Mechanisms for pro matrix metalloproteinase activation
Corresponding Author
GILLIAN MURPHY
School of Biological Sciences, University of East Anglia, Norwich, UK
School of Biological Sciences, University of East Anglia, Norwich, UK.Search for more papers by this authorHEATHER STANTON
School of Biological Sciences, University of East Anglia, Norwich, UK
Search for more papers by this authorGEORGINA BUTLER
School of Biological Sciences, University of East Anglia, Norwich, UK
Search for more papers by this authorVERA KNÄUPER
School of Biological Sciences, University of East Anglia, Norwich, UK
Search for more papers by this authorSUSAN ATKINSON
School of Biological Sciences, University of East Anglia, Norwich, UK
Search for more papers by this authorJELENA GAVRILOVIC
School of Biological Sciences, University of East Anglia, Norwich, UK
Search for more papers by this authorCorresponding Author
GILLIAN MURPHY
School of Biological Sciences, University of East Anglia, Norwich, UK
School of Biological Sciences, University of East Anglia, Norwich, UK.Search for more papers by this authorHEATHER STANTON
School of Biological Sciences, University of East Anglia, Norwich, UK
Search for more papers by this authorGEORGINA BUTLER
School of Biological Sciences, University of East Anglia, Norwich, UK
Search for more papers by this authorVERA KNÄUPER
School of Biological Sciences, University of East Anglia, Norwich, UK
Search for more papers by this authorSUSAN ATKINSON
School of Biological Sciences, University of East Anglia, Norwich, UK
Search for more papers by this authorJELENA GAVRILOVIC
School of Biological Sciences, University of East Anglia, Norwich, UK
Search for more papers by this authorAbstract
The activation of pro matrix metalloproteinases (MMPs) by sequential proteolysis of the propeptide blocking the active site cleft is regarded as one of the key levels of regulation of these proteinases. Potential physiological mechanisms including cell-associated plasmin generation by urokinase-like plasminogen activator, or the action of cell surface MT1-MMPs appear to be involved in the initiation of cascades of pro MMP activation. Gelatinase A, collagenase 3 and gelatinase B may be activated by MT-MMP based mechanisms, as evidenced by both biochemical and cell based studies. Hence the regulation of MT-MMPs themselves becomes critical to the determination of MMP activity. This includes activation, assembly at the cell surfaces as TIMP-2 complexes and subsequent inactivation by proteolysis or TIMP inhibition.
REFERENCES
- 1 Mignatti P., Robbins E., Rifkin DE. Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell, 1986; 47: 487–98.
- 2 Murphy G., Atkinson S., Ward R., Gavrilovic J., Reynolds JJ. The role of plasminogen activators in the regulation of connective tissue metalloproteinases. Ann NY Acad Sci, 1992; 667: 1–12.
- 3 Okada Y., Morodomi T., Enghild JJ, Suzuki K., Yasui A., Nakanishi I., Salvesen G., Nagase H.. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem, 1990; 197: 721–30.
- 4 Knäuper V., Will H., López-Otin C., Smith B., Atkinson SJ, Stanton H., Hembry RM, Murphy G.. Cellular mechanisms for human procollagenase-3 (MMP-13) activation-Evidence that MTI-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme. J Biol Chem, 1996; 271: 17124–31.
- 5 Knäuper V., Smith B., López-Otin C., Murphy G.. Activation of progelatinase B (proMMP-9) by active collagenase-3 (MMP-13). Eur J Biochem, 1997; 248: 369–73.
- 6 Cowell S., Knäuper V., Stewart ML, D'Ortho MP, Stanton H., Hembry R., López-Otin C., Reynolds JJ, Murphy G.. Induction of matrix metalloproteinase activation cascades based on membrane type I matrix metalloproteinase. Biochem J, 1998; 331: 453–8.
- 7 Ohuchi E., Imai K., Fujii Y., Sato H., Seiki M., Okada Y.. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem, 1997; 272: 2446–51.
- 8 D'Ortho MR, Will H., Atkinson S., Butler G., Messent A., Gavrilovic J., Smith B., Timpl R., Zardi L., Murphy G.. Membrane-type matrix metalloproteinases 1 and 2 (MT1-and MT2-MMP) exhibit a broad spectrum proteolytic capacity comparable to many matrix metalloproteinases. Eur J Biochem, 1997; 250: 751–7.
- 9 Atkinson SJ, Crabbe T., Cowell S., Ward RV, Butler MJ, Sato H., Seiki M., Reynolds JJ, Murphy G.. Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes. J Biol Chem, 1995; 270: 30479–85.
