Three Putative Photosensory Light, Oxygen or Voltage (LOV) Domains with Distinct Biochemical Properties from the Filamentous Cyanobacterium Anabaena sp. PCC 7120
Rei Narikawa
Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153–8902, Japan
Search for more papers by this authorKazunori Zikihara
Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606–8501, Japan
Search for more papers by this authorKoji Okajima
The Research Institute for Advanced Science and Technology, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599–8570, Japan
Search for more papers by this authorYuriko Ochiai
Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153–8902, Japan
Search for more papers by this authorMitsunorl Katayama
Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153–8902, Japan
Search for more papers by this authorYoshinori Shichida
Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606–8502, Japan
Search for more papers by this authorSatoru Tokutomi
The Research Institute for Advanced Science and Technology, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599–8570, Japan
Search for more papers by this authorCorresponding Author
Masahlko Ikeuchi
Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153–8902, Japan
*[email protected] (Masahiko Ikeuchi)Search for more papers by this authorRei Narikawa
Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153–8902, Japan
Search for more papers by this authorKazunori Zikihara
Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606–8501, Japan
Search for more papers by this authorKoji Okajima
The Research Institute for Advanced Science and Technology, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599–8570, Japan
Search for more papers by this authorYuriko Ochiai
Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153–8902, Japan
Search for more papers by this authorMitsunorl Katayama
Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153–8902, Japan
Search for more papers by this authorYoshinori Shichida
Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606–8502, Japan
Search for more papers by this authorSatoru Tokutomi
The Research Institute for Advanced Science and Technology, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599–8570, Japan
Search for more papers by this authorCorresponding Author
Masahlko Ikeuchi
Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153–8902, Japan
*[email protected] (Masahiko Ikeuchi)Search for more papers by this authorAbstract
Light, oxygen or voltage (LOV) domains function as blue-light sensors in the phototropin family of photoreceptors found in plants, algae and bacteria. We detected putative LOV domains (Alr3170-LOV, A112875-LOV and A1r1229-LOV) in the genome of a filamentous cyanobacterium, Anabaena sp. PCC 7120. These cyanobacterial LOV domains are closely clustered with the known LOV domains. Alr3170-LOV and A112875-LOV carry the conserved cysteine residue unique to the photoactive LOV, whereas A1r1229-LOV does not. We expressed these three LOV domains in Escherichia coli and purified them. In fact, Alr3170-LOV and A112875-LOV that are conserved in Nostoc punctiforme, a related species, bound flavin mononuclcotide and showed spectral changes unique to known LOV domains on illumination with blue light. A1r3170-LOV was completely photoreduced and dark reversion was slow, whereas A112875-LOV was slowly photoreduced and dark reversion was rapid. For comparison, AvA112875-LOV in a closely related A. variabilis was also studied as a homolog of A112875-LOV. Finally, we observed that A1r1229-LOV that is not conserved in N. punctiforme showed no flavin binding.
References
- 1 Massey, V.. (2000) The chemical and biological versatility of riboflavin. Biochem. Soc. Trans. 28, 283–296.
- 2 Christie, J. M., P. Reymond, G. K. Powell, P. Bernasconi, A. A. Raibekas, E. Liscum and W. R. Briggs (1998) Arabidopsis NPHI: A flavoprotein with the properties of a photoreceptor for phototropism. Science 282, 1698–1701.
- 3 Sakai, T., T. Kagawa, M. Kasahara, T. E. Swartz, J. M. Christie, W. R. Briggs, M. Wada and K. Okada (2001) Arabidopsis nphl and npll: Blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. USA 98, 6969–6974.
- 4 Kasahara, M., T. E. Swartz, M. A. Olney, A. Onodera, N. Mochizuki, H. Fukuzawa, E. Asamizu, S. Tabata, H. Kanegae, M. Takano, J. M. Christie, A. Nagatani and W. R. Briggs (2002) Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol. 129, 762–773.
- 5 Losi, A., E. Polverini, B. Quest and W. Gartner (2002) First evidence for phototropin-related blue-light receptors in prokaryotes. Biophys. J. 82, 2627–2634.
- 6 Losi, A., B. Quest and W. Gartner (2003) Listening to the blue: The time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain. Photochem. Photobiol. Sci. 2, 759–766.
- 7 Krauss, U., A. Losi, W. Gartner, K. E. Jaeger and T. Eggert (2005) Initial characterization of a blue-light sensing, phototropin-related protein from Pseudomonas putida: A paradigm for an extended LOV construct. Phys. Chem. Chem. Phys. 7, 2804–2811.
- 8 Salomon, M., J. M. Christie, E. Knieb, U. Lampert and W. R. Briggs (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39, 9401–9410.
- 9 Crosson, S. and K. Moffat (2001) Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction. Proc. Natl. Acad. Sci. USA 98, 2995–3000.
- 10 Crosson, S. and K. Moffat (2002) Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14, 1067–1075.
- 11 Matsuoka, D. and S. Tokutomi (2005) Blue light-regulated molecular switch of Ser/Thr kinase in phototropin. Proc. Natl. Acad. Sci. USA 102, 13337–13342.
- 12 Losi, A. (2004) The bacterial counterparts of plant phototropins. Photochem. Photobiol. Sci. 3, 566–574.
- 13 Gomelsky, M. and G. Klug (2002) BLUF: A novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem. Sci. 27, 497–500.
