Phospholipid Binding Plasma Proteins Required for Antiphospholipid Antibody Detection—An Overview
Corresponding Author
John A. McIntyre PhD
Methodist Center for Reproduction and Transplantation Immunology, Indianapolis, IN
FRC Path, Center for Reproduction and Transplantation Immunology, Methodist Hospital of Indiana, 1701 N. Senate Blvd, Indianapolis, Indiana 46202Search for more papers by this authorDawn R. Wagenknecht
Methodist Center for Reproduction and Transplantation Immunology, Indianapolis, IN
Search for more papers by this authorToshitaka Sugi
Tokai University School of Medicine, Kanagawa, Japan
Search for more papers by this authorCorresponding Author
John A. McIntyre PhD
Methodist Center for Reproduction and Transplantation Immunology, Indianapolis, IN
FRC Path, Center for Reproduction and Transplantation Immunology, Methodist Hospital of Indiana, 1701 N. Senate Blvd, Indianapolis, Indiana 46202Search for more papers by this authorDawn R. Wagenknecht
Methodist Center for Reproduction and Transplantation Immunology, Indianapolis, IN
Search for more papers by this authorToshitaka Sugi
Tokai University School of Medicine, Kanagawa, Japan
Search for more papers by this authorAbstract
PROBLEM: Antibodies to phospholipid antigens (aPA) are associated with thrombosis thrombocytopenia and recurrent pregnancy loss. Contemporary data show many aPA target phospholipid-binding plasma proteins and not phospholipids. The purpose of this overview is to describe several phospholipid-binding proteins and provide data to demonstrate how the interaction between phospholipids and phospholipid binding proteins results in expression of neo-autoantigenic epitopes.
METHOD: Review of existing data.
RESULTS: Illustrations of how certain plasma proteins β2 glycoprotein I, prothrombin, high and low molecular weight kininogens interact with the anionic phospholipids, cardiolipin and phosphatidylserine and the zwitterionic phospholipid, phosphatidylethanolamine are shown and discussed. A model of aPA mediated thrombosis is presented.
CONCLUSIONS: Some aPA recognize phospholipids directly, however, the majority and many which correlate with pathology target phospholipid binding proteins. Published data indicate that aPA represent a constellation of antibodies with multiple specificities. Insight into mechanisms responsible for aPA-associated thrombosis should provide a basis for treatment.
REFERENCES
- 1 McNeil HP, Chesterman CN, Krilis SA. Immunology and clinical importance of antiphospholipid antibodies. Adv Immunol 1991; 49: 193–280.
- 2 Alarcon-Segovia D., Deleze M., Oria CV, et al. Antiphospholipid antibodies and the antiphospholipid syndrome in systemic lupus erythematosus. A prospective analysis of 500 consecutive patients. Medicine 1989; 68: 353–365.
- 3 Khamashta MA, Cervera R., Asherson RA, et al. Association of antibodies against phospholipids with heart valve disease in systemic lupus erythematosus. 1990; Lancet 335: 1541–1544.
- 4 Nihoyannopoulos P., Gomez PM, Joshi J., et al. Cardiac abnormalities in systemic lupus erythematosus. Association with raised anticardiolipin antibodies. Circulation 1990; 82: 369–375.
- 5 Klemp P., Cooper RC, Strauss FJ, et al. Anticardiolipin antibodies in ischaemic heart disease. Clin Exp Immunol 1988; 74: 254–257.
- 6 McIntyre JA, Wagenknecht DR, Faulk WP. Antiphospholipid antibodies in heart transplant recipients. Clin Cardiol 1995; 18: 575–580.
- 7 Montalban J., Codina A., Ordi J., et al. Antiphospholipid antibodies in cerebral ischemia. Stroke 1991; 22: 750–753.
- 8 Muir KW, Squire IB, Alwan W., Lees KR. Anticardiolipin antibodies in an unselected stroke population. Lancet 1994; 344: 454–456.
- 9 Koike T., Sueishi M., Funaki H., Tomioka H., Yoshida S. Antiphospholipid antibodies and biological false positive serological test for syphilis in patients with systemic lupus erythematosus. Clin Exp Immunol 1984; 56: 193–199.
- 10 Matsuura E., Igarashi Y., Fujimoto M., Ichikawa K., Suzuki T., Sumida T., Yasuda T., Koike T. Heterogeneity of anticardiolipin antibodies defined by the anticardiolipin cofactor. J Immunol 1992; 148: 3885–3891.
- 11 Sammaritano LR, Lockshin MD, Gharavi AE. Antiphospholipid antibodies differ in aPL cofactor requirement. Lupus 1992; 1: 83–90.
