Same place, different stories: Disparate evolutionary trends of mygalomorph spiders from the Peripampasic orogenic arc
Arnau Calatayud-Mascarell
Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Spain
Search for more papers by this authorCorresponding Author
Nelson Ferretti
Center of Renewable Natural Resources of the Semiarid Area (CERZOS-UNS, CONICET), Bahía Blanca, Argentina
Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, San Juan, Bahía Blanca, Argentina
Correspondence
Nelson Ferretti, Center of Renewable Natural Resources of the Semiarid Area (CERZOS-UNS, CONICET), Camino la Carrindanga Km.7, Bahía Blanca (8000), Buenos Aires, Argentina.
Email: [email protected]
Search for more papers by this authorAlba Enguídanos
Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Spain
Search for more papers by this authorMiquel A. Arnedo
Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Spain
Search for more papers by this authorArnau Calatayud-Mascarell
Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Spain
Search for more papers by this authorCorresponding Author
Nelson Ferretti
Center of Renewable Natural Resources of the Semiarid Area (CERZOS-UNS, CONICET), Bahía Blanca, Argentina
Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, San Juan, Bahía Blanca, Argentina
Correspondence
Nelson Ferretti, Center of Renewable Natural Resources of the Semiarid Area (CERZOS-UNS, CONICET), Camino la Carrindanga Km.7, Bahía Blanca (8000), Buenos Aires, Argentina.
Email: [email protected]
Search for more papers by this authorAlba Enguídanos
Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Spain
Search for more papers by this authorMiquel A. Arnedo
Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Spain
Search for more papers by this authorArnau Calatayud-Mascarell and Nelson Ferretti should be considered joint first author.
Handling Editor: Paula Arribas
Abstract
Aim
Comparative phylogeography aims to unravel similarities in the population structure and evolutionary processes undergone by co-distributed taxa, under the assumption that they will have experienced the same geoclimatic events. However, small differences in functional traits, particularly those related to dispersal abilities, may translate into incongruent evolutionary histories. Here, we used a sequence target multi-locus approach to infer and compare the phylogeographical patterns of three sympatric mygalomorph spiders in the Argentinean Peripampasic orogenic arc.
Location
The mountainous systems of central and northern Argentina.
Taxon
Acanthogonatus centralis, Grammostola vachoni and Plesiopelma longisternale (Araneae: Mygalomorphae).
Methods
We inferred mitochondrial gene trees (16S + L1 + nad1) and nuclear (ITS2) networks of three species of mygalomorph spiders from 159 individuals using Bayesian and Maximum likelihood approaches, and estimated divergence times in a Bayesian framework. Based on our time-stamped gene trees, we reconstructed ancestral areas using the Bayesian Binary MCMC method.
Results
Deeply divergent and highly geographically structured populations, isolated since the Late Miocene to mid Pliocene, were obtained in the pycnothelid Acanthogonatus centralis. Conversely, the theraphosids Plesiopelma longisternale and Grammostola vachoni showed slightly divergent and poorly geographically structured populations, tracing back to the Late Pliocene to Early Pleistocene.
Main conclusions
We propose that differences in dispersion rates and time of colonization between the theraphosids and the pycnothelid species led to divergent lineage history despite common environmental conditions. We corroborate the key role played by the Plio-Pleistocene geoclimatic events in shaping the present-day diversity of mygalomorph spiders along the Peripampasic orogenic arc. Additionally, we uncovered potentially overlooked species diversity within G. vachoni.
CONFLICT OF INTEREST
Authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on Dryad (doi:10.5061/dryad.h18931znb). Sequence data are openly available at GenBank (www.ncbi.nlm.nih.gov/genbank/) and sequences ids are shown in Table S1.1.
Supporting Information
Filename | Description |
---|---|
jbi14374-sup-0001-AppendixS1-S3.pdfPDF document, 1.7 MB |
Appendix S1-S3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Acosta, L. (2002). Patrones zoogeográficos de los opiliones argentinos (Arachnida: Opiliones). Revista Ibérica de Aracnología, 6, 69–84.
