Photodynamic Effectiveness and Vasoconstriction in Hairless Mouse Skin after Topical 5-Aminolevulinic Acid and Single- or Two-fold Illumination
Nynke de Veen
Subdivision of Clinical Physics, Department of Radiation Oncology, Daniel den Hoed Cancer Centre, University Hospital Rotterdam, Rotterdam, The Netherlands
Search for more papers by this authorKonnie M. Hebeda
Department of Pathology, St. Radboud University Hospital, Nijmegen, The Netherlands
Search for more papers by this authorHenriëtte S. de Bruijn
Subdivision of Clinical Physics, Department of Radiation Oncology, Daniel den Hoed Cancer Centre, University Hospital Rotterdam, Rotterdam, The Netherlands
Search for more papers by this authorCorresponding Author
Willem M. Star
Subdivision of Clinical Physics, Department of Radiation Oncology, Daniel den Hoed Cancer Centre, University Hospital Rotterdam, Rotterdam, The Netherlands
*Department of Clinical Physics, Daniel den Hoed Cancer Centre, P.O. Box 5201, 3008 AE Rotterdam, The Netherlands. Fax: +31–10–4391012; e-mail:[email protected]Search for more papers by this authorNynke de Veen
Subdivision of Clinical Physics, Department of Radiation Oncology, Daniel den Hoed Cancer Centre, University Hospital Rotterdam, Rotterdam, The Netherlands
Search for more papers by this authorKonnie M. Hebeda
Department of Pathology, St. Radboud University Hospital, Nijmegen, The Netherlands
Search for more papers by this authorHenriëtte S. de Bruijn
Subdivision of Clinical Physics, Department of Radiation Oncology, Daniel den Hoed Cancer Centre, University Hospital Rotterdam, Rotterdam, The Netherlands
Search for more papers by this authorCorresponding Author
Willem M. Star
Subdivision of Clinical Physics, Department of Radiation Oncology, Daniel den Hoed Cancer Centre, University Hospital Rotterdam, Rotterdam, The Netherlands
*Department of Clinical Physics, Daniel den Hoed Cancer Centre, P.O. Box 5201, 3008 AE Rotterdam, The Netherlands. Fax: +31–10–4391012; e-mail:[email protected]Search for more papers by this authorAbstract
Several options were investigated to increase the efficacy of photodynamic therapy (PDT) using protoporphyrin IX (PpIX) induced by topically applied 5-aminolevulinic acid (ALA). Hairless mice with normal skin or UVB-light-induced skin changes were used as a model. In the first part of the study animals were illuminated immediately (t = 4) or 6 h (t = 10, PpIX fluorescence maximum) after the end of a 4 h ALA application. A total incident light fluence of 100 J/cm2 (514.5 nm) was delivered at a fluence rate of 100 or 50 mW/cm2. The PDT-induced damage to normal skin was more severe after treatment at t = 10 than at t = 4. Illumination at 50 mW/ cm2 caused significantly more visible damage than the same light fluence given at 100 mW/cm2. For UVB-illu-minated skin, different intervals or fluence rates made no significant difference in the severity of damage, although some qualitative differences occurred. In situ fluence rate measurements during PDT indicated vasoconstriction almost immediately after the start of the illumination. A fluorescein exclusion assay after PDT demonstrated vasoconstriction that was more pronounced in UVB-treated skin than in normal skin. The second part of the study examined the effect of two illuminations. The first illumination bleaches the PpIX fluorescence. At the start of the second illumination, new PpIX had been formed. Light of 514.5 nm was delivered at 100 mW/cm2 to a total incident light fluence of 200 J/cm2 at t = 4 (single illumination) or 100 J/cm2 at t = 4 plus 100 J/cm2 at t = 10. There was no visual difference in skin damage between 100 and 200 J/cm2 single illumination. Two-fold illumination (100 + 100 J/cm2) caused significantly more skin damage, indicating a potentially successful option for increasing the efficacy of topical ALA-PDT.
References
- 1 Divaris, D. X. G., J. C. Kennedy and R. H. Pottier (1990) Pho-todynamic damage of sebaceous glands and hair follicles of mice after systemic administration of 5-aminolevulinic acid correlates with protoporphyrin IX fluorescence. Am. J. Pathol. 136, 891–897.
- 2 Loh, C. S., D. Vernon, A. J. MacRobert, J. Bedwell, S. G. Bown and S. B. Brown (1993) Endogenous porphyrin distribution induced by 5-aminolaevulinic acid in tissue layers of the gastrointestinal tract. J. Photochem. Photobiol. B Biol. 20, 47–54.
