Three-Dimensional Morphometrics Reveal Patterns of Unionid Shell Variation Along River Gradients
Corresponding Author
Irene Sánchez González
Odum School of Ecology, University of Georgia, Athens, Georgia, USA
Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
Correspondence:
Irene Sánchez González ([email protected])
Search for more papers by this authorJamie R. Bucholz
Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
Department of Biological Sciences, Virginia Teach, Blacksburg, Virginia, USA
Search for more papers by this authorGarrett W. Hopper
School of Renewable Natural Resources, Louisiana State University and Agricultural Center, Baton Rouge, Louisiana, USA
Search for more papers by this authorJeffrey D. Lozier
Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
Search for more papers by this authorCarla L. Atkinson
Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
Search for more papers by this authorCorresponding Author
Irene Sánchez González
Odum School of Ecology, University of Georgia, Athens, Georgia, USA
Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
Correspondence:
Irene Sánchez González ([email protected])
Search for more papers by this authorJamie R. Bucholz
Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
Department of Biological Sciences, Virginia Teach, Blacksburg, Virginia, USA
Search for more papers by this authorGarrett W. Hopper
School of Renewable Natural Resources, Louisiana State University and Agricultural Center, Baton Rouge, Louisiana, USA
Search for more papers by this authorJeffrey D. Lozier
Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
Search for more papers by this authorCarla L. Atkinson
Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
Search for more papers by this authorFunding: This work was supported by the National Science Foundation (DEB-1831512 and DEB-1942707).
ABSTRACT
Aim
Understanding the extent of morphological variation across diverse habitats and species can provide valuable insights into how organisms respond to environmental gradients. We quantified intraspecific morphological variation of unionid mussels and assessed how it varied in relation to genetic differentiation and environmental characteristics.
Location
Mobile and Tennessee River Basins, Alabama and Tennessee, U.S.A.
Taxon
Unionid mussels.
Methods
We used innovative three-dimensional (3D) scanning techniques and 3D geometric morphometric analyses, genetic data and environmental variables to quantify morphological variation in seven freshwater mussel species populations and its relationship to genetic differentiation and environmental characteristics.
Results
Our findings indicate that shell morphological variation is correlated with environmental variables in four unionid species, and generally not related to genetic differentiation, improving our understanding of the mechanisms behind morphological variation. Three closely related species were more inflated in larger watersheds, while a more distantly related species, A. plicata, was more compressed in larger watersheds. River bankfull width was a significant factor in all models, highlighting the influence of high flow extremes on shell morphological variation.
Main Conclusions
Our findings suggest that environmental factors, particularly characteristics of river flow regimes, are the primary drivers of intraspecific shell morphological variation in unionid mussels, with genetic differentiation playing a less prominent role. Continuing to explore intraspecific trait variation along river gradients will improve our understanding of the ecological implications of shell morphological variation. Assessing the ability of organisms to morphologically adapt to environmental change can help us understand their resilience.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data sets analysed in this study are available in the Open Science Framework repository https://doi.org/10.17605/OSF.IO/VPXRM. Raw sequence reads are deposited in the SRA (BioProject PRJNA925109).
Supporting Information
Filename | Description |
---|---|
jbi15084-sup-0001-Supinfo.docxWord 2007 document , 1.3 MB |
Data S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Albert, C. H., F. Grassein, F. M. Schurr, G. Vieilledent, and C. Violle. 2011. “When and How Should Intraspecific Variability Be Considered in Trait-Based Plant Ecology?” Perspectives in Plant Ecology, Evolution and Systematics 13, no. 3: 217–225. https://doi.org/10.1016/j.ppees.2011.04.003.
- Aldridge, D. C., I. S. Ollard, Y. V. Bespalaya, et al. 2022. “Freshwater Mussel Conservation: A Global Horizon Scan of Emerging Threats and Opportunities.” Global Change Biology 29: 1–15. https://doi.org/10.1111/gcb.16510.
- Atkinson, C. L., B. C. van Ee, and J. M. Pfeiffer. 2020. “Evolutionary History Drives Aspects of Stoichiometric Niche Variation and Functional Effects Within a Guild.” Ecology 101, no. 9: 1–12. https://doi.org/10.1002/ecy.3100.
