CAROTENOID-TO-BACTERIOCHLOROPHYLL SINGLET ENERGY TRANSFER IN CAROTENOID-INCORPORATED B850 LIGHT-HARVESTING COMPLEXES OF Rhodobacter sphaeroides R-26.1
Corresponding Author
Harry A. Frank
Department of Chemistry, University of Connecticut, Storrs, CT06269–3060, USA
*To whom correspondence should be addressed.Search for more papers by this authorRoya Farhoosh
Department of Chemistry, University of Connecticut, Storrs, CT06269–3060, USA
Search for more papers by this authorMila L. Aldema
Department of Chemistry, University of Connecticut, Storrs, CT06269–3060, USA
Search for more papers by this authorBeverly DeCoster
Department of Chemistry, Bowdoin College, Brunswick, ME 04011, USA
Search for more papers by this authorRonald L. Christensen
Department of Chemistry, Bowdoin College, Brunswick, ME 04011, USA
Search for more papers by this authorRonald Gebhard
Department of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
Search for more papers by this authorJohan Lugtenburg
Department of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
Search for more papers by this authorCorresponding Author
Harry A. Frank
Department of Chemistry, University of Connecticut, Storrs, CT06269–3060, USA
*To whom correspondence should be addressed.Search for more papers by this authorRoya Farhoosh
Department of Chemistry, University of Connecticut, Storrs, CT06269–3060, USA
Search for more papers by this authorMila L. Aldema
Department of Chemistry, University of Connecticut, Storrs, CT06269–3060, USA
Search for more papers by this authorBeverly DeCoster
Department of Chemistry, Bowdoin College, Brunswick, ME 04011, USA
Search for more papers by this authorRonald L. Christensen
Department of Chemistry, Bowdoin College, Brunswick, ME 04011, USA
Search for more papers by this authorRonald Gebhard
Department of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
Search for more papers by this authorJohan Lugtenburg
Department of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
Search for more papers by this authorAbstract
Four carotenoids, 3,4,7,8-tetrahydrospheroidene, 3,4,5,6-tetrahydrospheroidene, 3,4-dihydrospheroidene and spheroidene, have been incorporated into the B850 light-harvesting complex of the carotenoidless mutant, photosynthetic bacterium, Rhodobacter sphaeroides R-26.1. The extent of π-electron conjugation in these molecules increases from 7 to 10 carbon-carbon double bonds. Carotenoid-to-bacteriochlorophyll singlet state energy transfer efficiencies were measured using steady-state fluorescence excitation spectroscopy to be 54 ± 2%, 66 ± 4%, 71 ± 6% and 56 ± 3% for the carotenoid series. These results are discussed with respect to the position of the energy levels and the magnitude of spectral overlap between the S, (2′AJ state emission from the isolated carotenoids and the bacteriochlorophyll absorption of the native complex. These studies provide a systematic approach to exploring the effect of excited state energies, spectral overlap and excited state lifetimes on the efficiencies of carotenoid-to-bacteriochlorophyll singlet energy transfer in photosynthetic systems.
References
- 1 Cogdell, R. J. and H. A. Frank (1987) How carotenoids function in photosynthetic bacteria. Biochim. Biophys. Acta 895, 63–79.
- 2 Frank, H. A. and R. J. Cogdell (1992) Photochemistry of carotenoids. In Carotenoids in Photosynthesis (Edited by A. Young and G. Britton), Springer-Verlag, London . (In press).
- 3 Cogdell, R. J., M. F. Hipkins, W. MacDonald and T. G. Truscott (1981) Energy transfer between the carotenoid and bacterio-chlorophyll within the B800–850light-harvesting pigment-protein complex of Rps. sphaeroides. Biochim. Biophys. Acta 634, 191–202.
- 4 Noguchi, T., H. Hayashi and T. Tasumi (1990) Factors controlling the efficiency of energy transfer from carotenoids to bacteriochlorophyll in purple photosynthetic bacteria. Biochim. Biophys. Acta 1017, 280–290.
- 5 van Grondelle, R., H. J. M. Kramer and C. P. Rijgersberg (1982) Energy transfer in the B800–850carotenoid light-harvesting complex of various mutants of Rhodopseudomonas sphaeroides and of Rhodopseudomonas capsulata. Biochim. Biophys. Acta 682, 208–215.
- 6 Davidson, E. and R. J. Cogdell (1981) Reconstitution of carotenoids into the light-harvesting pigment-protein complex from the carotenoidless mutant of Rhodopseudomonas sphaeroides R-26. Biochim. Biophys. Acta 635, 295–303.
- 7 Hayashi, H., T. Noguchi and M. Tasumi (1989) Studies on the interrelationship among the intensity of a Raman marker band of carotenoids, polyene chain structure, and efficiency on the energy transfer from carotenoids to bacteriochlorophyll in photosynthetic bacteria. Photochem. Photobiol. 49, 337–343.
- 8 Kramer, H. J. M., R. Van Grondelle, C. N. Hunter, W. H. J. Westerhuis and J. Amesz (1984) Pigment organization of the B800–850antenna complex of Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta 765, 156–165.
- 9 Angerhofer, A., R. J. Cogdell and M. F. Hipkins (1986) A spectral characterization of the light-harvesting pigment-protein complexes from Rhodopseudomonas acidophila. Biochim. Biophys. Acta 848, 333–341.