- 10 Will H., Atkinson SJ, Butler GS, Smith B., Murphy G.. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation-Regulation by TIMP-2 and TIMP-3. J Biol Chem, 1996; 271: 17119–23.
- 11 Butler GS, Will H., Atkinson SJ, Murphy G.. Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem, 1997; 244: 653–7.
- 12 Murphy G., Willenbrock F., Ward RV, Cockett MI, Eaton D., Docherty AJP. The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem J, 1992; 283: 637–41.
- 13 Ward RV, Atkinson SJ, Reynolds JJ, Murphy G.. Cell surface-mediated activation of progelatinase A: demonstration of the involvement of the C-terminal domain of progelatinase A in cell surface binding and activation of progelatinase A by primary fibroblasts. Biochem J, 1994; 304: 263–9.
- 14 Strongin AY, Marmer BL, Grant GA, Goldberg GI. Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J Biol Chem, 1993; 268: 14033–9.
- 15 Strongin AY, Collier I., Bannikov, G., Marmer BL, Grant GA, Goldberg, GI. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem, 1995; 270: 5331–8.
- 16 Cao J., Sata H., Takino T., Seiki M.. The C-terminal region of membrane type matrix metalloproteinase is a functional transmembrane domain required for progelatinase A activation. J Biol Chem, 1995; 270: 801–5.
- 17 Sato H., Takino, T. Kinoshita, T., Imai K., Okada Y., Stevenson WGS, Seiki M.. Cell surface binding and activation of gelatinase A induced by expression of membrane-type-1-matrix metalloproteinase (MT1-MMP). FEBS Lett, 1996; 385: 238–40.
- 18 Cao JA, Rehemtulla A., Bahou W., Zucker S.. Membrane type matrix metalloproteinase 1 activates pro-gelatinase A without furin cleavage of the N-terminal domain. J Biol Chem, 1996; 271: 30174–80.
- 19 Butler GS, Butler M., Atkinson SJ, Will H., Tamura T., Schade van Westrum S., Crabbe T., Clements J., D'Ortho M-P, Murphy G.. The TIMP-2-membrane type I metalloproteinase ‘receptor’ regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem, 1997; 273: 871–80.
- 20 Lee AY, Akers KT, Collier M., Li L., Eisen AZ, Seltzer JL. Intracellular activation of gelatinase A (72-kDa type IV collagenase) by normal fibroblasts. Proc Natl Acad Sci USA, 1997; 94: 4424–9.
- 21 Pendás AM, Knäuper V., Puente XS, Llano E., Mattei MG, Apte S., Murphy G., López-Otin C.. Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J Biol Chem, 1997; 272: 4281–6.
- 22 Knäuper V., Cowell S., Smith B., López-Otin C., O'Shea M., Morris H., Zardi L., Murphy G.. The role of the c-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem, 1997; 272: 7608–16.
- 23 Migita K., Eguchi K., Kawabe Y., Ichinose Y., Tsukada T., Aoyagi T., Nakamura H., Nagataki S.. TNF-α-mediated expression of membrane-type matrix metalloproteinase in rheumatoid synovial fibroblasts. Immunology, 1996; 89: 553–7.
- 24 Lohi J., Lehti K., Westermarck J., Kähäri VM, Keski-Oja J.. Regulation of membrane-type matrix metalloproteinase-1 expression by growth factors and phorbol 12-myr-istate 13-acetate. Eur J Biochem, 1996; 239: 239–47.
- 25 Yang MZ, Hayashi K., Hayashi M., Fujii JT, Kurkinen M.. Cloning and developmental expression of a membrane-type matrix metalloproteinase from chicken. J Biol Chem, 1996; 271: 25548–54.
- 26 Gilles C., Polette M., Seiki M., Birembaum P., Thompson EW. Implication of collagen type 1-induced membrane-type 1 matrix metalloproteinase expression and matrix metalloproteinase-2 activation in the metastatic progression of breast carcinoma. Lab Invest, 1997; 76: 651–60.
- 27 Yu M., Sato H., Seiki M., Thompson EW. Complex regulation of membrane-type matrix metalloproteinase expression and matrix metalloproteinase-2 activation by concanavalin A in MDA-MB-231 human breast cancer cells. Cancer Res, 1995; 55: 3272–7.
- 28 Thant AA, Serbulea M., Kikkawa F., Liu E., Tomoda Y., Hamaguchi M.. c-Ras is required for the activation of the matrix metalloproteinases by concanavalin A in 3Y1 cells. FEBS Lett, 1997; 406: 28–30.
- 29 Foda HD, George S., Conner C., Drews M., Tompkins DC, Zucker S.. Activation of human umbilical vein endothelial cell progelatinase A by phorbol myristate acetate: A protein kinase C-dependent mechanism involving a membrane-type matrix metalloproteinase. Lab Invest, 1996; 74: 538–45.
