Epac and PKA: a tale of two intracellular cAMP receptors
Corresponding Author
Xiaodong Cheng
Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
*Corresponding author: Tel, 1-409-772-9656; Fax, 1-409-772-9642; E-mail, [email protected]Search for more papers by this authorZhenyu Ji
Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
Search for more papers by this authorTamara Tsalkova
Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
Search for more papers by this authorFang Mei
Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
Search for more papers by this authorCorresponding Author
Xiaodong Cheng
Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
*Corresponding author: Tel, 1-409-772-9656; Fax, 1-409-772-9642; E-mail, [email protected]Search for more papers by this authorZhenyu Ji
Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
Search for more papers by this authorTamara Tsalkova
Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
Search for more papers by this authorFang Mei
Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
Search for more papers by this authorThis work was supported by grants from the National Institutes of Health (No. GM061770) and the American Heart Association (No. 0755049Y)
Abstract
cAMP-mediated signaling pathways regulate a multitude of important biological processes under both physiological and pathological conditions, including diabetes, heart failure and cancer. In eukaryotic cells, the effects of cAMP are mediated by two ubiquitously expressed intracellular cAMP receptors, the classic protein kinase A (PKA)/cAMP-dependent protein kinase and the recently discovered exchange protein directly activated by cAMP (Epac)/cAMP-regulated guanine nucleotide exchange factors. Like PKA, Epac contains an evolutionally conserved cAMP binding domain that acts as a molecular switch for sensing intracellular second messenger cAMP levels to control diverse biological functions. The existence of two families of cAMP effectors provides a mechanism for a more precise and integrated control of the cAMP signaling pathways in a spatial and temporal manner. Depending upon the specific cellular environments as well as their relative abundance, distribution and localization, Epac and PKA may act independently, converge synergistically or oppose each other in regulating a specific cellular function.
References
- 1 Frodin M, Peraldi P, Van Obberghen E. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells. J Biol Chem 1994, 269: 6207–6214.
- 2 Burgering BM, Pronk GJ, Van Weeren PC, Chardin P, Bos JL. cAMP antagonizes p21ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor. EMBO J 1993, 12: 4211–4220.
- 3 Wu J, Dent P, Jelinek T, Wolfman A, Weber MJ, Sturgill TW. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3′,5′-monophosphate. Science 1993, 262: 1065–1069.
- 4 Graves LM, Bornfeldt KE, Raines EW, Potts BC, Macdonald SG, Ross R, Krebs EG. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci USA 1993, 90: 10300–10304.
- 5 Cook SJ, McCormick F. Inhibition by cAMP of Ras-dependent activation of Raf. Science 1993, 262: 1069–1072.
- 6 DeBernardi MA, Brooker G. Single cell Ca2+/cAMP cross-talk monitored by simultaneous Ca2+/cAMP fluorescence ratio imaging. Proc Natl Acad Sci USA 1996, 93: 4577–4582.
- 7 Rogue PJ, Humbert JP, Meyer A, Freyermuth S, Krady MM, Malviya AN. cAMP-dependent protein kinase phosphorylates and activates nuclear Ca2+-ATPase. Proc Natl Acad Sci USA 1998, 95: 9178–9183.
- 8 David M, Petricoin E, III, Larner AC. Activation of protein kinase A inhibits interferon induction of the Jak/STAT pathway in U266 cells. J Biol Chem 1996, 271: 4585–4588.
- 9 Monfar M, Lemon KP, Grammer TC, Cheatham L, Chung J, Vlahos CJ, Blenis J. Activation of pp70/85 S6 kinases in interleukin-2-responsive lymphoid cells is mediated by phosphatidylinositol 3-kinase and inhibited by cyclic AMP. Mol Cell Biol 1995, 15: 326–337.
- 10 Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998, 273: 32377–32379.
- 11 Zufall F, Shepherd GM, Barnstable CJ. Cyclic nucleotide gated channels as regulators of CNS development and plasticity. Curr Opin Neurobiol 1997, 7: 404–412.
- 12 Walsh DA, Perkins JP, Krebs EG. An adenosine 3′,5′-monophos-phate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem 1968, 243: 3763–3765.
- 13 Cheng X, Ma Y, Moore M, Hemmings BA, Taylor SS. Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. Proc Natl Acad Sci USA 1998, 95: 9849–9854.