- Bailey, R. C., and R. H. Green. 1988. “Within-Basin Variation in the Shell Morphology and Growth Rate of a Freshwater Mussel.” Canadian Journal of Zoology 66, no. 7: 1704–1708. https://doi.org/10.1139/z88-246.
10.1139/z88-246 Google Scholar
- Baltz, D. M., and P. B. Moyle. 1981. “Morphometric Analysis of Tule Perch (Hysterocarpus traski) Populations in Three Isolated Drainages.” American Society of Ichthyologists and Herpetologists 1981, no. 2: 305–311.
- Bates, D. 2010. “ lme4: Mixed-Effects Modeling With R.” https://doi.org/10.18637/jss.v067.i01.
10.18637/jss.v067.i01 Google Scholar
- Böhm, M., D. Cook, H. Ma, et al. 2016. “Hot and Bothered: Using Trait-Based Approaches to Assess Climate Change Vulnerability in Reptiles.” Biological Conservation 204: 32–41. https://doi.org/10.1016/j.biocon.2016.05.003.
- Bolnick, D. I., P. Amarasekare, M. S. Araújo, et al. 2011. “Why Intraspecific Trait Variation Matters in Community Ecology.” Trends in Ecology & Evolution 26, no. 4: 183–192. https://doi.org/10.1016/j.tree.2011.01.009.
- Bolnick, D. I., R. Svanbäck, J. A. Fordyce, et al. 2003. “The Ecology of Individuals: Incidence and Implications of Individual Specialization.” American Naturalist 161, no. 1: 1–28. https://doi.org/10.1086/343878.
- Bonamour, S., L. M. Chevin, A. Charmantier, and C. Teplitsky. 2019. “Phenotypic Plasticity in Response to Climate Change: The Importance of Cue Variation.” Philosophical Transactions of the Royal Society B 374, no. 1768: 20180178. https://doi.org/10.1098/rstb.2018.0178.
- Brown, L. R., P. B. Moyle, W. A. Bennett, and B. D. Quelvog. 1992. “Implications of Morphological Variation Among Populations of California Roach Lavinia Symmetricus (Cyprinidae) for Conservation Policy.” Biological Conservation 62, no. 1: 1–10. https://doi.org/10.1016/0006-3207(92)91146-J.
- Bucholz, J. R., G. W. Hopper, I. Sánchez González, et al. 2024. “Multispecies Genetic Structure Scales With β-Diversity Across River Hierarchies in a Freshwater Mussel Biodiversity Hotspot.” Proceedings of the Royal Academy B 291: 20241512.
- Bucholz, J. R., G. W. Hopper, I. Sánchez González, et al. 2023. “Community-Wide Correlations Between Species Richness, Abundance and Population Genomic Diversity in a Freshwater Biodiversity Hotspot.” Molecular Ecology 32: 1–19. https://doi.org/10.1111/mec.16991.
- Burnham, K. P., and D. R. Anderson. 2003. Model Selection and Multimodel Inference. 2nd ed. New York, NY: Springer.
- Buser, T. J., and B. L. Sidlauskas. 2018. “2D or Not 2D? Testing the Utility of 2D vs. 3D Landmark Data in Geometric Morphometrics of the Sculpin Subfamily Oligocottinae (Pisces; Cottoidea).” Anatomical Record 301: 806–818. https://doi.org/10.1002/ar.23752.
- Bustos-Pérez, G., B. Gravina, M. Brenet, and F. Romagnoli. 2024. “The Contribution of 2D and 3D Geometric Morphometrics to Lithic Taxonomies: Testing Discrete Categories of Backed Flakes From Recurrent Centripetal Core Reduction.” Journal of Paleolithic Archaeology 7, no. 1: 1–23. https://doi.org/10.1007/s41982-023-00090-0.
- Catchen, J. M., A. Amores, P. Hohenlohe, W. Cresko, and J. H. Postlethwait. 2011. “Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences.” G3: Genes, Genomes, Genetics 1, no. 3: 171–182. https://doi.org/10.1534/g3.111.000240.