- Alberdi, M. T., Bonadonna, F. P., & Ortiz-Jaureguizar, E. (1997). Chronological correlation, paleoecology, and paleobiogeography of the late Cenozoic South American ‘‘Rionegran’’ land-mammal fauna: a review. Revista Espanñola de Paleontología, 12, 249–255.
- Alboff, N. (1895). Rapport préliminaire sur une excursion botanique dans la Sierra Ventana. Revista Del Museo de La Plata, 7, 183–187.
- Antonelli, A., & Sanmartín, I. (2011). Why are there so many plant species in the Neotropics? Taxon., 60, 403–414.
- Avise, J. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522. https://doi.org/10.1146/annurev.ecolsys.18.1.489
10.1146/annurev.es.18.110187.002421 Google Scholar
- Avise, J. C. (1992). Molecular population structure and the biogeographic history of a regional Fauna: A case history with lessons for conservation biology. Oikos, 63(1), 62. https://doi.org/10.2307/3545516
- Bailey, A. L., Brewer, M. S., Hendrixson, B. E., & Bond, J. E. (2010). Phylogeny and classification of the trapdoor spider genus Myrmekiaphila: An integrative approach to evaluating taxonomic hypotheses. PLoS ONE, 5(9), 1–15. https://doi.org/10.1371/journal.pone.0012744
- Bailey, N. W., Gwynne, D. T., & Ritchie, M. G. (2007). Dispersal differences predict population genetic structure in Mormon crickets. Molecular Ecology, 16(10), 2079–2089. https://doi.org/10.1111/j.1365-294X.2007.03265.x
- Beavis, A. S., Sunnucks, P., & Rowell, D. M. (2011). Microhabitat preferences drive phylogeographic disparities in two Australian funnel web spiders. Biological Journal of the Linnean Society, 104(4), 805–819. https://doi.org/10.1111/j.1095-8312.2011.01753.x
- Bermingham, E., & Moritz, C. (1998). Comparative phylogeography: Concepts and applications. Molecular Ecology, 7(4), 367–369. https://doi.org/10.1046/j.1365-294x.1998.00424.x
- Bernatchez, L., & Wilson, C. C. (1998). Comparative phylogeography of Nearctic and palearctic fishes. Molecular Ecology, 7(4), 431–452. https://doi.org/10.1046/j.1365-294x.1998.00319.x
- Bidegaray-Batista, L., & Arnedo, M. A. (2011). Gone with the plate: The opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders. BMC Evolutionary Biology, 11(1), 317. https://doi.org/10.1186/1471-2148-11-317
- Bond, J. E., Hedin, M. C., Ramirez, M. G., & Opell, B. D. (2001). Deep molecular divergence in the absence of morphological and ecological change in the californian coastal dune endemic trapdoor spider Aptostichus simus. Molecular Ecology, 10(4), 899–910. https://doi.org/10.1046/j.1365-294X.2001.01233.x
- Bond, J. E. (2004). Systematics of the Californian euctenizine spider genus Apomastus (Araneae:Mygalomorphae:Cyrtaucheniidae): The relationship between molecular and morphological taxonomy. Invertebrate Systematics, 18(4), 361–376. https://doi.org/10.1071/IS04008
- Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., … Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537.
- Bowen, B. W., & Avise, J. C. (1990). Genetic structure of Atlantic and Gulf of Mexico populations of sea bass, menhaden, and sturgeon: Influence of zoogeographic factors and life-history patterns. Marine Biology, 107(3), 371–381. https://doi.org/10.1007/BF01313418
- Bruno, M. C., Casciotta, J. R., Almirón, A. E. A., & Lizarralde, M. S. (2013). Phylogeographic pattern of jenynsia multidentata (Cyprinodontiformes: Anablepidae) in the southern boundary of the Brazilian subregion, Argentina. Neotropical Ichthyology, 11(3), 477–486. https://doi.org/10.1590/S1679-62252013000300001
- Cabrera, A. L. (1938). Excursión botánica por las Sierras Australes de la provincia de Buenos Aires. Revista Del Museo de La Plata (Nueva Serie), Sección Of, 4, 60–69.
