Implications of hedgehog signaling antagonists for cancer therapy
Corresponding Author
Jingwu Xie
Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology, University of Texas at Galveston, Galveston, Texas 77555-1048, USA
*Corresponding author: Tel, 1-409-747-1845; Fax, 1-409-747-1938; E-mail, [email protected]Search for more papers by this authorCorresponding Author
Jingwu Xie
Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology, University of Texas at Galveston, Galveston, Texas 77555-1048, USA
*Corresponding author: Tel, 1-409-747-1845; Fax, 1-409-747-1938; E-mail, [email protected]Search for more papers by this authorThis work was supported by the grants from the National Cancer Institute (CA94160, DOD PC030429) and the AGA Foundation
Abstract
The hedgehog (Hh) pathway, initially discovered in Drosophila by two Nobel laureates, Dr. Eric Wieschaus and Dr. Christiane Nusslein-Volhard, is a major regulator for cell differentiation, tissue polarity and cell proliferation. Studies from many laboratories, including ours, reveal activation of this pathway in most basal cell carcinomas and in approximately 30% of extracutaneous human cancers, including medulloblastomas, gastrointestinal, lung, breast and prostate cancers. Thus, it is believed that targeted inhibition of Hh signaling may be effective in treating and preventing many types of human cancers. Even more exciting is the discovery and synthesis of specific signaling antagonists for the Hh pathway, which have significant clinical implications in novel cancer therapeutics. This review discusses the major advances in the current understanding of Hh signaling activation in different types of human cancers, the molecular basis of Hh signaling activation, the major antagonists for Hh signaling inhibition and their potential clinical application in human cancer therapy.
References
- 1 Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980, 287: 795–801.
- 2 Krauss S, Concordet JP, Ingham PW. A functionally conserved homolog of the Drosophila segment polarity gene Hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 1993, 75: 1431–1444.
- 3 Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993, 75: 1417–1430.
- 4 Riddle RD, Johnson RL, Laufer E, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 1993, 75: 1401–1416.
- 5 Chang DT, Lopez A, Von Kessler DP, Chiang C, Simandl BK, Zhao R, Seldin MF et al. Products, genetic linkage and limb patterning activity of a murine hedgehog gene. Development 1994, 120: 3339–3353.
- 6 Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz I Altaba A, Tanabe Y et al. Floor plate and motor neuron induction by Vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 1994, 76: 761–775.
- 7 Bale AE. Hedgehog signaling and human disease. Annu Rev Genomics Hum Genet 2002, 3: 47–65.
- 8 Xie J. Hedgehog signaling in prostate cancer. Future Oncol 2005, 1: 331–338.
- 9 Xie J. Hedgehog signaling pathway: development of antagonists for cancer therapy. Curr Oncol Rep 2008, 10: 107–113.
- 10 Xie J. Molecular biology of basal and squamous cell carcinomas. Adv Exp Med Biol 2008, 624: 241–251.
- 11 Ingham PW, Placzek M. Orchestrating ontogenesis: variations on a theme by sonic hedgehog. Nat Rev Genet 2006, 7: 841–850.
- 12 Sasaki H, Hui C, Nakafuku M, Kondoh H. A binding site for Gli proteins is essential for HNF-3β floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 1997, 124: 1313–1322.
- 13 Kinzler KW, Vogelstein B. The Gli gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 1990, 10: 634–642.
- 14 Lee JJ, Ekker SC, Von Kessler DP, Porter JA, Sun BI, Beachy PA. Autoproteolysis in hedgehog protein biogenesis. Science 1994, 266: 1528–1537.
- 15 Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signaling proteins in animal development. Science 1996, 274: 255–259.
- 16 Porter JA, Von Kessler DP, Ekker SC, Young KE, Lee JJ, Moses K, Beachy PA. The product of hedgehog autoproteolytic cleavage active in local and long-range signaling. Nature 1995, 374: 363–366.
- 17 Toyoda H, Kinoshita-Toyoda A, Fox B, Selleck SB. Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. J Biol Chem 2000, 275: 21856–21861.