- 30 Tomasek JJ, Halliday NL, Updike DL, Ahern-Moore JS, Vu, TKH, Liu RW, Howard EW. Gelatinase A activation is regulated by the organization of the polymerized actin cytoskeleton. J Biol Chem, 1997; 272: 7482–7.
- 31 Ailenberg M., Silverman M.. Cellular activation of mesangial gelatinase A by cytochalasin D is accompanied by enhanced mRNA expression of both gelatinase A and its membrane-associated gelatinase A activator (MT-MMP). Biochem J, 1996; 313: 879–84.
- 32 Lohi J., Keski-Oja J.. Calcium ionophores decrease pericellular gelatinolytic activity via inhibition of 92-kDa gelatinase expression and decrease of 72-kDa gelatinase activation. J Biol Chem, 1995; 270: 17602–9.
- 33 Yu M., Sato H., Seiki M., Spiegel S., Thompson EW. Calcium influx inhibits MT1-MMP processing and blocks MMP-2 activation. FEBS Lett, 1997; 412: 568–72.
- 34 Stanton H., Gavrilovic J., Atkinson SJ, D'Ortho M-P, Yanada K., Zardi L., Murphy G.. The activation of pro MMP2 (gelatinase A) by HT1080 fibrosarcoma cells is promoted by culture on a fibronectin substrate and is concomitant with an increase in processing of MT1-MMP (MMP14) to a 45 kDa form. J Cell Sci 1998; submitted.
- 35 Yamada KM, Kennedy DW, Yamada SS, Gralnick H., Chen W-T, Akiyama SK. Monoclonal antibody and synthetic peptide inhibitors of human tumor cell migration. Cancer Res, 1990; 50: 4485–96.
- 36 Miyamoto S., Teramoto H., Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol, 1995; 131: 791–805.
- 37
Kubota S.,
Ito H.,
Ishibashi Y.,
Seyama Y..
Anti-alpha3 integrin antibody induces the activated form of matrix metalloproteinase-2 (MMP-2) with concomitant stimulation of invasion through matrigel by human rhabdomyosarcoma cells.
Int J Cancer, 1997; 70: 106–11.
10.1002/(SICI)1097-0215(19970106)70:1<106::AID-IJC16>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 38 Seftor REB, Seftor EA, Gehlsen KR, Stetler-Stevenson WG, Brown PD, Ruoslahti E., Hendrix MJC. Role of the αvβ3 integrin in human melanoma cell invasion. Proc Natl Acad Sci USA, 1992; 89: 1557–61.
- 39 Smeekens SP. Processing of protein precursors by a novel family of subtilisin-related mammalian endoproteases. BioTechnology, 1993; 11: 182–6.
- 40 Taylor JM. Transgenic rabbit models for the study of atherosclerosis. Ann NY Acad Sci, 1997; 811: 146–54.
- 41 Seidah N., Chrétien M.. Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Biotech, 1997; 8: 602–7.
- 42 Pei D., Weiss SJ. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature, 1995; 375: 244–7.
- 43 Pei DQ, Weiss SJ. Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J Biol Chem, 1996; 271: 9135–40.
- 44 Sato H., Kinoshita T., Takino T., Nakayama K., Seiki M.. Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett, 1996; 393: 101–4.
- 45 Okumura Y., Sato H., Seiki M., Kido H.. Proteolytic activation of the precursor of membrane type 1 matrix metalloproteinase by human plasmin-A possible cell surface activator. FEBS Lett, 1997; 402: 181–4.
- 46 Nakahara H., Howard L., Thompson EW, Sato H., Seiki M., Yeh YY, Chen WT. Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci USA, 1997; 94: 7959–64.
- 47 Cockett MI, Murphy G., Birch ML, O'Connel L., Crabbe T., Millican AT, Hart IR, Docherty ASP. Matrix metalloproteinases and metastatic cancer. Biochem Soc Symp, 1997; 63: 295–313.
- 48 Sato H., Tanaka M., Takino T., Inoue M., Seiki M.. Assignment of the human genes for membrane-type-1,-2 and-3 matrix metalloproteinases (MMP-14, MMP15 and MMP-16) to 14q12.2–16q12.2-q21 and 8q21 respectively by in situ hybridisation. Genomics, 1997; 39: 412–3.
- 49 Deryugina EI, Bourdon MA, Luo G-X, Reisfeld RA, Strongin A.. Matrix metalloproteinase-2 activation modulates glioma cell migration. J Cell Science, 1997; 110: 2473–82.