The International Tree-Ring Data Bank (ITRDB) revisited: Data availability and global ecological representativity
Shoudong Zhao
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Search for more papers by this authorNeil Pederson
Harvard Forest, Harvard University, Petersham, Massachusetts
Search for more papers by this authorLoïc D'Orangeville
Harvard Forest, Harvard University, Petersham, Massachusetts
Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, Canada
Search for more papers by this authorJanneke HilleRisLambers
Biology Department, University of Washington, Seattle, Washington
Search for more papers by this authorEmery Boose
Harvard Forest, Harvard University, Petersham, Massachusetts
Search for more papers by this authorCaterina Penone
Institute of Plant Sciences, University of Bern, Bern, Switzerland
Search for more papers by this authorBruce Bauer
National Centers for Environmental Information, National Oceanic and Atmospheric Administration, Asheville, North Carolina
Search for more papers by this authorYuan Jiang
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Search for more papers by this authorCorresponding Author
Rubén D. Manzanedo
Harvard Forest, Harvard University, Petersham, Massachusetts
Biology Department, University of Washington, Seattle, Washington
Correspondence
Rubén D. Manzanedo. Harvard Forest, Harvard University. 324 N Main St Petersham MA 01366.
Email: [email protected]
Search for more papers by this authorShoudong Zhao
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Search for more papers by this authorNeil Pederson
Harvard Forest, Harvard University, Petersham, Massachusetts
Search for more papers by this authorLoïc D'Orangeville
Harvard Forest, Harvard University, Petersham, Massachusetts
Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, Canada
Search for more papers by this authorJanneke HilleRisLambers
Biology Department, University of Washington, Seattle, Washington
Search for more papers by this authorEmery Boose
Harvard Forest, Harvard University, Petersham, Massachusetts
Search for more papers by this authorCaterina Penone
Institute of Plant Sciences, University of Bern, Bern, Switzerland
Search for more papers by this authorBruce Bauer
National Centers for Environmental Information, National Oceanic and Atmospheric Administration, Asheville, North Carolina
Search for more papers by this authorYuan Jiang
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Search for more papers by this authorCorresponding Author
Rubén D. Manzanedo
Harvard Forest, Harvard University, Petersham, Massachusetts
Biology Department, University of Washington, Seattle, Washington
Correspondence
Rubén D. Manzanedo. Harvard Forest, Harvard University. 324 N Main St Petersham MA 01366.
Email: [email protected]
Search for more papers by this authorAbstract
Aim
The International Tree-Ring Data Bank (ITRDB) is the most comprehensive database of tree growth. To evaluate its usefulness and improve its accessibility to the broad scientific community, we aimed to: (a) quantify its biases, (b) assess how well it represents global forests, (c) develop tools to identify priority areas to improve its representativity, and d) make available the corrected database.
Location
Worldwide.
Time period
Contributed datasets between 1974 and 2017.
Major taxa studied
Trees.
Methods
We identified and corrected formatting issues in all individual datasets of the ITRDB. We then calculated the representativity of the ITRDB with respect to species, spatial coverage, climatic regions, elevations, need for data update, climatic limitations on growth, vascular plant diversity, and associated animal diversity. We combined these metrics into a global Priority Sampling Index (PSI) to highlight ways to improve ITRDB representativity.
Results
Our refined dataset provides access to a network of >52 million growth data points worldwide. We found, however, that the database is dominated by trees from forests with low diversity, in semi-arid climates, coniferous species, and in western North America. Conifers represented 81% of the ITRDB and even in well-sampled areas, broadleaves were poorly represented. Our PSI stressed the need to increase the database diversity in terms of broadleaf species and identified poorly represented regions that require scientific attention. Great gains will be made by increasing research and data sharing in African, Asian, and South American forests.
Main conclusions
The extensive data and coverage of the ITRDB show great promise to address macroecological questions. To achieve this, however, we have to overcome the significant gaps in the representativity of the ITRDB. A strategic and organized group effort is required, and we hope the tools and data provided here can guide the efforts to improve this invaluable database.