- 18 Bellaiche Y, The I, Perrimon N. Tout-velu is a Drosophila homologue of the putative tumor suppressor EXT1 and is needed for Hh diffusion. Nature 1998, 394: 85–88.
- 19 Koziel L, Kunath M, Kelly OG, Vortkamp A. EXT1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell 2004, 6: 801–813.
- 20 Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP et al. The tumor suppressor gene patched encodes a candidate receptor for sonic hedgehog. Nature 1996, 384: 129–134.
- 21 Chuang PT, McMahon AP. Vertebrate hedgehog signaling modulated by induction of a hedgehog-binding protein. Nature 1999, 397: 617–621.
- 22 Martinelli DC, Fan CM. Gas1 extends the range of hedgehog action by facilitating its signaling. Genes Dev 2007, 21: 1231–1243.
- 23 Seppala M, Depew MJ, Martinelli DC, Fan CM, Sharpe PT, Cobourne MT. Gas1 is a modifier for holoprosencephaly and genetically interacts with sonic hedgehog. J Clin Invest 2007, 117: 1575–1584.
- 24 Allen BL, Tenzen T, McMahon AP. The hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev 2007, 21: 1244–1257.
- 25 Okada A, Charron F, Morin S, Shin DS, Wong K, Fabre PJ, Tessier-Lavigne M et al. Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature 2006, 444: 369–373.
- 26 Tenzen T, Allen BL, Cole F, Kang JS, Krauss RS, McMahon AP. The cell surface membrane proteins Cdo and Boc are components and targets of the hedgehog signaling pathway and feedback network in mice. Dev Cell 2006, 10: 647–656.
- 27 Zhang W, Kang JS, Cole F, Yi MJ, Krauss RS. Cdo functions at multiple points in the sonic hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly. Dev Cell 2006, 10: 657–665.
- 28 Yao S, Lum L, Beachy P. The ihog cell-surface proteins bind hedgehog and mediate pathway activation. Cell 2006, 125: 343–357.
- 29 Jia J, Tong C, Wang B, Luo L, Jiang J. Hedgehog signaling activity of smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 2004, 432: 1045–1050.
- 30 Zhang C, Williams EH, Guo Y, Lum L, Beachy PA. Extensive phosphorylation of smoothened in hedgehog pathway activation. Proc Natl Acad Sci USA 2004, 101: 17900–17907.
- 31 Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF. Vertebrate smoothened functions at the primary cilium. Nature 2005, 437: 1018–1021.
- 32 Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signaling in the mouse requires intraflagellar transport proteins. Nature 2003, 426: 83–87.
- 33 May SR, Ashique AM, Karlen M, Wang B, Shen Y, Zarbalis K, Reiter J et al. Loss of the retrograde motor for IFT disrupts localization of SMO to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 2005, 287: 378–389.
- 34 Huangfu D, Anderson KV. Cilia and hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 2005, 102: 11325–11330.
- 35 Zhang Q, Davenport JR, Croyle MJ, Haycraft CJ, Yoder BK. Disruption of IFT results in both exocrine and endocrine abnormalities in the pancreas of Tg737(orpk) mutant mice. Lab Invest 2005, 85: 45–64.
- 36 Scholey JM, Anderson KV. Intraflagellar transport and cilium-based signaling. Cell 2006, 125: 439–442.
- 37 Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 2005, 1: e53.
- 38 Incardona JP, Gruenberg J, Roelink H. Sonic hedgehog induces the segregation of patched and smoothened in endosomes. Curr Biol 2002, 12: 983–995.
- 39 Varjosalo M, Li SP, Taipale J. Divergence of hedgehog signal transduction mechanism between Drosophila and mammals. Dev Cell 2006, 10: 177–186.
- 40 Merchant M, Evangelista M, Luoh SM, Frantz GD, Chalasani S, Carano RA, Van Hoy M et al. Loss of the serine/threonine kinase fused results in postnatal growth defects and lethality due to progressive hydrocephalus. Mol Cell Biol 2005, 25: 7054–7068.