- 14 Cauthron RD, Carter KB, Liauw S, Steinberg RA. Physiological phosphorylation of protein kinase A at Thr-197 is by a protein kinase A kinase. Mol Cell Biol 1998, 18: 1416–1423.
- 15 Steinberg RA, Cauthron RD, Symcox MM, Shuntoh H. Autoactivation of catalytic (C alpha) subunit of cyclic AMP-dependent protein kinase by phosphorylation of threonine 197. Mol Cell Biol 1993, 13: 2332–2341.
- 16 Adams JA, McGlone ML, Gibson R, Taylor SS. Phosphorylation modulates catalytic function and regulation in the cAMP-dependent protein kinase. Biochemistry 1995, 34: 2447–2454.
- 17 Shoji S, Titani K, Demaille JG, Fischer EH. Sequence of two phosphorylated sites in the catalytic subunit of bovine cardiac muscle adenosine 3′,5′-monophosphate-dependent protein kinase. J Biol Chem 1979, 254: 6211–6214.
- 18 Taylor SS, Buechler JA, Yonemoto W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 1990, 59: 971–1005.
- 19 Zetterqvist OZ, Ragnarsson U, Engstrom L. In: BE Kemp ed. Peptides and protein phosphorylation. Boca Raton : CRC Press Inc., 1991.
- 20 Lee DC, Carmichael DF, Krebs EG, McKnight GS. Isolation of a cDNA clone for the type I regulatory subunit of bovine cAMP-dependent protein kinase. Proc Natl Acad Sci USA 1983, 80: 3608–3612.
- 21 Clegg CH, Cadd GG, McKnight GS. Genetic characterization of a brain-specific form of the type I regulatory subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci USA 1988, 85: 3703–3707.
- 22 Scott JD, Glaccum MB, Zoller MJ, Uhler MD, Helfman DM, McKnight GS, Krebs EG. The molecular cloning of a type II regulatory subunit of the cAMP-dependent protein kinase from rat skeletal muscle and mouse brain. Proc Natl Acad Sci USA 1987, 84: 5192–5196.
- 23 Jahnsen T, Hedin L, Kidd VJ, Beattie WG, Lohmann SM, Walter U, Durica J et al. Molecular cloning, cDNA structure, and regulation of the regulatory subunit of type II cAMP-dependent protein kinase from rat ovarian granulosa cells. J Biol Chem 1986, 261: 12352–12361.
- 24 Beebe SJ, Oyen O, Sandberg M, Froysa A, Hansson V, Jahnsen T. Molecular cloning of a tissue-specific protein kinase (C gamma) from human testis—representing a third isoform for the catalytic subunit of cAMP-dependent protein kinase. Mol Endocrinol 1990, 4: 465–475.
- 25 Weber IT, Steitz TA, Bubis J, Taylor SS. Predicted structures of cAMP binding domains of type I and II regulatory subunits of cAMP-dependent protein kinase. Biochemistry 1987, 26: 343–351.
- 26 Rosen OM, Erlichman J. Reversible autophosphorylation of a cyclic 3′,5′-AMP-dependent protein kinase from bovine cardiac muscle. J Biol Chem 1975, 250: 7788–7794.
- 27 Corbin JD, Keely SL, Park CR. The distribution and dissociation of cyclic adenosine 3′,5′-monophosphate-dependent protein kinases in adipose, cardiac, and other tissues. J Biol Chem 1975, 250: 218–225.
- 28 Hofmann F, Bechtel PJ, Krebs EG. Concentrations of cyclic AMP-dependent protein kinase subunits in various tissues. J Biol Chem 1977, 252: 1441–1447.
- 29 Doskeland SO, Maronde E, Gjertsen BT. The genetic subtypes of cAMP-dependent protein kinase: functionally different or redundant? Biochim Biophys Acta 1993, 1178: 249–258.
- 30 Joachim S, Schwoch G. Localization of cAMP-dependent protein kinase subunits along the secretory pathway in pancreatic and parotid acinar cells and accumulation of the catalytic subunit in parotid secretory granules following beta-adrenergic stimulation. Eur J Cell Biol 1990, 51: 76–84.