- Cope, O. L., L. A. Burkle, J. R. Croy, K. A. Mooney, L. H. Yang, and W. C. Wetzel. 2022. “The Role of Timing in Intraspecific Trait Ecology.” Trends in Ecology & Evolution 37, no. 11: 997–1005. https://doi.org/10.1016/j.tree.2022.07.003.
- R Core Development Team. 2023. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
- Couet, J., E. L. Marjakangas, A. Santangeli, J. A. Kålås, Å. Lindström, and A. Lehikoinen. 2022. “Short-Lived Species Move Uphill Faster Under Climate Change.” Oecologia 198: 877–888. https://doi.org/10.1007/s00442-021-05094-4.
- de Bello, F., S. Lavorel, L. M. Hallett, et al. 2021. “Functional Trait Effects on Ecosystem Stability: Assembling the Jigsaw Puzzle.” Trends in Ecology & Evolution 36, no. 9: 822–836. https://doi.org/10.1016/j.tree.2021.05.001.
- Eagar, R. M. C. 1948. “VIII. Variation in Shape of Shell With Respect to Ecological Station. A Review Dealing With Recent Unionidæ and Certain Species of the Anthracosiidæ in Upper Carboniferous Times.” Proceedings of the Royal Society of Edinburgh. Section B. Biology 63, no. 2: 130–148. https://doi.org/10.1017/s0080455x00000126.
10.1017/S0080455X00000126 Google Scholar
- Elmer, K. R., H. Kusche, T. K. Lehtonen, and A. Meyer. 2010. “Local Variation and Parallel Evolution: Morphological and Genetic Diversity Across a Species Complex of Neotropical Crater Lake Cichlid Fishes.” Philosophical Transactions of the Royal Society, B: Biological Sciences 365, no. 1547: 1763–1782. https://doi.org/10.1098/rstb.2009.0271.
- Evans, M. R., K. J. Norris, and T. G. Benton. 2012. “Predictive Ecology: Systems Approaches.” Philosophical Transactions of the Royal Society, B: Biological Sciences 367, no. 1586: 163–169. https://doi.org/10.1098/rstb.2011.0191.
- Fedorov, A., R. Beichel, J. Kalpathy-cramer, et al. 2012. “3D Slicer as an Image Computing Platform for the Quantitative Imaging Network.” Magnetic Resonance Imaging 30, no. 9: 1323–1341. https://doi.org/10.1016/j.mri.2012.05.001.
- Feng, X., S. E. Thompson, R. Woods, and A. Porporato. 2019. “Quantifying Asynchronicity of Precipitation and Potential Evapotranspiration in Mediterranean Climates.” Geophysical Research Letters 46, no. 24: 14,692–14,701. https://doi.org/10.1029/2019GL085653.
- Ferreira-Rodríguez, N., Y. B. Akiyama, O. V. Aksenova, et al. 2019. “Research Priorities for Freshwater Mussel Conservation Assessment.” Biological Conservation 231: 77–87. https://doi.org/10.1016/j.biocon.2019.01.002.
- Geist, J., and R. Kuehn. 2005. “Genetic Diversity and Differentiation of Central European Freshwater Pearl Mussel (Margaritifera margaritifera) Populations: Implications for Conservation and Management.” Molecular Ecology 14, no. 2: 425–439. https://doi.org/10.1111/J.1365-294X.2004.02420.x.
- Ghent, A. W., S. Robert, and L. Johnson-Singer. 1978. “Depth Distributions Determined With SCUBA, and Associated Studies of the Freshwater Unionid Clams Elliptio complanata and Anodonta grandis in Lake Bernard, Ontario.” Canadian Journal of Zoology 56, no. 8: 1654–1663.
10.1139/z78-228 Google Scholar
- Goslee, S. C., and D. L. Urban. 2007. “The Ecodist Package for Dissimilarity-Based Analysis of Ecological Data.” Journal of Statistical Software 22, no. 7: 1–19. https://doi.org/10.18637/jss.v022.i07.
- Gower, J. C. 1975. “Generalized Procrustes Analysis.” Psychometrika 40, no. 1: 33–51. https://doi.org/10.1007/BF02291478.
- Graf, D. L., and K. S. Cummings. 2021. “A ‘Big Data’ Approach to Global Freshwater Mussel Diversity (Bivalvia: Unionoida), With an Updated Checklist of Genera and Species.” Journal of Molluscan Studies 87, no. 1: eyaa034. https://doi.org/10.1093/mollus/eyaa034.
