Activity assay of membrane transport proteins
Corresponding Author
Hao Xie
Department of Biological Science and Biotechnology, Institute of Science, Wuhan University of Technology, Wuhan 430070, China
*Corresponding author: Tel, 86-27-63391990; Fax, 86-27-87875245; E-mail, [email protected]Search for more papers by this authorCorresponding Author
Hao Xie
Department of Biological Science and Biotechnology, Institute of Science, Wuhan University of Technology, Wuhan 430070, China
*Corresponding author: Tel, 86-27-63391990; Fax, 86-27-87875245; E-mail, [email protected]Search for more papers by this authorThis work was supported by a grant from the National Natural Science Foundation of China (No. 30600004)
Abstract
Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters, transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiologi-cal assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.
References
- 1 Wallin E, Von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 1998, 7: 1029–1038.
- 2 Ahram M, Litou ZI, Fang R, Al-Tawallbeh G. Estimation of membrane proteins in the human proteome. In Silico Biol 2006, 6: 379–386.
- 3 Drews J. Drug discovery: a historical perspective. Science 2000, 287: 1960–1964.
- 4 Kiefer H. In vitro folding of alpha-helical membrane proteins. Biochim Biophys Acta 2003, 1610: 57–62.
- 5 Moss GP for the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). Classification of membrane transport proteins: Introduction. Available at http://www.chem.qmul.ac.uk/iubmb/mtp/intro.html.
- 6 Basting D, Lehner I, Lorch M, Glaubitz C. Investigating transport proteins by solid state NMR. Naunyn Schmiedebergs Arch Pharmacol 2006, 372: 451–464.
- 7 Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393: 537–544.
- 8 McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001, 413: 852–856.
- 9 Paulsen IT, Sliwinski MK, Saier MH Jr. Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. J Mol Biol 1998, 277: 573–592.
- 10 Guan L, Kaback HR. Lessons from lactose permease. Annu Rev Biophys Biomol Struct 2006, 35: 67–91.
- 11 Baldwin SA, McConkey GA, Cass CE, Young JD. Nucleoside transport as a potential target for chemotherapy in malaria. Curr Pharm Des 2007, 13: 569–580.
- 12 Dahl SG, Sylte I, Ravna AW. Structures and models of transporter proteins. J Pharmacol Exp Ther 2004, 309: 853–860.
- 13 Ward A, Sanderson NM, O'Reilly J, Rutherford NG, Poolman B, Henderson PJF. The amplified expression, identification, purification, assay, and properties of hexahistidine-tagged bacterial membrane transport proteins. In: SA Baldwin, ed. Membrane Transport—A Practical Approach. Oxford : Oxford University Press 1999.
- 14 Nørholm MH, Dandanell G. Specificity and topology of the Es-cherichia coli xanthosine permease, a representative of the NHS subfamily of the major facilitator superfamily. J Bacteriol 2001, 183: 4900–4904.
- 15 Xie H, Patching SG, Gallagher MP, Litherland GJ, Brough AR, Venter H, Yao SY et al. Purification and properties of the Escherichia coli nucleoside transporter NupG, a paradigm for a major facilitator transporter sub-family. Mol Membr Biol 2004, 21: 323–336.
- 16 Mohanty AK, Wiener MC. Membrane protein expression and production: effects of polyhistidine tag length and position. Protein Expr Purif 2004, 33: 311–325.
- 17 Bai X, Chen X, Fen Z, Wu D, Hou K, Cheng G, Peng L. Expression of EGFP/SDCT1 fusion protein, subcellular localization signal analysis, tissue distribution and electrophysiological function study. Sci China C Life Sci 2004, 47: 530–539.
- 18 Rogers S, Chandler JD, Clarke AL, Petrou S, Best JD. Glucose trans-porter GLUT12—functional characterization in Xenopus laevis oocytes. Biochem Biophys Res Commun 2003, 308: 422–426.
- 19 Futai M. Orientation of membrane vesicles from Escherichia coli prepared by different procedures. J Membr Biol 1974, 15: 15–28.
- 20 Hugenholtz J, Hong JS, Kaback HR. ATP-driven active transport in right-side-out bacterial membrane vesicles. Proc Natl Acad Sci USA 1981, 78: 3446–3449.
- 21 Hanning I, Baumgarten K, Schott K, Heldt HW. Oxaloacetate transport into plant mitochondria. Plant Physiol 1999, 119: 1025–1031.