Supporting Information
Filename | Description |
---|---|
jbi13488-sup-0001-AppendixS1-S2.docxWord document, 1.5 MB | . |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alexander, M. R. (2017). Determining the role of stand structure in shaping climate-growth relationships in eastern temperate forests of the US. Tucson, AZ: The University of Arizona.
- Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
- Amoroso, M. M., Daniels, L. D., Baker, P. J., & Camarero, J. J. (2017). Introduction. In M. M. Amoroso, L. D. Daniels, P. J. Baker, & J. J. Camarero (Eds.), Dendroecology: Tree-ring analyses applied to ecological studies. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-61669-8
10.1007/978-3-319-61669-8_1 Google Scholar
- Babst, F., Poulter, B., Bodesheim, P., Mahecha, M. D., & Frank, D. C. (2017). Improved tree-ring archives will support earth-system science. Nature Ecology and Evolution, 1, 0008.
- Blume-Werry, G., Kreyling, J., Laudon, H., & Milbau, A. (2016). Short-term climate change manipulation effects do not scale up to long-term legacies: Effects of an absent snow cover on boreal forest plants. Journal of Ecology, 104, 1638–1648. https://doi.org/10.1111/1365-2745.12636
- Breitenmoser, P., Brönnimann, S., & Frank, D. (2014). Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies. Climate of the Past, 10, 437–449. https://doi.org/10.5194/cp-10-437-2014
- Brewer, P. W., Murphy, D., & Jansma, E. (2011). Tricycle: A universal conversion tool for digital tree-ring data. Tree-Ring Research, 67, 135–144. https://doi.org/10.3959/2010-12.1
- Brienen, R. J. W., Gloor, M., & Ziv, G. (2017). Tree demography dominates long-term growth trends inferred from tree rings. Global Change Biology, 23, 474–484. https://doi.org/10.1111/gcb.13410
- Briffa, K. R., & Melvin, T. M. (2011). A closer look at regional curve standardisation of tree-ring records: Justification of the need, a warning of some pitfalls, and suggested improvements in its application. In M. K. Hughes, T. W. Swetnam, & H. F. Diaz (Eds.), Dendroclimatology: Progress and prospects (pp. 113–145). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-1-4020-5725-0
- Bunn, A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26, 115–124. https://doi.org/10.1016/j.dendro.2008.01.002
- Bunn, A. G., Waggoner, L. A., & Graumlich, L. J. (2005). Topographic mediation of growth in high elevation foxtail pine (Pinus balfouriana Grev. et Balf.) forests in the Sierra Nevada, USA. Global Ecology and Biogeography, 14, 103–114. https://doi.org/10.1111/j.1466-822X.2005.00141.x
- Charney, N. D., Babst, F., Poulter, B., Record, S., Trouet, V. M., Frank, D., & Evans, M. E. (2016). Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecology letters, 19, 1119–1128. https://doi.org/10.1111/ele.12650
- Churkina, G., & Running, S. W. (1998). Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems, 1, 206–215. https://doi.org/10.1007/s100219900016
- Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., & Stahle, D. W. (2004). Long-term aridity changes in the western United States. Science, 306, 1015–1018. https://doi.org/10.1126/science.1102586
- Core Team, R. (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
- Davis, S. C., Hessl, A. E., Scott, C. J., Adams, M. B., & Thomas, R. B. (2009). Forest carbon sequestration changes in response to timber harvest. Forest Ecology and Management, 258, 2101–2109. https://doi.org/10.1016/j.foreco.2009.08.009
- Foster, J. R., D'Amato, A. W., & Bradford, J. B. (2014). Looking for age-related growth decline in natural forests: Unexpected biomass patterns from tree rings and simulated mortality. Oecologia, 175, 363–374. https://doi.org/10.1007/s00442-014-2881-2
- Fritts, H. C., Blasing, T. J., Hayden, B. P., & Kutzbach, J. E. (1971). Multivariate techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate. Journal of Applied Meteorology, 10, 845–864. https://doi.org/10.1175/1520-0450(1971)010<845:MTFSTG>2.0.CO;2
10.1175/1520-0450(1971)010<0845:MTFSTG>2.0.CO;2 Google Scholar
- Fritts, H. C., & Swetnam, T. W. (1989). Dendroecology: A tool for evaluating variations in past and present forest environments. Advances in Ecological Research, 19, 111–188. https://doi.org/10.1016/S0065-2504(08)60158-0
- Gedalof, Z.E., & Berg, A.A. (2010). Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Global Biogeochemical Cycles, 24, GB3027.