- Green, R. H. 1972. “Distribution and Morphological Variation of Lampsilis radiata (Pelecypoda, Unionidae) in Some Central Canadian Lakes: A Multivariate Statistical Approach.” Journal of the Fisheries Board of Canada 29, no. 11: 1565–1570.
10.1139/f72-244 Google Scholar
- Gruber, B., P. J. Unmack, O. F. Berry, and A. Georges. 2018. “Dartr: An r Package to Facilitate Analysis of SNP Data Generated From Reduced Representation Genome Sequencing.” Molecular Ecology Resources 18, no. 3: 691–699. https://doi.org/10.1111/1755-0998.12745.
- Haag, W. R. 2012. North American Freshwater Mussels: Natural History, Ecology, and Conservation. New York, NY: Cambridge University Press.
- Haag, W. R., and A. L. Rypel. 2011. “Growth and Longevity in Freshwater Mussels: Evolutionary and Conservation Implications.” Biological Reviews 86, no. 1: 225–247. https://doi.org/10.1111/j.1469-185X.2010.00146.x.
- Harman, W. N., and C. O. Berg. 1970. “Fresh-Water Mollusca of the Finger Lakes Region of New York.” Ohio Journal of Science 70, no. 3: 146–150.
- Hepp, L. U., R. Fornel, R. M. Restello, A. Trevisan, and S. Santos. 2012. “Intraspecific Morphological Variation in a Freshwater Crustacean Aegla plana in Southern Brazil: Effects of Geographical Isolation on Carapace Shape.” Journal of Crustacean Biology 32, no. 4: 511–518. https://doi.org/10.1163/193724012X630660.
- Hinch, S. G., R. C. Bailey, and R. H. Green. 1986. “Growth of Lampsilis Radiata (Bivalvia: Unionidae) in Sand and Mud: A Reciprocal Transplant Experiment.” Canadian Journal of Fisheries and Aquatic Sciences 43, no. 3: 548–552. https://doi.org/10.1139/f86-065.
- Hopper, G. W., J. R. Bucholz, T. P. Dubose, et al. 2023. “A Trait Dataset for Freshwater Mussels of the United States of America.” Scientific Data 10, no. 1: 745. https://doi.org/10.1038/s41597-023-02635-9.
- Hornbach, D. J., V. J. Kurth, and M. C. Hove. 2010. “Variation in Freshwater Mussel Shell Sculpture and Shape Along a River Gradient.” American Midland Naturalist 164, no. 1: 22–36.
- Hu, L., N. Yao, C. Wang, et al. 2024. “Analyses of Morphological Differences Between Geographically Distinct Populations of Gymnodiptychus dybowskii.” Water 16, no. 5: 755. https://doi.org/10.3390/w16050755.
- Huxley, J. D., C. T. White, H. C. Humphries, S. E. Weber, and M. J. Spasojevic. 2023. “Plant Functional Traits Are Dynamic Predictors of Ecosystem Functioning in Variable Environments.” Journal of Ecology 111, no. 12: 2597–2613. https://doi.org/10.1111/1365-2745.14197.
- Inoue, K., J. L. Harris, C. R. Robertson, N. A. Johnson, and C. R. Randklev. 2020. “A Comprehensive Approach Uncovers Hidden Diversity in Freshwater Mussels (Bivalvia: Unionidae) with the Description of a Novel Species.” Cladistics 36, no. 1: 88–113.
- Jones, C. 2019. “ WNC Watershed Analysis Tools. GitHub Repository.” https://github.com/FloodHydrology/WNC_watershed.git.
- Keogh, S. M., B. J. Minerich, L. M. Ohlman, et al. 2023. “Conspicuous Shell Shape Plasticity Across Lake-Stream Habitats in a Freshwater Mussel (Pyganodon grandis).” bioRxiv. https://doi.org/10.1101/2023.10.30.564758.
10.1101/2023.10.30.564758 Google Scholar
- Keogh, S. M., J. M. Pfeiffer, A. M. Simons, and S. M. Edief. 2023. “Riverine Flow Rate Drives Widespread Convergence in the Shell Morphology of Imperiled Freshwater Mussels.” Evolution 78: 39–52.