- 14 Daiyasu, H., T. Ishikawa, K. Kuma, S. Iwai, T. Todo and H. Toh (2004) Identification of cryptochrome DASH from vertebrates. Genes Cells 9, 479–495.
- 15 Kaneko, T., S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugiura, S. Sasamoto, T. Kimura, T. Hosouchi, A. Matsuno, A. Muraki, N. Nakazaki, K. Naruo, S. Okumura, S. Shimpo, C. Takeuchi, T. Wada, A. Watanabe, M. Yamada, M. Yasuda and S. Tabata (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109–136.
- 16 Kaneko, T., Y. Nakamura, C. P. Wolk, T. Kuritz, S. Sasamoto, A. Watanabe, M. Iriguchi, A. Ishikawa, K. Kawashima, T. Kimura, Y. Kishida, M. Kohara, M. Matsumoto, A. Matsuno, A. Muraki, N. Nakazaki, S. Shimpo, M. Sugimoto, M. Takazawa, M. Yamada, M. Yasuda and S. Tabata (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 8, 205–213; 227–253.
- 17 Ohmori, M., M. Ikeuchi, N. Sato, P. Wolk, T. Kaneko, T. Ogawa, M. Kanehisa, S. Goto, S. Kawashima, S. Okamoto, H. Yoshimura, H. Katoh, T. Fujisawa, S. Ehira, A. Kamei, S. Yoshihara, R. Narikawa and S. Tabat (2001) Characterization of genes encoding multi-domain proteins in the genome of the filamentous nitrogen-fixing Cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 8, 271–284.
- 18 Mackenzie, C., M. Choudhary, F. W. Larimer, P. F. Predki, S. Stilwagen, J. P. Armitage, R. D. Barber, T. J. Donohue, J. P. Hosier, J. E. Newman, J. P. Shapleigh, R. E. Sockett, J. Zeilstra-Ryalls and S. Kaplan (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth. Res. 70, 19–41.
- 19 Hitomi, K., K. Okamoto, H. Daiyasu, H. Miyashita, S. Iwai, H. Toh, M. Ishiura and T. Todo (2000) Bacterial cryptochrome and photolyase: Characterization of two photolyase-like genes of Synechocystis sp. PCC6803. Nucl. Acids Res. 28, 2353–2362.
- 20 Brudler, R., K. Hitomi, H. Daiyasu, H. Toh, K. Kucho, M. Ishiura, M. Kanehisa, V. A. Roberts, T. Todo, J. A. Tainer and E. D. Getzoff (2003) Identification of a new cryptochrome class. Structure, function, and evolution. Mol. Cell 11, 59–67.
- 21 Fukushima, Y., K. Okajima, Y. Shibata, M. Ikeuchi and S. Itoh (2005) Primary intermediate in the photocycle of a blue-light sensory BLUF FAD-protein, T110078, of Thermosynechococcus elongatus BP-1. Biochemistry 44, 5149–5158.
- 22 Kita, A., K. Okajima, Y. Morimoto, M. Ikeuchi and K. Miki (2005) Structure of a cyanobacterial BLUF protein, T110078, containing a novel FAD-binding blue light sensor domain. J. Mal. Biol. 349, 1–9.
- 23 Okajima, K., S. Yoshihara, Y. Fukushima, X. Geng, M. Katayama, S. Higashi, M. Watanabe, S. Sato, S. Tabata, Y. Shibata, S. Itoh and M. Ikeuchi (2005) Biochemical and functional characterization of BLUF-type flavin-binding proteins of two species of cyanobacteria. J. Biochem. Tokyo 137, 741–750.
- 24 Masuda, S., K. Hasegawa, A. Ishii and T. A. Ono (2004) Light-induced structural changes in a putative blue-light receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of synechocystis sp. PCC6803. Biochemistry 43, 5304–5313.
- 25 Zhulin, I. B., B. L. Taylor and R. Dixon (1997) PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22, 331–333.
- 26 Narikawa, R., S. Okamoto, M. Ikeuchi and M. Ohmori (2004) Molecular evolution of PAS domain-containing proteins of filamentous cyanobacteria through domain shuffling and domain duplication. DNA Res. 11, 69–81.
- 27 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. J. Lipman (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402.
- 28 Schultz, J., F. Milpetz, P. Bork and C. P. Ponting (1998) SMART, a simple modular architecture research tool: Identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864.
- 29 Bateman, A., E. Bimey, L. Cemuti, R. Durbin, L. Etwiller, S. R. Eddy, S. Griffiths-Jones, K. L. Howe, M. Marshall and E. L. Sonnhammer (2002) The Pfam protein families database. Nucl. Acids Res. 30, 276–280.
- 30 Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25, 4876–4882.
- 31 Chang, A. L., J. R. Tuckerman, G. Gonzalez, R. Mayer, H. Weinhouse, G. Volman, D. Amikam, M. Benziman and M. A. Gilles-Gonzalez (2001) Phosphodiesterase Al, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. Biochemistry 40, 3420–3426.
- 32 Chan, C., R. Paul, D. Samoray, N. C. Amiot, B. Giese, U. Jenal and T. Schirmer (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc. Natl. Acad. Sci. USA 101, 17084–17089.
- 33 Fedorov, R., I. Schlichting, E. Hartmann, T. Domratcheva, M. Fuhrmann and P. Hegemann (2003) Crystal structures and molecular mechanism of a light-induced signaling switch: The Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys. J. 84, 2474–2482.