- 3 Kennedy, J. C., R. H. Pottier and D. C. Pross (1990) Photody-namic therapy with endogenous protoporphyrin DC: basic principles and present clinical experience. J. Photochem. Photobiol. B Biol. 6, 143–148.
- 4 Kennedy, J. C. and R. H. Pottier (1992) Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J. Photochem. Photobiol. B Biol. 14, 275–292.
- 5 Cairnduff, F., M. R. Stringer, E. J. Hudson, D. V. Ash and S. B. Brown (1994) Superficial photodynamic therapy with topical 5-aminolevulinic acid for superficial primary and secondary skin cancer. Br. J. Cancer 69, 605–608.
- 6 Lui, H., S. Salasche, N. Kollias, J. Wimberly, T. Flotte, D. McLean and R. R. Anderson (1995) Photodynamic therapy of nonmelanoma skin cancer with topical aminolevulinic acid: a clinical and histologic study. Arch. Dermatol. 131, 737–738.
- 7 Meijnders, P. J. N., W. M. Star, R. S. de Bruijn, A. D. Treurniet-Donker, M. J. M. van Mierlo, S. J. M. Wijthoff, B. Naafs, H. Beerman and P. C. Levendag (1996) Clinical results of photodynamic therapy for superficial skin malignancies or actinic keratosis using topical 5-aminolaevulinic acid. Lasers Med. Sci. 11, 123–131.
- 8 Stables, G. I., M. R. Stringer, D. J. Robinson and D. V. Ash (1997) Large patches of Bowen's disease treated by topical ami-nolaevulinic acid photodynamic therapy. Br. J. Dermatol. 136, 957–960.
- 9 Svanberg, K., T. Andersson, D. Killander, I. Wang, U. Stenram, S. Andersson-Engels, R. Berg, J. Johansson and S. Svanberg (1994) Photodynamic therapy of non-melanoma malignant tumours of the skin using topical 5-aminolevulinic acid sensiti-sation and laser irradiation. Br. J. Dermatol. 130, 743–751.
- 10 Wolf, P., E. Rieger and H. Kerl (1993) Topical photodynamic therapy with endogenous porphyrins after application of 5-aminolevulinic acid. J. Am. Acad. Dermatol. 28, 17–21.
- 11 Fink-Puches, R., H. P. Soyer, A. Hofer, H. Kerl and P. Wolf (1998) Long-term follow-up and histological changes of superficial nonmelanoma skin cancers treated with topical δ-amino-levulinic acid photodynamic therapy. Arch. Dermatol. 134, 821–826.
- 12 Szeimies, R. M., T. Sassy and M. Landthaler (1994) Penetration potency of topical applied aminolevulinic acid for photodynamic therapy of basal cell carcinoma. Photochem. Photobiol. 59, 73–76.
- 13 Calzavara-Pinton, P. G. (1995) Repetitive photodynamic therapy with topical 5-aminolaevulinic acid as an appropriate approach to the routine treatment of superficial non-melanoma skin tumours. J. Photochem. Photobiol. B Biol. 29, 53–57.
- 14 Warloe, T., Q. Peng, H. Heyerdahl, J. Moan, H. B. Steen and K. E. Giercksky (1995) Photodynamic therapy with 5-aminolevulinic acid induced porphyrins and DMSO/EDTA for basal cell carcinoma. Proc. SPIE 2371, 226–235.
- 15 Fijan, S., H. Honigsmann and B. Ortel (1995) Photodynamic therapy of epithelial skin tumours using delta-aminolevulinic acid and desferoxamine. Br. J. Dermatol. 133, 282–288.
- 16 Morton, C. A., C. Whitehurst, H. Moseley, J. V. Moore and R. M. Mackie (1995) Development of an alternative light source to lasers for photodynamic therapy. 3. Clinical evaluation in the treatment of pre-malignant non-melanoma skin cancer. Lasers Med. Sci. 10, 165–171.
- 17 Orenstein, A., G. Kostenich, H. Tsur, L. Roitman, B. Ehrenberg and Z. Malik (1994) Photodynamic therapy of human skin tumors using topical application of 5-aminolevulinic acid, DMSO and EDTA. Proc. SPIE 2325, 100–105.
- 18 Berg, K., H. Anholt, O. Bech and J. Moan (1996) The influence of iron chelators on the accumulation of protoporphyrin IX in 5-aminolevulinic acid-treated cells. Br. J. Cancer 74, 688–697.
- 19 De Gruijl, F. R., J. B. van der Meer and J. C. van der Leun (1983) Dose-time dependency of tumor formation by chronic UV exposure. Photochem. Photobiol. 37, 53–62.