- 12 Canoso RT, De Olivera RM. Chlorpromazine-induced anticardiolipin antibodies and lupus anticoagulant. Absence of thrombosis. Am J Hematol 1988; 27: 272–275.
- 13 Loizou S., McCrea JD, Rudge AC, Reynolds R., Boyle CC, Harris EN. Measurement of anti-cardiolipin antibodies by an enzyme-linked immunosorbent assay (ELISA). Standardization and quantitation of results. Clin Exp Immunol 1985; 62: 738–745.
- 14 Galli M., Comfurius P., Maassen C., Hemker HC, De Baets MH, Van Breda-Vriesmon PJC, Barbui T., Zwaal RFA, Bevers EM. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet 1990; 335: 1544–1547.
- 15 McNeil HP, Simpson RJ, Chesterman CN, Krilis SA. Antiphospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation. β2-Glycoprotein I (apolipoprotein H). Proc Natl Acad Sci USA 1990; 87: 4120–4124.
- 16 Allegri F., Balestrieri G., Cattaneo R., Martinelli M., Tincani A., Barcellini W., Del Papa N., Meroni PL, Falco M., Luan FL, Valesini G., Sinico A. The plasma cofactor and anticardiolipin antibodies. Clin Exp Rheumatol 1990; 8: 613–617.
- 17 Matsuura E., Igarashi Y., Yasuda T., Koike T., Triplett DA. Anticardiolipin antibodies recognize β2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. J Exp Med 1994; 179: 457–462.
- 18 Roubey RAS, Eisenberg RA, Harper F., Winfield JB. Anticardiolipin” autoantibodies recognize β2-glycoprotein I in the absence of phospholipid. J Immunol 1995; 154: 954–960.
- 19
Wagenknecht DR,
Sugi T.,
McIntyre JA.
The evolution, evaluation and interpretation of antiphospholipid antibody assays.
Clin Immunol Newsletter
1995; 15: 28–38.
10.1016/0197-1859(95)80013-1 Google Scholar
- 20 Polz E., Wurm H., Kostner GM. Investigations on β2-glycoprotein-I in the rat. Isolation from serum and demonstration in lipoprotein density fractions. Int J Biochem 1980; 11: 265–270.
- 21 Wurm H. β2-Glycoprotein-I (apolipoprotein H) interactions with phospholipid vesicles. Int J Biochem 1984; 16: 511–515.
- 22 Schousboe I. β2-glycoprotein I. A plasma inhibitor of the contact activation of the intrinsic blood coagulation pathway. Blood 1985; 66: 1086–1091.
- 23 Day JR, O'Hara PJ, Grant FJ, Lofton-Day C., Berkaw MN, Werner P., Arnaud P. Molecular cloning and sequence analysis of the cDNA encoding human apolipoprotein H (β2-glycoprotein I). Int J Clin Lab Res 1992; 21: 256–263.
- 24 Cohnen G. Immunochemical quantitation of β2-glycoprotein I in various diseases. J Lab Clin Med 1970; 75: 212–216.
- 25 Koppe AL, Walter H., Chopra VP, Bajatzadeh M. Investigations on the genetics and population genetics of the β2-glycoprotein I polymorphism. Humangenetik 1970; 9: 164–171.
- 26 Miribel L., Day JR, Arnaud P. Detection of specific antigens following analytical isoelectric focusing by immunoblotting into nitrocellulose membranes. Protides Biol Fluids 1986; 34: 753–756.
- 27 Kamboh MI, Wagenknecht DR, McIntyre, JA. Heterogeneity of the apolipoprotein H*3 allele and its role in affecting the binding of apolipoprotein H (β2-glycoprotein I) to anionic phospholipids. Hum Genet 1995; 95: 385–388.
- 28 Matsuura E., Igarashi Y., Fugimoto M., Ichikawa K., Koike T. Anticardiolipin cofactor(s) and differential diagnosis of autoimmune disease. Lancet 1990; 336: 177–178.
- 29 Arvieux J., Darnige L., Hachulla E., Roussel B., Bensa JC, Colomb MG. Species specificity of anti-β2 glycoprotein I autoantibodies and its relevance to anticardiolipin antibody quantitation. Thromb Haemostas 1996; 75: 725–730.
- 30 McCarthy JM, Wagenknecht DR, McIntyre JA. Activity of antiphospholipid antibody ELISA cofactor in different animal sera. J Clin Lab Anal 1994; 8: 167–177.
- 31 Pengo V., Biasiolo A., Brocco T., Tonetto S., Ruffatti A. Autoantibodies to phospholipid-binding plasma proteins in patients with thrombosis and phospholipid reactive antibodies. Thromb Haemostas 1996; 75: 721–724.