- Klunzinger, M. W., C. Whisson, A. Zieritz, J. A. Benson, B. A. Stewart, and L. Kirkendale. 2022. “Integrated Taxonomy Reveals New Threatened Freshwater Mussels (Bivalvia: Hyriidae: Westralunio) From Southwestern Australia.” Scientific Reports 12, no. 1: 20385. https://doi.org/10.1038/s41598-022-24767-5.
- Knaus, B. J., and N. J. Grünwald. 2017. “Vcfr: A Package to Manipulate and Visualize Variant Call Format Data in R.” Molecular Ecology Resources 17, no. 1: 44–53. https://doi.org/10.1111/1755-0998.12549.
- Leopold, L. B., M. G. Wolman, J. P. Miller, and E. E. Wohl. 2020. Fluvial Processes in Geomorphology. New York, NY: Courier Dover Publications.
- Lowry, D. B., S. Hoban, J. L. Kelley, et al. 2017. “Breaking RAD: An Evaluation of the Utility of Restriction Site-Associated DNA Sequencing for Genome Scans of Adaptation.” Molecular Ecology Resources 17, no. 2: 142–152. https://doi.org/10.1111/1755-0998.12678.
- Lundblad, C. G., and C. J. Conway. 2020. “Variation in Selective Regimes Drives Intraspecific Variation in Life-History Traits and Migratory Behaviour Along an Elevational Gradient.” Journal of Animal Ecology 89, no. 2: 397–411. https://doi.org/10.1111/1365-2656.13134.
- Lytle, D. A., and N. L. R. Poff. 2004. “Adaptation to Natural Flow Regimes.” Trends in Ecology & Evolution 19, no. 2: 94–100. https://doi.org/10.1016/j.tree.2003.10.002.
- Mata, L. S., C. H. Tagliaro, D. Simeone, and C. R. Beasley. 2019. “Shell Shape Variation in Amazonian Freshwater Mussels (Unionida: Hyriidae: Hyriini).” Journal of Molluscan Studies 85: 212–223. https://doi.org/10.1093/mollus/eyz001.
10.1093/mollus/eyz001 Google Scholar
- McWhinnie, K. C., and K. J. Parsons. 2019. “Shaping Up? A Direct Comparison Between 2D and Low-Cost 3D Shape Analysis Using African Cichlid Mandibles.” Environmental Biology of Fishes 102: 927–938. https://doi.org/10.1007/s10641-019-00924-y.
- Merilä, J., and A. P. Hendry. 2014. “Climate Change, Adaptation, and Phenotypic Plasticity: The Problem and the Evidence.” Evolutionary Applications 7, no. 1: 1–14. https://doi.org/10.1111/eva.12137.
- Miner, B. G., S. E. Sultan, S. G. Morgan, D. K. Padilla, and R. A. Relyea. 2005. “Ecological Consequences of Phenotypic Plasticity.” Trends in Ecology & Evolution 20, no. 12: 685–692. https://doi.org/10.1016/j.tree.2005.08.002.
- Morais, P., M. M. Rufino, J. Reis, E. Dias, and R. Sousa. 2014. “Assessing the Morphological Variability of Unio Delphinus Spengler, 1783 (Bivalvia: Unionidae) Using Geometric Morphometry.” Journal of Molluscan Studies 80, no. 1: 17–23. https://doi.org/10.1093/mollus/eyt037.
10.1093/mollus/eyt037 Google Scholar
- Neves, R. J., A. E. Bogan, J. D. Williams, S. A. Ahlstedt, and P. W. Hartfield. 1997. “Status of Aquatic Mollusks in the Southeastern United States: A Downward Sprial of Diversity.” Aquatic Fauna in Peril: The Southeastern Perspective 2014: 43–86.
- Olivera-Hyde, M., E. Hallerman, R. Santos, et al. 2020. “Phylogenetic Assessment of Freshwater Mussels Castalia ambigua and C. inflata at an Ecotone in the Paraguay River Basin, Brazil Shows That Inflated and Compressed Shell Morphotypes Are the Same Species.” Diversity 12, no. 12: 481. https://doi.org/10.3390/d12120481.