- 31 Pariset C, Feinberg J, Dacheux JL, Oyen O, Jahnsen T, Weinman S. Differential expression and subcellular localization for subunits of cAMP-dependent protein kinase during ram spermatogenesis. J Cell Biol 1989, 109: 1195–1205.
- 32 De Camilli P, Moretti M, Donini SD, Walter U, Lohmann SM. Heterogeneous distribution of the cAMP receptor protein RII in the nervous system: evidence for its intracellular accumulation on microtubules, microtubule-organizing centers, and in the area of the Golgi complex. J Cell Biol 1986, 103: 189–203.
- 33 Skalhegg BS, Tasken K, Hansson V, Huitfeldt HS, Jahnsen T, Lea T. Location of cAMP-dependent protein kinase type I with the TCR-CD3 complex. Science 1994, 263: 84–87.
- 34 Scott JD, McCartney S. Localization of A-kinase through anchoring proteins. Mol Endocrinol 1994, 8: 5–11.
- 35 Huang LJ, Durick K, Weiner JA, Chun J, Taylor SS. Identification of a novel protein kinase A anchoring protein that binds both type I and type II regulatory subunits. J Biol Chem 1997, 272: 8057–8064.
- 36 Newlon MG, Roy M, Morikis D, Hausken ZE, Coghlan V, Scott JD, Jennings PA. The molecular basis for protein kinase A anchoring revealed by solution NMR. Nat Struct Biol 1999, 6: 222–227.
- 37 Lohmann SM, Walter U. Regulation of the cellular and subcellular concentrations and distribution of cyclic nucleotide-dependent protein kinases. Adv Cyclic Nucleotide Protein Phosphorylation Res 1984, 18: 63–117.
- 38 Sugden PH, Corbin JD. Adenosine 3′,5′-cyclic monophosphate-binding proteins in bovine and rat tissues. Biochem J 1976, 159: 423–427.
- 39 Cummings DE, Brandon EP, Planas JV, Motamed K, Idzerda RL, McKnight GS. Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A. Nature 1996, 382: 622–626.
- 40 Renstrom E, Eliasson L, Rorsman P. Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol 1997, 502: 105–118.
- 41 De Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL. Epac is a Rap1 guanine-nucleotide-ex-change factor directly activated by cyclic AMP. Nature 1998, 396: 474–477.
- 42 Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE et al. A family of cAMP-binding proteins that directly activate Rap1. Science 1998, 282: 2275–2279.
- 43 Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A ras-related gene with transformation suppressor activity. Cell 1989, 56: 77–84.
- 44 Wang Z, Dillon TJ, Pokala V, Mishra S, Labudda K, Hunter B, Stork PJ. Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 2006, 26: 2130–2145.
- 45 De Rooij J, Rehmann H, Van Triest M, Cool RH, Wittinghofer A, Bos JL. Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem 2000, 275: 20829–20836.
- 46 Rangarajan S, Enserink JM, Kuiperij HB, De Rooij J, Price LS, Schwede F, Bos JL. Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor. J Cell Biol 2003, 160: 487–493.
- 47 Enserink JM, Price LS, Methi T, Mahic M, Sonnenberg A, Bos JL, Taskén K. The cAMP-Epac-Rap1 pathway regulates cell spreading and cell adhesion to laminin-5 through the alpha3beta1 integrin but not the alpha6beta4 integrin. J Biol Chem 2004, 279: 44889–44896.
- 48 Cullere X, Shaw SK, Andersson L, Hirahashi J, Luscinskas FW, Mayadas TN. Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 2005, 105: 1950–1955.
- 49 Kooistra MR, Corada M, Dejana E, Bos JL. Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett 2005, 579: 4966–4972.
- 50 Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2000, 2: 805–811.
- 51 Li J, O'Connor KL, Cheng X, Mei FC, Uchida T, Townsend CM Jr, Evers BM. Cyclic adenosine 5′-monophosphate-stimulated neurotensin secretion is mediated through Rap1 downstream of both Epac and protein kinase A signaling pathways. Mol Endocrinol 2007, 21: 159–171.
- 52 Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 2005, 85: 1303–1342.