- Capocasale, R. M., & Perez-Miles, F. (1990). Behavioural ecology of Acanthogonatus tacuariensis (Perez & Capocasale) (Araneae, Nemesiidae). Studies on Neotropical Fauna and Environment, 25(1), 41–47. https://doi.org/10.1080/01650529009360800
- Chaves, J. A., Weir, J. T., & Smith, T. B. (2011). Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology, 20(21): 4564–4576. https://doi.org/10.1111/j.1365-294X.2011.05304.x
- Crawford, A. J., Bermingham, E., & Carolina, P. S. (2007). The role of tropical dry forest as a long-term barrier to dispersal: A comparative phylogeographical analysis of dry forest tolerant and intolerant frogs. Molecular Ecology, 16(22), 4789–4807. https://doi.org/10.1111/j.1365-294X.2007.03524.x
- Crisci-V, J., Freire-E, S., Sancho, G., & Katinas, L. (2001). Historical biogeography of the Asteraceae from Tandilia and Ventania mountain ranges (Buenos Aires, Argentina). Caldasia, 23(1), 21–41.
- Dalla Salda, L. H. (1999). Cratón del Río de la Plata. 1. Basamento granítico-metamórfico de Tandilia y Martín García. Instituto de Geología y Recursos Naturales Anales, 29, 97–99.
- Darwin, C. (1846). Geological observations on South America: Being the third part of the geology of the voyage of the beagle, under the command of Capt. Fitzroy, RN during the years 1832 to 1836 (Vol. 65). Smith, Elder and Company.
- Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society, 85(3), 407–415. https://doi.org/10.1111/j.1095-8312.2005.00503.x
- De La Sota, E. R. (1967). Composición, origen y vinculaciones de la flora pteridológica de las sierras de Buenos Aires (Argentina). Boletín de La Sociedad Argentina de Botánica, 11(2–3), 105–128.
- Demoulin, A., Zarate, M., & Rabassa, J. (2005). Long-term landscape development: A perspective from the southern Buenos Aires ranges of east Central Argentina. Journal of South American Earth Sciences, 19(2), 193–204. https://doi.org/10.1016/j.jsames.2004.12.001
- Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973. https://doi.org/10.1093/molbev/mss075
- Ferretti, N. E., Soresi, D. S., González, A., & Arnedo, M. (2019). An integrative approach unveils speciation within the threatened spider Calathotarsus simoni (Araneae: Mygalomorphae: Migidae). Systematics and Biodiversity, 17(5), 439–457. https://doi.org/10.1080/14772000.2019.1643423
- Ferretti, N., González, A., & Pérez-Miles, F. (2012). Historical biogeography of mygalomorph spiders from the peripampasic orogenic arc based on track analysis and PAE as a panbiogeographical tool. Systematics and Biodiversity, 10(2), 179–193. https://doi.org/10.1080/14772000.2012.694375
- Ferretti, N., Pompozzi, G., Copperi, S., Pérez-Miles, F., & González, A. (2012). Mygalomorph spider Community of a Natural Reserve in a hilly system in Central Argentina. Journal of Insect Science, 12(31), 1–16. https://doi.org/10.1673/031.012.3101
10.1673/031.012.3101 Google Scholar
- Ferretti, N., González, A., & Pérez–Miles, F. (2014). Identification of priority areas for conservation in Argentina: Quantitative biogeography insights from mygalomorph spiders (Araneae: Mygalomorphae). Journal of Insect Conservation, 18(6), 1087–1096. https://doi.org/10.1007/s10841-014-9718-5
- Frenguelli, J. (1950). Rasgos generales de la morfología y la geología de la provincia de Buenos Aires: Laboratorio de Ensayo de Materiales e Investigaciones Tecnológicas. La Plata, Serie, 2, 1–72.