- Gonzalez, A., Cardinale, B. J., Allington, G. R., Byrnes, J., Arthur Endsley, K., Brown, D. G., & Loreau, M. (2016). Estimating local biodiversity change: A critique of papers claiming no net loss of local diversity. Ecology, 97, 1949–1960. https://doi.org/10.1890/15-1759.1
- Graumlich, L. J., & Brubaker, L. B. (1986). Reconstruction of annual temperature (1590–1979) for Longmire, Washington, derived from tree rings. Quaternary Research, 25, 223–234. https://doi.org/10.1016/0033-5894(86)90059-1
- Grissino-Mayer, H. D., & Fritts, H. C. (1997). The International Tree-Ring Data Bank: An enhanced global database serving the global scientific community. The Holocene, 7, 235–238. https://doi.org/10.1177/095968369700700212
- Grossiord, C., Granier, A., Gessler, A., Jucker, T., & Bonal, D. (2014). Does Drought Influence the Relationship Between Biodiversity and Ecosystem Functioning in Boreal Forests? Ecosystems, 17, 394–404. https://doi.org/10.1007/s10021-013-9729-1
- Heinrich, I., & Allen, K. (2013). Current issues and recent advances in Australian dendrochronology: Where to next? Geographical Research, 51, 180–191. https://doi.org/10.1111/j.1745-5871.2012.00786.x
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/(ISSN)1097-0088
- Housset, J. M., Nadeau, S., Isabel, N., Depardieu, C., Duchesne, I., Lenz, P., & Girardin, M. P. (2018). Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. New Phytologist, 218, 630–645. https://doi.org/10.1111/nph.14968
- Jacoby, G. C., & D'Arrigo, R. (1989). Reconstructed Northern Hemisphere annual temperature since 1671 based on high-latitude tree-ring data from North America. Climatic Change, 14, 39–59. https://doi.org/10.1007/BF00140174
- Jansma, E., Brewer, P. W., & Zandhuis, I. (2010). TRiDaS 1.1: The tree-ring data standard. Dendrochronologia, 28, 99–130. https://doi.org/10.1016/j.dendro.2009.06.009
- Jucker, T., Bouriaud, O., Avacaritei, D., & Coomes, D. A. (2014). Stabilizing effects of diversity on aboveground wood production in forest ecosystems: Linking patterns and processes. Ecology Letters, 17, 1560–1569. https://doi.org/10.1111/ele.12382
- Kier, G., Mutke, J., Dinerstein, E., Ricketts, T. H., Küper, W., Kreft, H., & Barthlott, W. (2005). Global patterns of plant diversity and floristic knowledge. Journal of Biogeography, 32, 1107–1116. https://doi.org/10.1111/j.1365-2699.2005.01272.x
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130
- Krakauer, N.Y., & Randerson, J.T. (2003). Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings. Global Biogeochemical Cycles, 17(4).
- Lloyd, A. H., Sullivan, P. F., & Bunn, A. G. (2017). Integrating dendroecology with other disciplines improves understanding of upper and latitudinal treelines. In M. M. Amoroso, L. D. Daniels, P. J. Baker, & J. J. Camarero (Eds.), Dendroecology: Tree-ring analyses applied to ecological studies. Cham: Springer International Publishing.