- 41 Chen MH, Gao N, Kawakami T, Chuang PT. Mice deficient in the fused homolog do not exhibit phenotypes indicative of perturbed hedgehog signaling during embryonic development. Mol Cell Biol 2005, 25: 7042–7053.
- 42 Eggenschwiler JT, Espinoza E, Anderson KV. Rab23 is an essential negative regulator of the mouse sonic hedgehog signaling pathway. Nature 2001, 412: 194–198.
- 43 Reiter JF, Skarnes WC. Tectonic, a novel regulator of the hedgehog pathway required for both activation and inhibition. Genes Dev 2006, 20: 22–27.
- 44 Svard J, Henricson KH, Persson-Lek M, Rozell B, Lauth M, Bergstrom A, Ericson J et al. Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian hedgehog signaling pathway. Dev Cell 2006, 10: 187–197.
- 45 Barnfield PC, Zhang X, Thanabalasingham V, Yoshida M, Hui CC. Negative regulation of Gli1 and Gli2 activator function by suppressor of fused through multiple mechanisms. Differentiation 2005, 73: 397–405.
- 46 Kinzler KW, Ruppert JM, Bigner SH, Vogelstein B. The Gli gene is a member of the Krüppel family of zinc finger proteins. Nature 1988, 332: 371–374.
- 47 Ruppert JM, Kinzler KW, Wong AJ, Bigner SH, Kao FT, Law ML, Seuanez HN et al. The Gli-Krüppel family of human genes. Mol Cell Biol 1988, 8: 3104–3113.
- 48 Sheng T, Chi S, Zhang X, Xie J. Regulation of Gli1 localization by the cAMP/protein kinase A signaling axis through a site near the nuclear localization signal. J Biol Chem 2006, 281: 9–12.
- 49 Kogerman P, Grimm T, Kogerman L, Krause D, Unden AB, Sandstedt B, Toftgard R et al. Mammalian Suppressor-of-Fused modulates nuclear-cytoplasmic shuttling of Gli1. Nat Cell Biol 1999, 1: 312–319.
- 50 Stecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V, Beermann F, Ruiz IAA. Melanomas require hedgehog-Gli signaling regulated by interactions between Gli1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA 2007, 104: 5895–5900.
- 51 Pan Y, Bai CB, Joyner AL, Wang B. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol 2006, 26: 3365–3377.
- 52 Huntzicker EG, Estay IS, Zhen H, Lokteva LA, Jackson PK, Oro AE. Dual degradation signals control Gli protein stability and tumor formation. Genes Dev 2006, 20: 276–281.
- 53 Wang B, Li Y. Evidence for the direct involvement of β-TrCP in Gli3 protein processing. Proc Natl Acad Sci USA 2006, 103: 33–38.
- 54 Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico MA, Alimandi M et al. Numb is a suppressor of hedgehog signaling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol 2006, 8: 1415–1423.
- 55 Jiang J. Regulation of Hh/Gli signaling by dual ubiquitin pathways. Cell Cycle 2006, 5: 2457–2463.
- 56 Huangfu D, Anderson KV. Signaling from SMO to Ci/Gli: conservation and divergence of hedgehog pathways from Drosophila to vertebrates. Development 2006, 133: 3–14.
- 57 Kasper M, Schnidar H, Neill GW, Hanneder M, Klingler S, Blaas L, Schmid C et al. Selective modulation of hedgehog/Gli target gene expression by epidermal growth factor signaling in human keratinocytes. Mol Cell Biol 2006, 26: 6283–6298.
- 58 Cheng SY, Bishop JM. Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci USA 2002, 99: 5442–5447.
- 59 Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996, 85: 841–851.
- 60 Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996, 272: 1668–1671.
- 61 Epstein E Jr. Genetic determinants of basal cell carcinoma risk. Med Pediatr Oncol 2001, 36: 555–558.