- Galindo, C., Casquet, C., Rapela, C., Pankhurst, R. J., Baldo, E., & Saavedra, J. (2004). Sr, C and O isotope geochemistry and stratigraphy of Precambrian and lower Paleozoic carbonate sequences from the Western sierras Pampeanas of Argentina: Tectonic implications. Precambrian Research, 131(1–2), 55–71. https://doi.org/10.1016/j.precamres.2003.12.007
- García, R. A., & Del Palacio, A. (2021). Peripampasic arc: A route of dispersion for lichens. Annals of the Brazilian Academy of Sciences, 93(3), e20191208. https://doi.org/10.1590/0001-3765202120191208
- Gordillo, C. E., & Lencinas, A. N. (1980). Sierras Pampeanas de Córdoba y San Luis. In Segundo Simposio de Geología Regional Argentina (Vol. 1, pp. 577–638). Academia Nacional de Ciencias.
- Hamilton, C. A., Formanowicz, D. R., & Bond, J. E. (2011). Species delimitation and phylogeography of Aphonopelma hentzi (araneae, mygalomorphae, theraphosidae): Cryptic diversity in North American tarantulas. PLoS ONE, 6(10), 12–16. https://doi.org/10.1371/journal.pone.0026207
- Harrington, H. J. (1980). Sierras Australes de la provincia de Buenos Aires. In Segundo Simposio de Geología Regional Argentina (Vol. 2, pp. 967–983). Academia Nacional de Ciencias.
- Haselton, K., Hilley, G., & Strecker, M. R. (2002). Average Pleistocene climatic patterns in the southern Central Andes: Controls on mountain glaciation and paleoclimate implications. The Journal of Geology, 110, 211–226.
- Hebert, P. D. N., Ratnasingham, S., & DeWaard, J. R. (2003). Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270(SUPPL. 1), 1–4. https://doi.org/10.1098/rsbl.2003.0025
10.1098/rsbl.2003.0025 Google Scholar
- Hedin, M. C. (1997). Molecular phylogenetics at the population/species interface in cave spiders of the southern Appalachians (Araneae: Nesticidae: Nesticus). Molecular Biology and Evolution, 14(3), 309–324. https://doi.org/10.1093/oxfordjournals.molbev.a025766
- Hedin, M., Starrett, J., & Hayashi, C. (2013). Crossing the uncrossable: Novel trans-valley biogeographic patterns revealed in the genetic history of low-dispersal mygalomorph spiders (Antrodiaetidae, Antrodiaetus) from California. Molecular Ecology, 22(2), 508–526. https://doi.org/10.1111/mec.12130
- Hendrixson, B. E., & Bond, J. E. (2005). Testing species boundaries in the Antrodiaetus unicolor complex (Araneae: Mygalomorphae: Antrodiaetidae): “Paraphyly” and cryptic diversity. Molecular Phylogenetics and Evolution, 36(2), 405–416. https://doi.org/10.1016/j.ympev.2005.01.021
- Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2017). UFBoot2: Improving the ultrafast bootstrap approximation. BioRxiv, 35(2), 518–522. https://doi.org/10.1101/153916
10.1101/153916 Google Scholar
- Janowski-bell, A. M. E., & Horner, N. V. (1975). American arachnological society meeting. Bulletin of the Entomological Society of America, 21(1), 52. https://doi.org/10.1093/besa/21.1.52
10.1093/besa/21.1.52 Google Scholar
- Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589.
- Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2017). Multi-rate poisson tree processes for single-locus species delimitation under maximum likelihood and markov chain monte carlo. Bioinformatics, 33(11), 1630–1638.
- Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.