10.1007/978-3-319-61669-8_6 Google Scholar
- Mina, M., Martin-Benito, D., Bugmann, H., & Cailleret, M. (2016). Forward modeling of tree-ring width improves simulation of forest growth responses to drought. Agricultural and Forest Meteorology, 221, 13–33. https://doi.org/10.1016/j.agrformet.2016.02.005
- Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., & Lévesque, E. (2011). Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters, 6, 045509. https://doi.org/10.1088/1748-9326/6/4/045509
- Nehrbass-Ahles, C., Babst, F., Klesse, S., Nötzli, M., Bouriaud, O., Neukom, R., & Frank, D. (2014). The influence of sampling design on tree-ring-based quantification of forest growth. Global Change Biology, 20, 2867–2885. https://doi.org/10.1111/gcb.12599
- O'Donnel, M.S., & Ignizio, D.A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States: U.S. Geological Survey Data Series 691.
- Paredes-Villanueva, K., Sánchez-Salguero, R., Manzanedo, R. D., Sopepi, R. Q., Palacios, G., & Navarro-Cerrillo, R. M. (2013). Growth rate and climatic response of Machaerium scleroxylon in a dry tropical forest in southeastern Santa Cruz, Bolivia. Tree-Ring Research, 69, 63–79. https://doi.org/10.3959/1536-1098-69.2.63
- Pederson, N., Dyer, J. M., McEwan, R. W., Hessl, A. E., Mock, C. J., Orwig, D. A., & Cook, B. I. (2014). The legacy of episodic climatic events in shaping temperate, broadleaf forests. Ecological Monographs, 84, 599–620. https://doi.org/10.1890/13-1025.1
- Piraino, S., Abraham, E. M., Diblasi, A., & Roig-Juñent, F. A. (2015). Geomorphological-related heterogeneity as reflected in tree growth and its relationships with climate of Monte Desert Prosopis flexuosa DC woodlands. Trees, 29, 903–916. https://doi.org/10.1007/s00468-015-1173-8
10.1007/s00468-015-1173-8 Google Scholar
- Rozas, V., DeSoto, L., & Olano, J. M. (2009). Sex-specific age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytologist, 182, 687–697. https://doi.org/10.1111/j.1469-8137.2009.02770.x
- Schmidt, N. M., Baittinger, C., Kollmann, J., & Forchhammer, M. C. (2010). Consistent Dendrochronological Response of the Dioecious Salix arctica to Variation in Local Snow Precipitation across Gender and Vegetation Types. Arctic, Antarctic, and Alpine Research, 42, 471–475. https://doi.org/10.1657/1938-4246-42.4.471
- Schöngart, J., Bräuning, A., Barbosa, A. C. M. C., Lisi, C. S., & de Oliveira, J. M. (2017). Dendroecological studies in the neotropics: History, status and future challenges. In M. M. Amoroso, L. D. Daniels, P. J. Baker, & J. J. Camarero (Eds.), Dendroecology: Tree-ring analyses applied to ecological studies. Cham: Springer International Publishing.
10.1007/978-3-319-61669-8_3 Google Scholar
- Schweingruber, F. H., Bräker, O. U., & Schär, E. (1979). Dendroclimatic studies on conifers from central Europe and Great Britain. Boreas, 8, 427–452.
- Shi, J., Li, J., Cook, E. R., Zhang, X., & Lu, H. (2012). Growth response of Pinus tabulaeformis to climate along an elevation gradient in the eastern Qinling Mountains, central China. Climate Research, 53, 157–167. https://doi.org/10.3354/cr01098
- Simard, M., Pinto, N., Fisher, J. B., & Baccini, A. (2011). Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research: Biogeosciences, 116, G04021.