- 10 Chadwick, B. W., C. Zhang, R. J. Cogdell and H. A. Frank (1987) The effects of lithium dodecyl sulfate and sodium bo-rohydride on the absorption spectrum of the B800–850light-harvesting complex from Rhodopseudomonas acidophila 7750. Biochim. Biophys. Acta 893, 444–457.
- 11 Birge, R. R.. (1986) Two photon spectroscopy of protein-bound chromophores. Accts. Chem. Res. 19, 138–146.
- 12 DeCoster, B., R. L. Christensen, R. Gebhard, J. Lugtenburg, R. Farhoosh and H. A. Frank (1992) Low-lying electronic states of carotenoids. Biochim. Biophys. Acta. (In press).
- 13 Cosgrove, S. A., M. A. Guite, T. B. Burnell and R. L. Christensen (1990) Electronic relaxation in long polyenes. J. Phys. Chem. 94, 8118–8124.
- 14 Mimuro, M., U. Nagashima, S. Takaichi, Y. Nishimura, I. Ya-mazaka and T. Katoh (1992) Molecular structure and optical properties of carotenoids for the in vivo energy transfer function in algal photosynthetic pigment system. Biochim. Biophys. Acta. (In press).
- 15 Mimuro, M., Y. Nishimura, I. Yamazaki, T. Katoh and U. Nagashima (1991) Fluorescence properties of the allenic carotenoid fucoxanthin: analysis of the effect of keto carbonyl group by using a model compound, all-trans-beta-apo-8′-carot-enal. J. Lumin. 50, 1–10.
- 16 Katoh, T., U. Nagashima and M. Mimuro (1990) Fluorescence properties of the allenic carotenoid fucoxanthin: implication for energy transfer in photosynthetic systems. Photosynth. Res. 27, 221–226.
- 17 Andersson, P. O., T. Gillbro, A. E. Asato and R. S. H. Liu (1992) Dual singlet state emission in a series of mini-carotenes. J. Lumin. (In press).
- 18 Snyder, R., E. Arvidson, C. Foote, L. Harrigan and R. L. Christensen (1985) Electronic energy levels in long polyenes: S2→ S0 emission in all-trans-1,3,5,7,9,11,13-tetradecaheptaene. J. Am. Chem. Soc. 107, 4117–4122.
- 19 Bondarev, S. L., S. M. Bachilo, S. S. Dvornikov and S. A. Tikhomirov (1989) S2→ S0 fluorescence and transient Sn → S1 absorption of all-trans-β-carotene in solid and liquid solutions. J. Photochem. Photobiol. A Chem. 46, 315–322.
- 20 Gillbro, T. and R. J. Cogdell (1989) Carotenoid fluorescence. Chem. Phys. Lett. 158, 312–316.
- 21 Shreve, A. P., J. K. Trautman, T. G. Owens and A. C. Albrecht (1991) Determination of the S2 lifetime of β-carotene. Chem. Phys. Lett. 178, 89–96.
- 22 Shreve, A. P., J. K. Trautman, T. G. Owens and A. C. Albrecht (1991) A femtosecond study of in vivo and in vitro electronic state dynamics of fucoxanthin and implications for photosynthetic carotenoid-to-chlorophyll energy transfer mechanisms. Chem. Phys. 154, 171–178.
- 23 Shreve, A. P., J. K. Trautman, H. A. Frank, T. G. Owens and A. C. Albrecht (1991) Femtosecond energy-transfer processes in the B800–850light-harvesting complex of Rhodobacter sphaeroides 2.4.1. Biochim. Biophys. Acta 1058, 280–288.
- 24 Chadwick, B. W. and H. A. Frank (1986) Electron-spin resonance studies of carotenoids incorporated into reaction centers ofRhodobacter sphaeroides R-26.1 Biochim. Biophys. Acta 851, 257–266.
- 25 Gebhard, R. (1991) Synthesis and application of isotopically and chemical modified spheroidenes. Ph.D. Thesis, University of Leiden.
- 26 Gebhard, R., K. Van Der Hoef, C. A. Violette, H. J. M. De Groot, H. A. Frank and J. Lugtenburg (1991) 13C MAS NMR evidence for a 15,15′-Z configuration of the spheroidene chromophore in the Rhodobacter sphaeroides reaction center. Pure Appl. Chem. 63, 115–122.
- 27 Förster, Th. (1968) Intermolecular energy transfer and fluorescence. Ann. Physik. Leipzig 2, 55–75.
- 28 Dexter, D. L.. (1953) A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–860.
- 29 Turro, N. J.. (1978) Modern Molecular Photochemistry. Ben-jamin/Cummings, Menlo Park , CA .
- 30 Wasielewski, M. R. and L. D. Kispert (1986) Direct measurement of the lowest excited singlet state lifetime of all-trans-,8-carotene and related carotenoids. Chem. Phys. Lett. 128, 238–243.
- 31 Wasielewski, M. R., D. G. Johnson, E. G. Bradford and L. D. Kispert (1989) Temperature dependence of the lowest excited singlet-state lifetime of all-trans-|8-carotene and fully deuterated all-trans-β-carotene. J. Chem. Phys. 91, 6691–6697.
- 32 Hudson, B. S., B. E. Kohler and K. Shulten (1982) Linear polyene electronic structure and potential surfaces. In Excited States, Vol. 6 (Edited by E. C. Lim), pp. 22–95. Academic Press, New York .
- 33 Englman, R. and J. Jortner (1970) The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 145–164.