- Kornilios, P., Thanou, E., Kapli, P., Parmakelis, A., & Chatzaki, M. (2016). Peeking through the trapdoor: Historical biogeography of the Aegean endemic spider Cyrtocarenum Ausserer, 1871 with an estimation of mtDNA substitution rates for Mygalomorphae. Molecular Phylogenetics and Evolution, 98, 300–313. https://doi.org/10.1016/j.ympev.2016.01.021
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.
- Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2017). Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773. https://doi.org/10.1093/molbev/msw260
- Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
- Magnusson, W. E. (1985). Group movement by male mygalomorph spiders. Biotropica, 17(1), 56–57.
- Maia, A. V., Almeida, C., Santoro, K. R., Melo, J. L., Oliveira, J. V., Guedes, R. N., & Badji, C. A. (2016). High-level phylogeographic structuring of Neoleucinodes elegantalis Guenee (lepidoptera, Crambridae) in Brazil: An important tomato pest. Revista Brasileira de entomologia, 60, 206–210.
- Martino, R. D., Guereschi, A. B., & Anzil, P. A. (2010). Metamorphic and tectonic evolution at 31°36°S across a deep crustal zone from the sierra Chica of Córdoba, sierras Pampeanas, Argentina. Journal of South American Earth Sciences, 30(2010), 12–28.
- Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) (pp. 1–8). Institute of Electrical and Electronics Engineers.
10.1109/GCE.2010.5676129 Google Scholar
- Montes de Oca, L., D'Elía, G., & Pérez-Miles, F. (2016). An integrative approach for species delimitation in the spider genus Grammostola (Theraphosidae, Mygalomorphae). Zoologica Scripta, 45(3), 322–333. https://doi.org/10.1111/zsc.12152
- Mora, E., Paspati, A., Decae, A. E., & Arnedo, M. A. (2017). Rafting spiders or drifting islands? Origins and diversification of the endemic trap-door spiders from the Balearic Islands, Western Mediterranean. Journal of Biogeography, 44(4), 924–936. https://doi.org/10.1111/jbi.12885
- Moreno, E. M. S., De Freitas, L. B., Speranza, P. R., & Solís Neffa, V. G. (2018). Impact of Pleistocene geoclimatic events on the genetic structure in mid-latitude south American plants: Insights from the phylogeography of Turnera sidoides complex (Passifloraceae, Turneroideae). Botanical Journal of the Linnean Society, 188(4), 377–390. https://doi.org/10.1093/botlinnean/boy062
- Moritz, C., Richardson, K. S., Ferrier, S., Monteith, G. B., Stanisic, J., Williams, S. E., & Whiffin, T. (2001). Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proceedings of the Royal Society B: Biological Sciences, 268(1479), 1875–1881. https://doi.org/10.1098/rspb.2001.1713
- Nascimento, D. L., Guimarães Neto, R., & Indicatti, R. P. (2021). Neoichnology of mygalomorph spiders: Improving the recognition of spider burrows in the geological record. Journal of South American Earth Sciences, 108, 103178. https://doi.org/10.1016/j.jsames.2021.103178
- Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
- Ojanguren-Affilastro, A. A., Adilardi, R. S., Mattoni, C. I., Ramírez, M., & Ceccarelli, F. S. (2017). Dated phylogenetic studies of the southernmost American buthids (Scorpiones; Buthidae). Molecular Phylogenetics and Evolution, 110(2017), 39–49.