- 53 Maillet M, Robert SJ, Cacquevel M, Gastineau M, Vivien D, Bertoglio J, Zugaza JL et al. Crosstalk between Rap1 and Rac regulates secretion of sAPPalpha. Nat Cell Biol 2003, 5: 633–639.
- 54 Kiermayer S, Biondi RM, Imig J, Plotz G, Haupenthal J, Zeuzem S, Piiper A. Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells. Mol Biol Cell 2005, 16: 5639–5648.
- 55 Qiao J, Mei FC, Popov VL, Vergara LA, Cheng X. Cell cycle-dependent subcellular localization of exchange factor directly activated by cAMP. J Biol Chem 2002, 277: 26581–26586.
- 56 Zwartkruis FJ, Bos JL. Ras and Rap1: two highly related small GTPases with distinct function. Exp Cell Res 1999, 253: 157–165.
- 57 Bos JL, De Bruyn K, Enserink J, Kuiperij B, Rangarajan S, Rehmann H, Riedl J et al. The role of Rap1 in integrin-mediated cell adhesion. Biochem Soc Trans 2003, 31: 83–86.
- 58 Enserink JM, Christensen AE, De Rooij J, Van Triest M, Schwede F, Genieser HG, Døskeland SO et al. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 2002, 4: 901–906.
- 59 Gupta M, Yarwood SJ. MAP1A light chain 2 interacts with exchange protein activated by cyclic AMP 1 (Epac1) to enhance Rap1 GTPase activity and cell adhesion. J Biol Chem 2005, 280: 8109–8116.
- 60 Carmona G, Chavakis E, Koehl U, Zeiher AM, Dimmeler S. Activation of Epac stimulates integrin-dependent homing of progenitor cells. Blood 2008, 111: 2640–2646.
- 61 Murphy MM, Zayed MA, Evans A, Parker CE, Ataga KI, Telen MJ, Parise LV. Role of Rap1 in promoting sickle red blood cell adhesion to laminin via BCAM/LU. Blood 2005, 105: 3322–3329.
- 62 Lyle KS, Raaijmakers JH, Bruinsma W, Bos JL, De Rooij J. cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics. Cell Signal 2008, 20: 1104–1116.
- 63 Conrotto P, Yakymovych I, Yakymovych M, Souchelnytskyi S. Interactome of transforming growth factor-beta type I receptor (TbetaRI): inhibition of TGFbeta signaling by Epac1. J Proteome Res 2007, 6: 287–297.
- 64 Netherton SJ, Sutton JA, Wilson LS, Carter RL, Maurice DH. Both protein kinase A and exchange protein activated by cAMP coordinate adhesion of human vascular endothelial cells. Circ Res 2007, 101: 768–776.
- 65 Lorenowicz MJ, Van Gils J, De Boer M, Hordijk PL, Fernandez-Borja M. Epac1-Rap1 signaling regulates monocyte adhesion and chemotaxis. J Leukoc Biol 2006, 80: 1542–1552.
- 66 Bryn T, Mahic M, Enserink JM, Schwede F, Aandahl EM, Tasken K. The cyclic AMP-Epac1-Rap1 pathway is dissociated from regulation of effector functions in monocytes but acquires immunoregulatory function in mature macrophages. J Immunol 2006, 176: 7361–7370.
- 67 Price LS, Hajdo-Milasinovic A, Zhao J, Zwartkruis FJ, Collard JG, Bos JL. Rap1 regulates E-cadherin-mediated cell-cell adhesion. J Biol Chem 2004, 279: 35127–35132.
- 68 Kooistra MR, Dube N, Bos JL. Rap1: a key regulator in cell-cell junction formation. J Cell Sci 2007, 120: 17–22.
- 69 Fukuhara S, Sakurai A, Sano H, Yamagishi A, Somekawa S, Takakura N, Saito Y et al. Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol Cell Biol 2005, 25: 136–146.
- 70 Mei FC, Cheng XD. Interplay between exchange protein directly activated by cAMP (Epac) and microtubule cytoskeleton. Mol Biosyst 2005, 1: 325–331.
- 71 Sehrawat S, Cullere X, Patel S, Italiano J Jr, Mayadas TN. Role of Epac1, an exchange factor for Rap GTPases, in endothelial micro-tubule dynamics and barrier function. Mol Biol Cell 2008, 19: 1261–1270.