- 62 Gorlin RJ. Nevoid basal-cell carcinoma syndrome. Medicine (Baltimore) 1987, 66: 98–113.
- 63 Gorlin RJ. Living history-biography: from oral pathology to craniofacial genetics. Am J Med Genet 1993, 46: 317–334.
- 64 Gorlin RJ, Goltz RW. Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. A syndrome. N Engl J Med 1960, 262: 908–912.
- 65 Gailani MR, Bale SJ, Leffell DJ, DiGiovanna JJ, Peck GL, Poliak S, Drum MA et al. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell 1992, 69: 111–117.
- 66 Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 1996, 14: 78–81.
- 67 Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott MP. Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by hedgehog. Genes Dev 1996, 10: 301–312.
- 68 Lindstrom E, Shimokawa T, Toftgard R, Zaphiropoulos PG. PTCH mutations: distribution and analyses. Hum Mutat 2006, 27: 215–219.
- 69 Bale AE, Yu KP. The hedgehog pathway and basal cell carcinomas. Hum Mol Genet 2001, 10: 757–762.
- 70 Goodrich LV, Milenkovic L, Higgins KM, Scott MP. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997, 277: 1109–1113.
- 71 Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 1998, 4: 619–622.
- 72 Aszterbaum M, Beech J, Epstein EH Jr. Ultraviolet radiation mutagenesis of hedgehog pathway genes in basal cell carcinomas. J Investig Dermatol Symp Proc 1999, 4: 41–45.
- 73 Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM et al. Activating smoothened mutations in sporadic basal-cell carcinoma. Nature 1998, 391: 90–92.
- 74 Lam CW, Xie J, To KF, Ng HK, Lee KC, Yuen NW, Lim PL et al. A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 1999, 18: 833–836.
- 75 Reifenberger J, Wolter M, Knobbe CB, Kohler B, Schonicke A, Scharwachter C, Kumar K et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 2005, 152: 43–51.
- 76 Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P, Reifenberger G. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 1998, 58: 1798–1803.
- 77 Couve-Privat S, Bouadjar B, Avril MF, Sarasin A, Daya-Grosjean L. Significantly high levels of ultraviolet-specific mutations in the smoothened gene in basal cell carcinomas from DNA repair-deficient xeroderma pigmentosum patients. Cancer Res 2002, 62: 7186–7189.
- 78 Xie J, Aszterbaum M, Zhang X, Bonifas JM, Zachary C, Epstein E, McCormick F. A role of PDGFR? in basal cell carcinoma proliferation. Proc Natl Acad Sci USA 2001, 98: 9255–9259.
- 79 Athar M, Li C, Tang X, Chi S, Zhang X, Kim AL, Tyring SK et al. Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res 2004, 64: 7545–7552.
- 80 Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR et al. Widespread requirement for hedgehog ligand stimulation in growth of digestive tract tumors. Nature 2003, 425: 846–851.
- 81 Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signaling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003, 422: 313–317.
- 82 Ma X, Chen K, Huang S, Zhang X, Adegboyega PA, Evers BM, Zhang H et al. Frequent activation of the hedgehog pathway in advanced gastric adenocarcinomas. Carcinogenesis 2005, 26: 1698–1705.
- 83 Huang S, He J, Zhang X, Bian X, Yang L, Xie G, Zhang K et al. Activation of the hedgehog pathway in human hepatocellular carcinomas. Carcinogenesis 2006, 27: 1334–1340.
- 84 Ma X, Sheng T, Zhang Y, Zhang X, He J, Huang S, Chen K et al. Hedgehog signaling is activated in subsets of esophageal cancers. Int J Cancer 2006, 118: 139–148.
- 85 Thayer SP, Pasca di Magliano M, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, Qi YP et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003, 425: 851–856.
- 86 Pasca Di Magliano M, Sekine S, Ermilov A, Ferris J, Dlugosz AA, Hebrok M. Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev 2006, 20: 3161–3173.
- 87 Fan L, Pepicelli CV, Dibble CC, Catbagan W, Zarycki JL, Laciak R, Gipp J et al. Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 2004, 145: 3961–3970.