- Opatova, V., & Arnedo, M. A. (2014). Spiders on a hot volcanic roof: Colonisation pathways and Phylogeography of the Canary Islands endemic trap-door spider Titanidiops canariensis (Araneae, Idiopidae). PLoS ONE, 9(12), e115078. https://doi.org/10.1371/journal.pone.0115078
- Opatova, V., Bond, J. E., & Arnedo, M. A. (2013). Ancient origins of the Mediterranean trap-door spiders of the family Ctenizidae (Araneae, Mygalomorphae). Molecular Phylogenetics and Evolution, 69(3), 1135–1145. https://doi.org/10.1016/j.ympev.2013.08.002
- Ortiz-Jaureguizar, E., & Cladera, G. A. (2006). Paleoenvironmental evolution of southern South America during the Cenozoic. Journal of Arid Environments, 66(3 SPEC. ISS), 498–532. https://doi.org/10.1016/j.jaridenv.2006.01.007
- Poblet, J., Bulnes, M., Seggiaro, R. E., Aguilera, N. G., Rodriguez-Fernandez, R. L., Heredia, N., & Alonso, J. L. (2008). Structural styles in the Eastern Cordillera, Subandean Ranges—Santa Barbara System transition, and Lomas de Olmedo Trough (northern Argentine Andes). In 7th International Symposium on Andean Geodynamics (ISAG 2008, Nice) (pp. 401–404). Institut de Recherche pour le Développement.
- Pompozzi, G., Schwerdt, L., Copperi, S., & Ferretti, N. (2019). Do disturbed environments affect density of the tunnel-web spider Acanthogonatus centralis (Mygalomorphae: Nemesiidae) from native grasslands in Argentina? Turkish Journal of Zoology, 43, 146–151.
- Prado, J. L., Alberdi, M. T., & Bellinzoni, J. (2021). Pleistocene mammals from Pampean region (Argentina). Biostratigraphic, biogeographic, and environmental implications. Quaternary, 4(2), 15.
- Proctor, M. F., McLellan, B. N., Strobeck, C., & Barclay, R. M. R. (2004). Gender-specific dispersal distances of grizzly bears estimated by genetic analysis. Canadian Journal of Zoology, 82(7), 1108–1118. https://doi.org/10.1139/Z04-077
- Reeves, R. G., & Bermingham, E. (2006). Colonization, population expansion, and lineage turnover: Phylogeography of Mesoamerican characiform fish. Biological Journal of the Linnean Society, 88(2), 235–255. https://doi.org/10.1111/j.1095-8312.2006.00619.x
- Reichling, S. B. (2000). Group dispersal in juvenile Brachypelma Vagans (Araneae, Theraphosidae). Journal of Arachnology, 28(2), 248–250. https://doi.org/10.1636/0161-8202(2000)028[0248:gdijbv]2.0.co;2
- Ribeiro, T. A. A., Martins, A. C., Silva, D. P., & Aguiar, A. J. C. (2021). Systematics of the oil bee genus Lanthanomelissa (Apidae: Tapinotaspidini) and its implications for the biogeography of south American grasslands. Journal of Zoological Systematics and Evolutionary Research, 59(5), 1013–1027.
- Riccardi, A., & Rolleri, E. (1980). Cordillera Patagónica Austral. Academia Nacional de Ciencias, 2, 1173–1306.
- Riddle, B. R., Hafner, D. J., Alexander, L. F., & Jaeger, J. R. (2000). Cryptic vicariance in the historical assembly of a Baja California Peninsular Desert biota. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14438–14443. https://doi.org/10.1073/pnas.250413397
- Ringuelet, R. A. (1961). Rasgos Fundamentales de la Zoogeografía Argentina. Physis, 22(63), 151–170. https://doi.org/10.1023/B:VEGE.0000049101.30809.27
10.1023/B:VEGE.0000049101.30809.27 Google Scholar
- Roig-Juñent, S., & Quiroga, C. R. (2021). New carabid species and biogeografic considerations of the peripampasic arc. Revista de la Sociedad Entomológica Argentina, 80(1), 10–22.
- Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
- Rull, V. (2006). Quaternary speciation in the neotropics. Molecular Ecology, 15(13), 4257–4259.
- Schwerdt, L., de Villalobos, A. E., & Pérez-Miles, F. (2019). Factors that affect the occupancy, activity and distribution patterns of Grammostola vachoni, an endemic tarantula from the austral mountains of Argentina. Journal of Insect Conservation, 23(5–6), 967–975. https://doi.org/10.1007/s10841-019-00182-6
- Sellés-Martínez, J. (2001). The geology of Ventania (Buenos Aires Province, Argentina). Journal of Iberian Geology, 27, 43–69.