- 72 Birukova AA, Zagranichnaya T, Fu P, Alekseeva E, Chen W, Jacobson JR Birukov KG. Prostaglandins PGE(2) and PGI(2) promote endothelial barrier enhancement via PKA-and Epac1/Rap1-dependent Rac activation. Exp Cell Res 2007, 313: 2504–2520.
- 73 Birukova AA, Zagranichnaya T, Alekseeva E, Bokoch GM, Birukov KG. Epac/Rap and PKA are novel mechanisms of ANP-induced Rac-mediated pulmonary endothelial barrier protection. J Cell Physiol 2008, 215: 715–724.
- 74 Adamson RH, Ly JC, Sarai RK, Lenz JF, Altangerel A, Drenckhahn D, Curry FE. Epac/Rap1 pathway regulates microvascular hyperpermeability induced by PAF in rat mesentery. Am J Physiol Heart Circ Physiol 2008, 294: H1188–H1196.
- 75 Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S. Critical role of cAMP-GEFII—Rim2 complex in incretinpotentiated insulin secretion. J Biol Chem 2001, 276: 46046–4653.
- 76 Kang G, Chepurny OG, Holz GG. cAMP-regulated guanine nucle-otide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells. J Physiol 2001, 536: 375–385.
- 77 Robert S, Maillet M, Morel E, Launay JM, Fischmeister R, Mercken L, Lezoualc'h F. Regulation of the amyloid precursor protein ectodomain shedding by the 5-HT4 receptor and Epac. FEBS Lett 2005, 579: 1136–1142.
- 78 Zaldua N, Gastineau M, Hoshino M, Lezoualc'h F, Zugaza JL. Epac signaling pathway involves STEF, a guanine nucleotide exchange factor for Rac, to regulate APP processing. FEBS Lett 2007, 581: 5814–5818.
- 79 Chin EC, Abayasekara DR. Progesterone secretion by luteinizing human granulosa cells: a possible cAMP-dependent but PKA-independent mechanism involved in its regulation. J Endocrinol 2004, 183: 51–60.
- 80 Sedej S, Rose T, Rupnik M. cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. J Physiol 2005, 567: 799–813.
- 81 Novara M, Baldelli P, Cavallari D, Carabelli V, Giancippoli A, Carbone E. Exposure to cAMP and beta-adrenergic stimulation recruits Ca(V)3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins. J Physiol 2004, 558: 433–449.
- 82 Giancippoli A, Novara M, De Luca A, Baldelli P, Marcantoni A, Carbone E, Carabelli V. Low-threshold exocytosis induced by cAMP-recruited CaV3.2 (alpha1H) channels in rat chromaffin cells. Biophys J 2006, 90: 1830–1841.
- 83 Branham MT, Mayorga LS, Tomes CN. Calcium induced acroso-mal exocytosis requires cAMP acting through a PKA-independent, Epac-mediated pathway. J Biol Chem 2006, 281: 8656–8666.
- 84 Yip KP. Epac-mediated Ca(2+) mobilization and exocytosis in inner medullary collecting duct. Am J Physiol Renal Physiol 2006, 291: F882–F890.
- 85 Hatakeyama H, Takahashi N, Kishimoto T, Nemoto T, Kasai H. Two cAMP-dependent pathways differentially regulate exocyto-sis of large dense-core and small vesicles in mouse beta-cells. J Physiol 2007, 582: 1087–1098.
- 86 Kwan EP, Gao X, Leung YM, Gaisano HY. Activation of exchange protein directly activated by cyclic adenosine monophosphate and protein kinase A regulate common and distinct steps in promoting plasma membrane exocytic and granule-to-granule fusions in rat islet beta cells. Pancreas 2007, 35: e45–e54.
- 87 Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, Zhang C et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A 2007, 104: 19333–19338.
- 88 Gunning PW, Landreth GE, Bothwell MA, Shooter EM. Differential and synergistic actions of nerve growth factor and cyclic AMP in PC12 cells. J Cell Biol 1981, 89: 240–245.
- 89 Williams IH, Polakis SE. Differentiation of 3T3-L1 fibroblasts to adipocytes. The effect of indomethacin, prostaglandin E1 and cyclic AMP on the process of differentiation. Biochem Biophys Res Commun 1977, 77: 175–186.