- 88 Sheng T, Li C, Zhang X, Chi S, He N, Chen K, McCormick F et al. Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer 2004, 3: 29.
- 89 Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, Beyna M et al. Inhibition of prostate cancer proliferation by interference with sonic hedgehog-Gli1 signaling. Proc Natl Acad Sci USA 2004, 101: 12561–12566.
- 90 Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT et al. Hedgehog signaling in prostate regeneration, neoplasia and metastasis. Nature 2004, 431: 707–712.
- 91 Ehtesham M, Sarangi A, Valadez JG, Chanthaphaychith S, Becher MW, Abel TW, Thompson RC et al. Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene 2007, 26: 5752–5761.
- 92 Lindemann RK. Stroma-initiated hedgehog signaling takes center stage in B-cell lymphoma. Cancer Res 2008, 68: 961–964.
- 93 Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 2005, 7: 86–95.
- 94 Rubin LL, De Sauvage FJ. Targeting the hedgehog pathway in cancer. Nat Rev Drug Discov 2006, 5: 1026–1033.
- 95 Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T, McKinnon PJ. Loss of Suppressor-of-Fused function promotes tumorigenesis. Oncogene 2007, 26: 6442–6447.
- 96 Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, Kuroki S et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 2004, 64: 6071–6074.
- 97 Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of hedgehog signaling by direct binding of cyclopamine to smoothened. Genes Dev 2002, 16: 2743–2748.
- 98 Sanchez P, Ruiz I, Altaba A. In vivo inhibition of endogenous brain tumors through systemic interference of hedgehog signaling in mice. Mech Dev 2005, 122: 223–230.
- 99 Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, Chen JK et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 2002, 297: 1559–1561.
- 100 Williams JA, Guicherit OM, Zaharian BI, Xu Y, Chai L, Wichterle H, Kon C et al. Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA 2003, 100: 4616–4621.
- 101 Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H, Bumcrot D et al. Small-molecule modulators of hedgehog signaling: identification and characterization of smoothened agonists and antagonists. J Biol 2002, 1: 10.
- 102 Chen JK, Taipale J, Young KE, Maiti T, Beachy PA. Small molecule modulation of smoothened activity. Proc Natl Acad Sci USA 2002, 99: 14071–14076.
- 103 Lauth M, Bergstrom A, Shimokawa T, Toftgard R. Inhibition of Gli-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA 2007, 104: 8455–8460.
- 104 Bijlsma MF, Spek CA, Zivkovic D, Van De Water S, Rezaee F, Peppelenbosch MP. Repression of smoothened by patched-de-pendent (pro-)vitamin D3 secretion. PLoS Biol 2006, 4: e232.
- 105 Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA. Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 1996, 383: 407–413.
- 106 St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999, 13: 2072–2086.
- 107 Bitgood MJ, Shen L, McMahon AP. Sertoli cell signaling by desert hedgehog regulates the male germline. Curr Biol 1996, 6: 298–304.
- 108 Nieuwenhuis E, Motoyama J, Barnfield PC, Yoshikawa Y, Zhang X, Mo R, Crackower MA et al. Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia. Mol Cell Biol 2006, 26: 6609–6622.
- 109 Lee Y, Miller HL, Russell HR, Boyd K, Curran T, McKinnon PJ. Patched2 modulates tumorigenesis in patched1 heterozygous mice. Cancer Res 2006, 66: 6964–6971.
- 110 Zhang W, Yi MJ, Chen X, Cole F, Krauss RS, Kang JS. Cortical thinning and hydrocephalus in mice lacking the immunoglobulin superfamily member Cdo. Mol Cell Biol 2006, 26: 3764–3772.
- 111 Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 2001, 105: 781–792.
- 112 Park HL, Bai C, Platt KA, Matise MP, Beeghly A, Hui CC, Nakashima M et al. Mouse Gli1 mutants are viable but have defects in Shh signaling in combination with a Gli2 mutation. Development 2000, 127: 1593–1605.