- 22 Kore-eda S, Yamashita T, Kanai R. Induction of light dependent pyruvate transport into chloroplasts of Mesembryanthemum crystallinum by salt stress. Plant Cell Physiol 1996, 37: 257–262.
- 23 Ie Maire M., Champeil P, Moller JV. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 2000, 1508: 86–111.
- 24 Jarvis SM. Assay of membrane transport in cells and membrane vesicles. In: SA Baldwin, ed. Membrane Transport—A Practical Approach. Oxford : Oxford University Press 1999.
- 25 Chao Y, Fu D. Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. J Biol Chem 2004, 279: 12043–12050.
- 26 Woebking B, Reuter G, Shilling RA, Velamakanni S, Shahi S, Venter H, Balakrishnan L et al. Drug-lipid A interactions on the Escherichia coli ABC transporter MsbA. J Bacteriol 2005, 187: 6363–6369.
- 27 Barros LF. Measurement of sugar transport in single living cells. Eur J Physiol 1999, 437: 763–770.
- 28 Beauclerk AA, Smith AJ. Transport of D-glucose and 3-O-methylglucose in the Cyanobacteria aphanocapsa 6714 and Nostoc strain Mac. Eur J Biochem 1978, 82: 187–197.
- 29 Buchs AE, Sasson S, Joost HG, Cerasi E. Characterization of GLUT5 domains responsible for fructose transport. Endocrinology 1998, 139: 827–831.
- 30 Raksajit W, Mäenpää P, Incharoensakdi A. Putrescine transport in a cyanobacterium Synechocystis sp. PCC 6803. J Biochem Mol Biol 2006, 39: 394–399.
- 31 Uemura T, Kashiwagi K, Igarashi K. Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J Biol Chem 2007, 282: 7733–7741.
- 32 Yamada S, Awano N, Inubushi K, Maeda E, Nakamori S, Nishino K, Yamaguchi A et al. Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Appl Environ Microbiol 2006, 72: 4735–4742.
- 33 Parche S, Beleut M, Rezzonico E, Jacobs D, Arigoni F, Titgemeyer F, Jankovic I et al. Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression. J Bacteriol 2006, 188: 1260–1265.
- 34 Elkins CA, Mullis LB. Substrate competition studies using whole-cell accumulation assays with the major tripartite multidrug efflux pumps of Escherichia coli. Antimicrob Agents Chemother 2007, 51: 923–929.
- 35 Maulen NP, Henriquez EA, Kempe S, Cárcamo JG, Schmid-Kotsas A, Bachem M, Grünert A et al. Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells. J Biol Chem 2003, 278: 9035–9041.
- 36 Li S, Whorton AR. Identification of stereoselective transporters for S-nitroso-L-cysteine. J Biol Chem 2005, 280: 20102–20110.
- 37 Anzai N, Miyazaki H, Noshiro R, Khamdang S, Chairoungdua A, Shin HJ, Enomoto A et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J Biol Chem 2004, 279: 45942–45950.
- 38 Perry JL, Dembla-Rajpal N, Hall LA, Pritchard JB. A three-dimensional model of human organic anion transporter. J Biol Chem 2006, 281: 38071–38079.
- 39 Reinders A, Panshyshyn JA, Ward JM. Analysis of transport activity of Arabidopsis sugar alcohol permease homolog AtPLT5. J Biol Chem 2005, 280: 1594–1602.
- 40 Liu K, Nagase H, Huang CG, Calamita G, Agre P. Purification and functional characterization of aquaporin-8. Biol Cell 2006, 98: 153–161.
- 41 Ames GF, Nikaido K, Groarke J, Petithory J. Reconstitution of periplasmic transport in inside-out membrane vesicles. J Biol Chem 1989, 264: 3998–4002.
- 42 Thanassi DG, Cheng LW, Nikaido H. Active efflux of bile salts by Escherichia coli. J Bacteriol 1997, 17: 2512–2518.
- 43 Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol Microbiol 2004, 51: 1401–1412.
- 44 Soksawatmaekhin W, Uemura T, Fukiwake N, Kashiwagi K, Igarashi K. Identification of the cadaverine recognition site on the cadaver-ine-lysine antiporter CadB. J Biol Chem 2006, 281: 29213–29220.