- 90 Shi GX, Rehmann H, Andres DA. A novel cyclic AMP-dependent Epac-Rit signaling pathway contributes to PACAP38-mediated neuronal differentiation. Mol Cell Biol 2006, 26: 9136–9147.
- 91 Monaghan TK, Mackenzie CJ, Plevin R, Lutz EM. PACAP–38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. J Neurochem 2008, 104: 74–88.
- 92 Gerdin MJ, Eiden LE. Regulation of PC12 cell differentiation by cAMP signaling to ERK independent of PKA: do all the connections add up? Sci STKE 2007, 2007: pe 15.
- 93 Christensen AE, Selheim F, Rooij JJ, Dremier S, Schwede F, Dao KK, Martinez A et al. cAMP analog mapping of Epac1 and cAMP-kinase. Discriminating analogs demonstrate that Epac and cAMP-kinase act synergistically to promote PC12 cell neurite extension. J Biol Chem 2003, 278: 35394–35402.
- 94 Vandecasteele G, Rochais F, Abi-Gerges A, Fischmeister R. Functional localization of cAMP signalling in cardiac myocytes. Biochem Soc Trans 2006, 34: 484–488.
- 95 Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 1999, 341: 1276–1283.
- 96 Kopperud R, Krakstad C, Selheim F, Doskeland SO. cAMP effector mechanisms. Novel twists for an “old” signaling system. FEBS Lett 2003, 546: 121–126.
- 97 Kamp TJ, Hell JW. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 2000, 87: 1095–1102.
- 98 Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 2000, 101: 365–376.
- 99 Kiss E, Edes I, Sato Y, Luo W, Liggett SB, Kranias EG. beta-Adrenergic regulation of cAMP and protein phosphorylation in phospholamban-knockout mouse hearts. Am J Physiol 1997, 272: H785–H790.
- 100 Simmerman HK, Jones LR. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 1998, 78: 921–947.
- 101 Schmidt M, Sand C, Jakobs KH, Michel MC, Weernink PA. Epac and the cardiovascular system. Curr Opin Pharmacol 2007, 7: 193–200.
- 102 Ulucan C, Wang X, Baljinnyam E, Bai Y, Okumura S, Sato M, Minamisawa S et al. Developmental changes in gene expression of Epac and its up-regulation in myocardial hypertrophy. Am J Physiol Heart Circ Physiol 2007, 293: H1662–H1672.
- 103 Somekawa S, Fukuhara S, Nakaoka Y, Fujita H, Saito Y, Mochizuki N. Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res 2005, 97: 655–662.
- 104 Pereira L, Métrich M, Fernández-Velasco M, Lucas A, Leroy J, Perrier R, Morel E et al. The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol 2007, 583: 685–694.
- 105 Oestreich EA, Wang H, Malik S, Kaproth-Joslin KA, Blaxall BC, Kelley GG, Dirksen RT et al. Epac-mediated activation of phospholipase C(epsilon) plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J Biol Chem 2007, 282: 5488–5495.
- 106 Morel E, Marcantoni A, Gastineau M, Birkedal R, Rochais F, Garnier A, Lompré AM et al. cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res 2005, 97: 1296–1304.
- 107 Metrich M, Lucas A, Gastineau M, Samuel JL, Heymes C, Morel E, Lezoualc'h F. Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res 2008, 102: 959–965.
- 108 Mei FC, Qiao J, Tsygankova OM, Meinkoth JL, Quilliam LA, Cheng X. Differential signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation. J Biol Chem 2002, 277: 11497–11504.
- 109 Brennesvik EO, Ktori C, Ruzzin J, Jebens E, Shepherd PR, Jensen J. Adrenaline potentiates insulin-stimulated PKB activation via cAMP and Epac: implications for cross-talk between insulin and adrenaline. Cell Signal 2005, 17: 1551–1559.
- 110 Makranz C, Cohen G, Reichert F, Kodama T, Rotshenker S. cAMP cascade (PKA, Epac, adenylyl cyclase, Gi, and phosphodiesterases) regulates myelin phagocytosis mediated by complement receptor-3 and scavenger receptor-AI/II in microglia and macrophages. Glia 2006, 53: 441–448.