- 113 Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 1998, 20: 54–57.
- 114 Qi M, Zhuo M, Skalhegg BS, Brandon EP, Kandel ER, McKnight GS, Idzerda RL. Impaired hippocampal plasticity in mice lacking the Cp1 catalytic subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci USA 1996, 93: 1571–1576.
- 115 Cummings DE, Brandon EP, Planas JV, Motamed K, Idzerda RL, McKnight GS. Genetically lean mice result from targeted disruption of the RII β subunit of protein kinase A. Nature 1996, 382: 622–626.
- 116 Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3β in cell survival and NF-KB activation. Nature 2000, 406: 86–90.
- 117 Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F et al. Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 2003, 4: 799–812.
- 118 Singer JD, Gurian-West M, Clurman B, Roberts JM. Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev 1999, 13: 2375–2387.
- 119 Petersen PH, Zou K, Hwang JK, Jan YN, Zhong W. Progenitor cell maintenance requires Numb and Numblike during mouse neurogenesis. Nature 2002, 419: 929–934.
- 120 O'Driscoll L, McMorrow J, Doolan P, McKiernan E, Mehta JP, Ryan E, Gammell P et al. Investigation of the molecular profile of basal cell carcinoma using whole genome microarrays. Mol Cancer 2006, 5: 74.
- 121 Raffel C, Jenkins RB, Frederick L, Hebrink D, Alderete B, Fults DW, James CD. Sporadic medulloblastomas contain PTCH mutations. Cancer Res 1997, 57: 842–845.
- 122 Xie J, Johnson RL, Zhang X, Bare JW, Waldman FM, Cogen PH, Menon AG et al. Mutations of the patched gene in several types of sporadic extracutaneous tumors. Cancer Res 1997, 57: 2369–2372.
- 123 Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R et al. Mutations in Su(Fu) predispose to medulloblastoma. Nat Genet 2002, 31: 306–310.
- 124 Di Marcotullio L, Ferretti E, De Smaele E, Argenti B, Mincione C, Zazzeroni F, Gallo R et al. REN(KCTD11) is a suppressor of hedgehog signaling and is deleted in human medulloblastoma. Proc Natl Acad Sci USA 2004, 101: 10833–10838.
- 125 Clement V, Sanchez P, De Tribolet N, Radovanovic I, Ruiz I Altaba A. Hedgehog-Gli1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007, 17: 165–172.
- 126 Feng YZ, Shiozawa T, Miyamoto T, Kashima H, Kurai M, Suzuki A, Ying-Song J et al. Over-expression of hedgehog signaling molecules and its involvement in the proliferation of endometrial carcinoma cells. Clin Cancer Res 2007, 13: 1389–1398.
- 127 Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006, 66: 6063–6071.
- 128 Wolf I, Bose S, Desmond JC, Lin BT, Williamson EA, Karlan BY, Koeffler HP. Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of PTCH in breast cancer. Breast Cancer Res Treat 2007, 105: 139–155.
- 129 Mukherjee S, Frolova N, Sadlonova A, Novak Z, Steg A, Page GP, Welch DR et al. Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer. Cancer Biol Ther 2006, 5: 674–683.
- 130 Mori Y, Okumura T, Tsunoda S, Sakai Y, Shimada Y. Gli1 expression is associated with lymph node metastasis and tumor progression in esophageal squamous cell carcinoma. Oncology 2006, 70: 378–389.
- 131 Lee SY, Han HS, Lee KY, Hwang TS, Kim JH, Sung IK, Park HS et al. Sonic hedgehog expression in gastric cancer and gastric adenoma. Oncol Rep 2007, 17: 1051–1055.
- 132 Ma XL, Sun HJ, Wang YS, Huang SH, Xie JW, Zhang HW. Study of sonic hedgehog signaling pathway related molecules in gastric carcinoma. World J Gastroenterol 2006, 12: 3965–3969.