- Ortmann, A. E. 1920. “Correlation of Shape and Station in Fresh-Water Mussels (Naiades).” Proceedings of the American Philosophical Society 59, no. 4: 268–312.
- Pembleton, L. W., N. O. I. Cogan, and J. W. Forster. 2013. “StAMPP: An R Package for Calculation of Genetic Differentiation and Structure of Mixed-Ploidy Level Populations.” Molecular Ecology Resources 13, no. 5: 946–952. https://doi.org/10.1111/1755-0998.12129.
- Pfeiffer, J. M., J. W. Breinholt, and L. M. Page. 2019. “Unioverse: A Phylogenomic Resource for Reconstructing the Evolution of Freshwater Mussels (Bivalvia, Unionoida).” Molecular Phylogenetics and Evolution 137: 114–126.
- Porto, A., S. Rolfe, and A. M. Maga. 2021. “ALPACA: A Fast and Accurate Computer Vision Approach for Automated Landmarking of Three-Dimensional Biological Structures.” Methods in Ecology and Evolution 2021: 2129–2144. https://doi.org/10.1111/2041-210X.13689.
10.1111/2041-210X.13689 Google Scholar
- Rocher-Ros, A. 2023. “ Global Slope Analysis Tools. GitHub Repository.” https://github.com/rocher-ros/global_slope.
- Rohlf, F. J. 1998. “On Applications of Geometric Morphometrics to Studies of Ontogeny and Phylogeny.” Systematic Biology 47, no. 1: 147–158. https://www.jstor.org/stable/2585239.
- Rolfe, S., S. Pieper, A. Porto, et al. 2021. “SlicerMorph: An Open and Extensible Platform to Retrieve, Visualize and Analyse 3D Morphology.” Methods in Ecology and Evolution 2021: 1816–1825. https://doi.org/10.1111/2041-210X.13669.
10.1111/2041-210X.13669 Google Scholar
- Sansom, B. J., S. J. Bennett, and J. F. Atkinson. 2022. “Freshwater Mussel Burrow Position and Its Relation to Streambed Roughness.” Freshwater Science 41, no. 2: 315–326.
- Scalici, M., L. Traversetti, F. Spani, et al. 2016. “Using 3D Virtual Surfaces to Investigate Molluscan Shell Shape.” Aquatic Living Resources 29, no. 2: 207. https://doi.org/10.1051/alr/2016019.
- Shuai, F., S. Yu, S. Lek, and X. Li. 2018. “Habitat Effects on Intra-Species Variation in Functional Morphology: Evidence From Freshwater Fish.” Ecology and Evolution 8, no. 22: 10902–10913. https://doi.org/10.1002/ece3.4555.
- Simeone, D., C. H. Tagliaro, and C. R. Beasley. 2022. “Relative Importance of the Environment and Sexual Dimorphism in Determining Shell Shape in the Amazonian Freshwater Mussel Castalia ambigua (Unionida: Hyriidae) Along a Hydrological Gradient.” Zoomorphology 141: 233–243. https://doi.org/10.1007/s00435-022-00562-8.
- Statzner, B., and T. F. Holm. 1989. “Morphological Adaptation of Shape to Flow: Microcurrents Around Lotic Macroinvertebrates With Known Reynolds Numbers at Quasi-Natural Flow Conditions.” Oecologia 78, no. 2: 145–157. https://doi.org/10.1007/BF00377150.
- Stotz, G. C., C. Salgado-Luarte, V. M. Escobedo, F. Valladares, and E. Gianoli. 2021. “Global Trends in Phenotypic Plasticity of Plants.” Ecology Letters 24, no. 10: 2267–2281. https://doi.org/10.1111/ele.13827.
- Sullam, K. E., C. M. Dalton, J. A. Russell, et al. 2015. “Changes in Digestive Traits and Body Nutritional Composition Accommodate a Trophic Niche Shift in Trinidadian Guppies.” Oecologia 177: 245–257. https://doi.org/10.1007/s00442-014-3158-5.
- Tokovinine, A., and F. Estrada Belli. 2017. “From Stucco to Digital: Topometric Documentation of Classic Maya Facades at Holmul.” Digital Applications in Archaeology and Cultural Heritage 6: 18–28. https://doi.org/10.1016/j.daach.2017.04.004.