- Silva, G. T., Blas, G. S., Peçanha, W. T., Moreira, G. R. P., & Gonçalves, G. L. (2018). Phylogeography of the gall-inducing micromoth eucecidoses minutanus brèthes (cecidosidae) reveals lineage diversification associated with the neotropical peripampasic orogenic arc. PLoS One, 13(8), 1–25. https://doi.org/10.1371/journal.pone.0201251
- Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87(6), 651–701. https://doi.org/10.1093/aesa/87.6.651
- Simpson, C., Law, R. D., Gromet, L. P., Miro, R., & Northrup, C. J. (2003). Paleozoic deformation in the sierras de Cordoba and sierra de Las Minas, eastern sierras Pampeanas, Argentina. Journal of South American Earth Sciences, 15(2003), 749–764.
- Storz, J. F., Bhat, H. R., & Kunz, T. H. (2001). Genetic consequences of polygyny and social structure in an Indian fruit bat, Cynopterus sphinx. I. Inbreeding, outbreeding, and population subdivision. Evolution, 55(6), 1215–1223. https://doi.org/10.1111/j.0014-3820.2001.tb00641.x
- Sullivan, A., Arellano, E., & Rogers, D. S. (2000). Comparative Phylogeography of Mesoamerican Highland rodents: Concerted versus independent response to past climatic fluctuations. The American Naturalist, 155(6), 755. https://doi.org/10.2307/3079098
- Taylor, D. W. (1991). Paleobiogeographic relationships of Andean angiosperms of cretaceous to Pliocene age. Palaeogeography, Palaeoclimatology, Palaeoecology, 88(1–2), 69–84. https://doi.org/10.1016/0031-0182(91)90015-J
- Teruggi, M., & KIilmurray, J. (1975). Tandilia. In Relatorio de la geología de la Provincia de Buenos Aires. VI Congreso Geologico Argentino (pp. 55–77). Asociación Geológica Argentina.
- Turner, S. P., Longhorn, S. J., Hamilton, C. A., Gabriel, R., & Pérez-Miles, F., & Vogler, A. P. (2018). Re-evaluating conservation priorities of New World tarantulas (Araneae: Theraphosidae) in a molecular framework indicates non-monophyly of the genera, Aphonopelma and Brachypelma. Systematics and Biodiversity, 16(1), 89–107. https://doi.org/10.1080/14772000.2017.1346719
- Von Gosen, W. (1998). Transpressive deformation in the southwestern part of the sierra de San Luis (sierras Pampeanas, Argentina). Journal of South American Earth Sciences, 11(3), 233–264.
- Vuilleumier, B. S. (1971). Pleistocene changes in the Fauna and Flora of South America. Science, 173(4), 771–780.
- Wheeler, W. C., Coddington, J. A., Crowley, L. M., Dimitrov, D., Goloboff, P. A., Griswold, C. E., Hormiga, G., Prendini, L., Ramírez, M. J., Sierwald, P., Almeida-Silva, L., Alvarez-Padilla, F., Arnedo, M. A., Benavides Silva, L. R., Benjamin, S. P., Bond, J. E., Grismado, C. J., Hasan, E., Hedin, M., … Zhang, J. (2017). The spider tree of life: Phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics, 33(6), 574–616. https://doi.org/10.1111/cla.12182
- White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: A guide to methods and applications, 18(1), 315–322. Academic Press Inc.
- Yu, Y., Harris, A. J., Blair, C., & He, X. (2015). RASP (reconstruct ancestral state in phylogenies): A tool for historical biogeography. Molecular Phylogenetics and Evolution, 87, 46–49. https://doi.org/10.1016/j.ympev.2015.03.008
- Zink, R. M. (1996). Comparative phylogeography in North American birds. Evolution, 50(1), 308–317. https://doi.org/10.1111/j.1558-5646.1996.tb04494.x