- 133 Fukaya M, Isohata N, Ohta H, Aoyagi K, Ochiya T, Saeki N, Yanagihara K et al. Hedgehog signal activation in gastric pit cell and in diffuse-type gastric cancer. Gastroenterology 2006, 131: 14–29.
- 134 Morton JP, Mongeau ME, Klimstra DS, Morris JP, Lee YC, Kawaguchi Y, Wright CV et al. Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci USA 2007, 104: 5103–5108.
- 135 Liu MS, Yang PY, Yeh TS. Sonic hedgehog signaling pathway in pancreatic cystic neoplasms and ductal adenocarcinoma. Pancreas 2007, 34: 340–346.
- 136 Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, Karikari C et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 2007, 67: 2187–2196.
- 137 Gao J, Li Z, Chen Z, Shao J, Zhang L, Xu G, Tu Z et al. Antisense SMO under the control of the PTCH1 promoter delivered by an adenoviral vector inhibits the growth of human pancreatic cancer. Gene Ther 2006, 13: 1587–1594.
- 138 Ohuchida K, Mizumoto K, Fujita H, Yamaguchi H, Konomi H, Nagai E, Yamaguchi K et al. Sonic hedgehog is an early developmental marker of intraductal papillary mucinous neoplasms: clinical implications of mRNA levels in pancreatic juice. J Pathol 2006, 210: 42–48.
- 139 Kayed H, Kleeff J, Osman T, Keleg S, Buchler MW, Friess H. Hedgehog signaling in the normal and diseased pancreas. Pancreas 2006, 32: 119–129.
- 140 Martin ST, Sato N, Dhara S, Chang R, Hustinx SR, Abe T, Maitra A et al. Aberrant methylation of the human hedgehog-interacting protein (HHIP) gene in pancreatic neoplasms. Cancer Biol Ther 2005, 4: 728–733.
- 141 Kayed H, Kleeff J, Esposito I, Giese T, Keleg S, Giese N, Buchler MW et al. Localization of the human hedgehog-interacting protein (HIP) in the normal and diseased pancreas. Mol Carcinog 2005, 42: 183–192.
- 142 Olsen CL, Hsu PP, Glienke J, Rubanyi GM, Brooks AR. Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors. BMC Cancer 2004, 4: 43.
- 143 Huang S, He J, Zhang X, Bian Y, Yang L, Xie G, Zhang K, Tang W, Stelter AA, Wang Q et al. Activation of the hedgehog pathway in human hepatocellular carcinomas. Carcinogenesis 2006, 27: 1334–1340.
- 144 Sicklick JK, Li YX, Jayaraman A, Kannangai R, Qi Y, Vivekanandan P, Ludlow JW et al. Dysregulation of the hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 2006, 27: 748–757.
- 145 Liu YJ, Wang Q, Li W, Huang XH, Zhen MC, Huang SH, Chen LZ et al. Rab23 is a potential biological target for treating hepatocellular carcinoma. World J Gastroenterol 2007, 13: 1010–1017.
- 146 Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 2007, 27: 55–76.
- 147 Patil MA, Zhang J, Ho C, Cheung ST, Fan ST, Chen X. Hedgehog signaling in human hepatocellular carcinoma. Cancer Biol Ther 2006, 5: 111–117.
- 148 Dierks C, Grbic J, Zirlik K, Beigi R, Englund NP, Guo GR, Veelken H et al. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 2007, 13: 944–951.
- 149 Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J, Devereux WL et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 2007, 104: 4048–4053.
- 150 Hu D, Helms JA. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 1999, 126: 4873–4884.
- 151 Cooper MK, Porter JA, Young KE, Beachy PA. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 1998, 280: 1603–1607.
- 152 Mistretta CM, Liu HX, Gaffield W, MacCallum DK. Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: fungiform papillae double in number and form in novel locations in dorsal lingual epithelium. Dev Biol 2003, 254: 1–18.
- 153 Borzillo GV, Lippa B. The hedgehog signaling pathway as a target for anticancer drug discovery. Curr Top Med Chem 2005, 5: 147–157.