- 45 Banerjee RK, Datta AG. Proteoliposome as the model for the study of membrane-bound enzymes and transport proteins. Mol Cell Biochem 1983, 50: 3–15.
- 46 Juge N, Yoshida Y, Yatsushiro S, Omote H, Moriyama Y. Vesicular glutamate transporter contains two independent transport machineries. J Bacteriol 2006, 281: 39499–39506.
- 47 Bowsher CG, Scrase-Field EF, Esposito S, Emes MJ, Tetlow IJ. Characterization of ADP-glucose transport across the cereal endosperm amyloplast envelope. J Exp Bot 2007, 58: 1321–1332.
- 48 Eytan GD, Regev R, Assaraf YG. Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis. J Biol Chem 1996, 271: 3172–3178.
- 49 Eytan GD, Borgnia MJ, Regev R, Assaraf YG. Transport of polypeptide ionophores into proteoliposomes reconstituted with rat liver P-glycoprotein. J Biol Chem 1994, 269: 26058–26065.
- 50 McDonald TP, Henderson PJ. Cysteine residues in the D-galactose- H+ symport protein of Escherichia coli: effects of mutagenesis on transport, reaction with N-ethylmaleimide and antibiotic binding. Biochem J 2001, 353: 709–717.
- 51 Martin GE, Rutherford NG, Henderson PJ, Walmsley AR. Kinetics and thermodynamics of the binding of forskolin to the galactose-H+ transport protein, GaIP, of Escherichia coli. Biochem J 1995, 308: 261–268.
- 52 Craik JD, Young JD, Cheeseman CI. GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells. Am J Physiol 1998, 274: 112–119.
- 53 Bevers LE, Hagedoorn PL, Krijger GC, Hagen WR. Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters. J Bacteriol 2006, 188: 6498–6505.
- 54 Wei Y, Fu D. Selective metal binding to a membrane-embedded aspartate in the Escherichia coli metal transporter YiiP (FieF). J Biol Chem 2005, 280: 33716–33724.
- 55 Patching SG, Brough AR, Herbert RB, Rajakarier JA, Henderson PJ, Middleton DA. Substrate affinities for membrane transport proteins determined by 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy. J Am Chem Soc 2004, 126: 3072–3080.
- 56 Quick M, Javitch JA. Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc Natl Acad Sci USA 2007, 104: 3603–3608.
- 57 Benabdelhak H, Kiontke S, Horn C, Ernst R, Blight MA, Holland IB, Schmitt L. A specific interaction between the NBD of the ABC-transporter HlyB and a C-terminal fragment of its transport substrate haemolysin A. J Mol Biol 2003, 327: 1169–1179.
- 58 Priest BT, Swensen AM, McManus OB. Automated electrophysiol-ogy in drug discovery. Curr Pharm Des 2007, 13: 2325–2337.
- 59 Glaaser IW, Bankston JR, Liu H, Tateyama M, Kass RS. A carboxyl-terminal hydrophobic interface is critical to sodium channel function. J Biol Chem 2006, 281: 24015–24023.
- 60 Romanenko V, Nakamoto T, Srivastava A, Melvin JE, Begenisich T. Molecular identification and physiological roles of parotid aci-nar cell maxi-K channels. J Biol Chem 2006, 281: 27964–27972.
- 61 Vicente R, Escalada A, Villalonga N, Texidó L, Roura-Ferrer M, Martín-Satué M, López-Iglesias C et al. Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J Biol Chem 2006, 281: 37675–37685.
- 62 Heuberger EH, Poolman B. A spectroscopic assay for the analysis of carbohydrate transport reactions. Eur J Biochem 2000, 267: 228–234.
- 63 Heuberger EH, Smits E, Poolman B. Xyloside transport by XylP, a member of the galactoside-pentoside-hexuronide family. J Biol Chem 2001, 276: 34465–34472.
- 64 Chao Y, Fu D. Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J Biol Chem 2004, 279: 17173–17180.
- 65 Kozono D, Ding X, Kwasaki I, Meng X, Kamagata Y, Agre P, Kitagawa Y. Functional expression and characterization of an archaeal aquaporin. J Biol Chem 2003, 278: 10649–10656.
- 66 Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D, Svelto M. The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 2005, 280: 17149–17153.
- 67 Mallo RC, Ashby MT. AqpZ-mediated water permeability in Escherichia coli measured by stopped-flow spectroscopy. J Bacteriol 2006, 188: 820–822.