- St. George, S., Ault, T.R., & Torbenson, M.C.A. (2013). The rarity of absent growth rings in Northern Hemisphere forests outside the American Southwest. Geophysical Research Letters, 40, 3727–3731. https://doi.org/10.1002/grl.50743
- Stahle, D. W., Cleaveland, M. K., & Hehr, J. G. (1985). A 450-year drought reconstruction for Arkansas, United States. Nature, 316, 530–532. https://doi.org/10.1038/316530a0
- Stockton, C., & Jacoby, G. (1976). Long-term surface water supply and streamflow trends in the Upper Colorado River Basin. In Lake Powell Research Project Bulletin No. 18. Arlington, VA: Nation Science Foundation.
- Stoffel, M., & Bollschweiler, M. (2008). Tree-ring analysis in natural hazards research? an overview. Natural Hazards and Earth System Science, 8, 187–202. https://doi.org/10.5194/nhess-8-187-2008
- Sullivan, P. F., & Csank, A. Z. (2016). Contrasting sampling designs among archived datasets: Implications for synthesis efforts. Tree physiology, 36, 1057–1059. https://doi.org/10.1093/treephys/tpw067
- Tei, S., Sugimoto, A., Yonenobu, H., Matsuura, Y., Osawa, A., Sato, H., & Maximov, T. (2017). Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change. Global Change Biology, 23, 5179–5188. https://doi.org/10.1111/gcb.13780
- Van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fulé, P. Z., & Veblen, T. T. (2009). Widespread Increase of Tree Mortality Rates in the Western United States. Science, 323, 521–524. https://doi.org/10.1126/science.1165000
- Vellend, M., Dornelas, M., Baeten, L., Beauséjour, R., Brown, C. D., De Frenne, P., & Myers-Smith, I. H. (2017). Estimates of local biodiversity change over time stand up to scrutiny. Ecology, 98, 583–590. https://doi.org/10.1002/ecy.1660
- Vicente-Serrano, S. M., Camarero, J. J., & Azorin-Molina, C. (2014). Diverse responses of forest growth to drought time-scales in the Northern Hemisphere. Global Ecology and Biogeography, 23, 1019–1030. https://doi.org/10.1111/geb.12183
- Wiens, J. A. (1989). Spatial Scaling in Ecology. Functional Ecology, 3, 385–397. https://doi.org/10.2307/2389612
- Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., & McDowell, N. G. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3, 292–297. https://doi.org/10.1038/nclimate1693
- Williams, A. P., Allen, C. D., Millar, C. I., Swetnam, T. W., Michaelsen, J., Still, C. J., & Leavitt, S. W. (2010). Forest responses to increasing aridity and warmth in the southwestern United States. Proceedings of the National Academy of Sciences, 107, 21289–21294. https://doi.org/10.1073/pnas.0914211107
- Wilson, R., D'arrigo, R., Buckley, B., Büntgen, U., Esper, J., Frank, D., … Youngblut, D. (2007). A matter of divergence: Tracking recent warming at hemispheric scales using tree ring data. Journal of Geophysical Research, 117(D17).
- Worbes, M., Herawati, H., & Martius, C. (2017). Tree Growth Rings in Tropical Peat Swamp Forests of Kalimantan. Indonesia. Forests, 8, 336. https://doi.org/10.3390/f8090336
- Yang, W., Ma, K., & Kreft, H. (2013). Geographical sampling bias in a large distributional database and its effects on species richness–environment models. Journal of Biogeography, 40, 1415–1426. https://doi.org/10.1111/jbi.12108
- Yang, B., Qin, C., Wang, J., He, M., Melvin, T. M., Osborn, T. J., & Briffa, K. R. (2014). A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proceedings of the National Academy of Sciences, 111, 2903–2908. https://doi.org/10.1073/pnas.1319238111
- Zang, C. (2015). Dendrobox – An interactive exploration tool for the International Tree Ring Data Bank. Dendrochronologia, 33, 31–33. https://doi.org/10.1016/j.dendro.2014.10.002