- 20 Fears, T. R., J. Scotto and M. Schneiderman (1976) Skin cancer, melanoma and sunlight. Am. J. Public Health 66, 461–464.
- 21 Sterenborg, H. J. C. M., F. R. De Gruijl and J. C. van der Leun (1986) UV-induced epidermal hyperplasia in hairless mice. Pho-todermatology 3, 206–214.
- 22 Robinson, D. J., R. S. De Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown and W. M. Star (1998) Fluorescence photo-bleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and fluence rate and the resulting biological effect. Photochem. Photobiol. 67, 140–149.
- 23 Robinson, D. J., H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown and W. M. Star (1999) Protoporphyrin IX fluorescence photobleaching during ALA-mediated photodynamic therapy of UVB-induced tumors in hairless mouse skin. Photochem. Photobiol. 69, 61–70.
- 24 Van der Veen, N., H. S. de Bruijn, R. J. W. Berg and W. M. Star (1996) Kinetics and localisation of PpIX fluorescence after topical and systemic ALA application, observed in skin and skin tumours of UVB-treated mice. Br. J. Cancer 73, 925–930.
- 25
Van Staveren, H. J.,
J. P. A. Marijnissen,
M. C. G. Aalders and
W. M. Star (1995) Construction, quality control and calibration of spherical isotropic fibre-optic light diffusers.
Lasers Med. Sci.
10, 137–147.
10.1007/BF02150852 Google Scholar
- 26 Bellnier, D. A., W. R. Potter, L. A. Vaughan, T. M. Sitnik, J. C. Parson, W. R. Greco, J. Whitaker, P. Johnson and B. W. Henderson (1995) The validation of a new vascular damage assay for photodynamic therapy agents. Photochem. Photobiol. 62, 896–905.
- 27 Fingar, V. H. and B. W. Henderson (1987) Drug and light dose dependence of photodynamic therapy: a study of tumour and normal tissue response. Photochem. Photobiol. 46, 837–841.
- 28 Cheong, W. F., S. A. Prahl and A. J. Welch (1990) A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26, 2166–2185.
- 29
Van der Veen, N.,
H. S. de Bruijn and
W. M. Star (1997) Photobleaching during and re-appearance after photodynamic therapy of topical ALA-induced fluorescence in UVB-treated mouse skin.
Int. J. Cancer
72, 110–118.
10.1002/(SICI)1097-0215(19970703)72:1<110::AID-IJC16>3.0.CO;2-N PubMed Web of Science® Google Scholar
- 30 Hua, Z., S. L. Gibson, T. H. Foster and R. Hilf (1995) Effectiveness of 5-aminolevulinic acid-induced protoporphyrin as a photosensitizer for photodynamic therapy in vivo. Cancer Res. 55, 1723–1731.
- 31 De Bruijn, H. S., N. Van der Veen, D. J. Robinson and W. M. Star (1999) Improvement of systemic 5-aminolevulinic acid-based photodynamic therapy in vivo using light fractionation with a 75-minute interval. Cancer Res. 59, 901–904.
- 32 Van der Veen, N., H. L. L. M. van Leengoed and W. M. Star (1994) In vivo fluorescence and photodynamic therapy using 5-aminolaevulinic acid-induced porphyrin: increased damage after multiple irradiations. Br. J. Cancer 70, 867–872.
- 33 Wang, I., S. Andersson-Engels, G. E. Nilsson, K. Wardell and K. Svanberg (1997) Superficial blood flow following photodynamic therapy of malignant non-melanoma skin tumours measured by laser Doppler perfusion imaging. Br. J. Dermatol. 136, 184–189.
- 34 He, D., S. Sassa and H. W. Lim (1993) Effect of UVA and blue light on porphyrin biosynthesis in epidermal cells. Photochem. Photobiol. 57, 825–829.
- 35 Orenstein, A., G. Kostenich and Z. Malik (1997) The kinetics of protoporphyrin fluorescence during ALA-PDT in human malignant skin tumors. Cancer Lett. 120, 229–234.
- 36 Af Klinteberg, C., A. M. K. Enejder, I. Wang, S. Andersson-Engels, S. Svanberg and K. Svanberg (1999) Kinetic fluorescence studies of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation in basal cell carcinomas. J. Photochem. Photobiol. B Biol. 49, 120–128.
- 37 Curnow, A., B. W. Mcllroy, M. J. Postle-Hacon, A. J. Mac-Robert and S. G. Bown (1999) Light dose fractionation to enhance photodynamic therapy using 5-aminolaevulinic acid in the normal rat colon. Photochem. Photobiol. 69, 71–76.