- 111 Ji Z, Mei FC, Johnson BH, Thompson EB, Cheng X. Protein kinase A, not Epac, suppresses hedgehog activity and regulates glucocorticoid sensitivity in acute lymphoblastic leukemia cells. J Biol Chem 2007, 282: 37370–37377.
- 112 Brock M, Nickel AC, Madziar B, Blusztajn JK, Berse B. Differential regulation of the high affinity choline transporter and the cholinergic locus by cAMP signaling pathways. Brain Res 2007, 1145: 1–10.
- 113 Honegger KJ, Capuano P, Winter C, Bacic D, Stange G, Wagner CA, Biber J et al. Regulation of sodium-proton exchanger isoform 3 (NHE3) by PKA and exchange protein directly activated by cAMP (Epac). Proc Natl Acad Sci U S A 2006, 103: 803–808.
- 114 Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS, Scott JD. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 2005, 437: 574–578.
- 115 Berman HM, Ten Eyck LF, Goodsell DS, Haste NM, Kornev A, Taylor SS. The cAMP binding domain: an ancient signaling module. Proc Natl Acad Sci U S A 2005, 102: 45–50.
- 116 Kannan N, Wu J, Anand GS, Yooseph S, Neuwald AF, Venter JC, Taylor SS. Evolution of allostery in the cyclic nucleotide binding module. Genome Biol 2007, 8: R264.
- 117 Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 1991, 253: 407–414.
- 118 Su Y, Dostmann WR, Herberg FW, Durick K, Xuong NH, Ten Eyck L, Taylor SS et al. Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science 1995, 269: 807–813.
- 119 Kim C, Xuong NH, Taylor SS. Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science 2005, 307: 690–696.
- 120 Wu J, Brown SH, Von Daake S, Taylor SS. PKA type IIalpha holoenzyme reveals a combinatorial strategy for isoform diversity. Science 2007, 318: 274–279.
- 121 Rehmann H, Das J, Knipscheer P, Wittinghofer A, Bos JL. Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 2006, 439: 625–628.
- 122 Rehmann H, Rueppel A, Bos JL, Wittinghofer A. Communication between the regulatory and the catalytic region of the cAMP-responsive guanine nucleotide exchange factor Epac. J Biol Chem 2003, 278: 23508–23514.
- 123 Kraemer A, Rehmann HR, Cool RH, Theiss C, De Rooij J, Bos JL, Wittinghofer A. Dynamic interaction of cAMP with the Rap guanine-nucleotide exchange factor Epac1. J Mol Biol 2001, 306: 1167–1177.
- 124 Rehmann H, Schwede F, Doskeland SO, Wittinghofer A, Bos JL. Ligand-mediated activation of the cAMP-responsive guanine nucleotide exchange factor Epac. J Biol Chem 2003, 278: 38548–38556.
- 125 Rehmann H, Prakash B, Wolf E, Rueppel A, De Rooij J, Bos JL, Wittinghofer A. Structure and regulation of the cAMP binding domains of Epac2. Nat Struct Biol 2003, 10: 26–32.
- 126 Yu S, Mei FC, Lee JC, Cheng X. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting. Biochemistry 2004, 43: 1908–1920.
- 127 Yu S, Fan F, Flores SC, Mei F, Cheng X. Dissecting the mechanism of Epac activation via hydrogen-deuterium exchange FT-IR and structural modeling. Biochemistry 2006, 45: 15318–15326.
- 128 Brock M, Fan F, Mei FC, Li S, Gessner C, Woods VL, Jr., Cheng X. Conformational analysis of Epac activation using amide hydrogen/deuterium exchange mass spectrometry. J Biol Chem 2007, 282: 32256–32263.
- 129 McKay DB, Steitz TA. Structure of catabolite gene activator protein at 2.9 Å resolution suggests binding to left-handed B-DNA. Nature 1981, 290: 744–749.
- 130 Clayton GM, Silverman WR, Heginbotham L, Morais-Cabral JH. Structural basis of ligand activation in a cyclic nucleotide regulated potassium channel. Cell 2004, 119: 615–627.
- 131 DiPilato LM, Cheng X, Zhang J. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci USA 2004, 101: 16513–16518.