y. H. Jia. 2011. “Genetic Diversity Analyses of Wild and Cultured Pseudobagrus ussuriensis Populations.” Marine Sciences 35: 17–22.
- Yan, F., J. Lü, B. Zhang, et al. 2018. “The Chinese Giant Salamander Exemplifies the Hidden Extinction of Cryptic Species.” Current Biology 28, no. 10: R590–R592. https://doi.org/10.1016/j.cub.2018.04.004.
- Yang, J. Q., W. Q. Tang, Y. Sun, et al. 2013. “Microsatellite Diversity and Population Genetic Structure of Squalidus argentatus (Cyprinidae) on the Island of Hainan and Mainland China.” Biochemical Systematics and Ecology 50: 7–15. https://doi.org/10.1016/j.bse.2013.03.023.
- Yu, Y., C. Zhang, S. Li, et al. 2015. “Influences of Tibetan Plateau Uplift on Provenance Evolution of the Paleo-Pearl River.” Chinese Journal of Geochemistry 34: 208–218.
- Zahiri, R., B. C. Schmidt, A. Schintlmeister, R. V. Yakovlev, and M. Rindoš. 2019. “Global Phylogeography Reveals the Origin and the Evolutionary History of the Gypsy Moth (Lepidoptera, Erebidae).” Molecular Phylogenetics and Evolution 137: 1–3. https://doi.org/10.1016/j.ympev.2019.04.021.
- Zeng, Q. 2013. “Molecular Phylogeny and Divergence Time Estimation of the Bagrid Catfishes (Actinopterygii: Siluriformes).” Master's thesis, Southwest University.
- Zhang, H., Y. Cui, P. Qiao, M. Zhao, and X. Xiang. 2021. “Evolution of the Pearl River and Its Implication for East Asian Continental Landscape Reversion.” Acta Geologica Sinica 95: 66–76. https://doi.org/10.1016/j.ympev.2019.04.021.
- Zhang, J., S. Wan, P. D. Clift, et al. 2019. “History of Yellow River and Yangtze River Delivering Sediment to the Yellow Sea Since 3.5 Ma: Tectonic or Climate Forcing?” Quaternary Science Reviews 216: 74–88. https://doi.org/10.1016/j.quascirev.2019.06.002.
- Zhang, X. T., L. Chen, Q. H. She, et al. 2012. “Provenance Evolution of the Paleo-Hanjian River in the North South China Sea.” Marine Geology & Quaternary Geology 32, no. 4: 41–48. https://doi.org/10.3724/SP.J.1140.2012.04041.
10.3724/SP.J.1140.2012.04041 Google Scholar
- Zhang, Z., J. S. Daly, Y. Yan, et al. 2021. “No Connection Between the Yangtze and Red Rivers Since the Late Eocene.” Marine and Petroleum Geology 129: 105115. https://doi.org/10.1016/j.marpetgeo.2021.105115.
- Zhang, Z., S. Tyrrell, C. A. Li, et al. 2016. “Provenance of Detrital K-Feldspar in Jianghan Basin Sheds New Light on the Pliocene-Pleistocene Evolution of the Yangtze River.” Geological Society of America Bulletin 128, no. 9–10: 1338–1351. https://doi.org/10.1130/B31445.1.
- Zheng, C. Y. 1989. The Fishes of the Pearl River. Science Press (in Chinese).
- Zheng, H., P. D. Clift, P. Wang, et al. 2013. “Pre-Miocene Birth of the Yangtze River.” Proceedings of the National Academy of Sciences 110, no. 19: 7556–7561. https://doi.org/10.1073/pnas.1216241110.