10.1016/j.daach.2017.04.004 Google Scholar
- Tudor, E. P., W. Lewandrowski, S. Krauss, and E. J. Veneklaas. 2024. “Local Adaptation to Climate Inferred From Intraspecific Variation in Plant Functional Traits Along a Latitudinal Gradient.” Conservation Physiology 12, no. 1: coae018.
- Tuttle-Raycraft, S., and J. D. Ackerman. 2020. “Evidence of Phenotypic Plasticity in the Response of Unionid Mussels to Turbidity.” Freshwater Biology 65, no. 11: 1989–1996. https://doi.org/10.1111/fwb.13595.
- Wadgymar, S. M., R. M. Mactavish, and J. T. Anderson. 2018. “Transgenerational and Within-Generation Plasticity in Response to Climate Change: Insights From a Manipulative Field Experiment Across an Elevational Gradient.” American Naturalist 192, no. 6: 698–714. https://doi.org/10.1086/700097.
- Wasiljew, B. D., J. Pfaender, B. Wipfler, I. V. Utama, and F. Herder. 2020. “Do We Need the Third Dimension? Quantifying the Effect of the z-Axis in 3D Geometric Morphometrics Based on Sailfin Silversides (Telmatherinidae).” Journal of Fish Biology 97, no. 2: 537–545. https://doi.org/10.1111/jfb.14391.
- Watters, G. T. 1994. “Form and Function of Unionoidean Shell Scultupre and Shape (Bivalvia).” American Malacological Bulletin 11, no. 1: 1–20.
- Webster, M., and H. D. Sheets. 2010. “A Practical Introduction to Landmark-Based Geometric Morphometrics.” Quantitative Methods in Paleobiology 16: 163–188.
- Weir, B., and C. Clark Cockerham. 1984. “Estimating F-Statistics for the Analysis of Population Structure.” Evolution 38, no. 6: 1358–1370.
- Widarto, T. H. 2007. “Shell Form Variation of a Freshwater Mussel Velesunio Ambiguus Philippi From the Ross River, Australia.” HAYATI Journal of Biosciences 14, no. 3: 98–104. https://doi.org/10.4308/hjb.14.3.98.
10.4308/hjb.14.3.98 Google Scholar
- Williams, J. D., A. E. Bogan, and J. T. Garner. 2008. Freshwater Mussels of Alabama and the Mobile Basin in Georgia, Mississippi, and Tennessee. Tuscaloosa, AL: University of Alabama Press.
- Wolman, G. M. 1954. “A Method of Sampling Coarse River-Bed Material.” Transactions of the American Geophysical Union 35, no. 6: 951–956.
10.1029/TR035i006p00951 Google Scholar
- Yusseppone, M. S., F. Márquez, C. M. Luquet, T. Brey, M. C. Rios de Molina, and I. Rocchetta. 2018. “Does Shell Shape Variation Play a Role in Conservation of the Long-Lived Freshwater Bivalve Diplodon chilensis (Bivalvia, Hyriidae)?” Ecohydrology 11, no. 2: e1931. https://doi.org/10.1002/eco.1931.
- Zając, K., T. Zając, and A. Ćmiel. 2018. “What Can We Infer From the Shell Dimensions of the Thick-Shelled River Mussel Unio Crassus?” Hydrobiologia 810: 415–431. https://doi.org/10.1007/s10750-017-3098-2.
- Zieritz, A., and D. C. Aldridge. 2009. “Identification of Ecophenotypic Trends Within Three European Freshwater Mussel Species (Bivalvia: Unionoida) Using Traditional and Modern Morphometric Techniques.” Biological Journal of the Linnean Society 98, no. 4: 814–825. https://doi.org/10.1111/j.1095-8312.2009.01329.x.
- Zieritz, A., J. I. Hoffman, W. Amos, and D. C. Aldridge. 2010. “Phenotypic Plasticity and Genetic Isolation-By-Distance in the Freshwater Mussel Unio pictorum (Mollusca: Unionoida).” Evolutionary Ecology 24, no. 4: 923–938. https://doi.org/10.1007/s10682-009-9350-0.