- 32 Bevers EM, Galli M., Barbui T., Comfurius P., Zwaal RF. Lupus anticoagulant IgG's (LA) are not directed to phospholipids only, but to a complex of lipid-bound human prothrombin. Thromb Haemostas 1991; 66: 629.
- 33 Galli M., Comfurius, P., Barbui T., Zwaal RFA, Bevers EM. Anticoagulant activity of β2-Glycoprotein I is potentiated by a distinct subgroup of anticardiolipin antibodies. Thromb Haemost 1992; 68: 297–300.
- 34 Rao LVM, Hoang AD, Rapaport SI. Differences in the interactions of lupus anticoagulant IgG with human prothrombin and bovine prothrombin. Thromb Haemostas 1995; 73: 668–674.
- 35 Arvieux J., Darnige L., Caron C., Reber G., Bensa JC, Colomb MG. Development of an ELISA for autoantibodies to prothrombin showing their prevalence in patients with lupus anticoagulants. Thromb Haemostas 1995; 74: 1120–1125.
- 36 Wagenknecht DR, McIntyre JA. ELISA studies of phospholipid prothrombin and β2-glycoprotein I interactions. Lupus 1994; 3: 329.
- 37 Wu JR, Lentz BR. Phospholipid-specific conformational changes in human prothrombin upon binding to procoagulant acidic lipid membranes. Thromb Haemostas 1994; 71: 596.
- 38 Comfurius P., Smeets EF, Willems GM, Bevers EM, Zwaal RFA. Assembly of the prothrombinase complex on lipid vesicles depends on the stereochemical configuration of the polar headgroup of phosphatidylserine. Biochemistry 1994; 33: 10319–10324.
- 39 Wagenknecht DR, McIntyre JA. Prothrombin. A factor in the antiphospholipid antibody (aPA) ELISA. Lupus 1994; 3: 364.
- 40 Oosting JD, Derksen RHWM, Bobbink IWG, Hackeng TM, Bouma BN, DeGroot PG. Antiphospholipid antibodies directed against a combination of phospholipids with prothrombin, protein C, or protein S. An explanation of their pathogenic mechanism Blood 1993; 81: 2618–2625.
- 41 Gardiner JE, McGann MA, Berridge CW, Fulcker CA, Zimmerman TS, Griffin JH. Protein S as a cofactor for activated protein C in plasma and the inactivation of purified Factor VII:C. Circulation 1984; 70: 205.
- 42 Amiral J., Larrivaz I., Cluzeau D., Adam M. Standardization of immunoassays for antiphospholipid antibodies with β2GPI and role of other phospholipid cofactors. Haemostasis 1994; 24: 191–203.
- 43 Borrell M., Sala N., De Castellarnau C., Lopez S., Gari M., Fontcuberta J. Immunoglobulin fractions isolated from patients with antiphospholipid antibodies prevent the inactivation of factor Va by activated protein C on human endothelial cells. Thromb Haemostas 1992; 68: 268–272.
- 44 Staub HL, Harris EN, Khamashta MH, Savidge G., Chahade WH, Hughes GRV Antibody to phosphatidylethanolamine in a patient with lupus anticoagulant and thrombosis. Ann Rheumatol Dis 1989; 48: 166–169.
- 45 Karmochkine M., Cacoub P., Piette JC, Godeau P., Boffa MC. Antiphosphatidylethanolamine antibody as the sole antiphospholipid antibody in systemic lupus erythematosus with thrombosis. Clin Exp Rheumatol 1992; 10: 603–605.
- 46 Karmochkine M., Berard M., Piette JC, Cacoub P., Ailland MF, Harlet JR, Godeau P., Boffa MC. Antiphosphatidylethanolamine antibodies in systemic lupus erythematosus. Lupus 1993; 2: 157.
- 47 Boffa MC, Berard M., Sugi T., McIntyre JA. Kininogen reactivity of antiphosphatidylethanolamine antibodies found as the sole antiphospholipid antibodies in thrombosis and vascular cutaneous diseases. J Rheumatol 1996; 23: 1375–1379.
- 48 Berard M., Sugi T., McIntyre JA, Chantome R., Marcelli A., Boffa MC. Prevalence and kininogen-dependence of antiphosphatidylethanolamine antibodies. Nouv Rev Fr Hematol 1995; 37(Suppl II): S69–S72.
- 49 Sugi T., Vanderpuye OA, McIntyre JA. Partial purification of antiphosphatidylethanolamine antibody ELISA cofactor. Thromb Haemostas 1993; 69: 596.
- 50 Sugi T., McIntyre JA. Antibodies to phosphatidylethanolamine (PE) recognize a kininogen-PE complex. Blood 1995; 86: 3083–3089.
- 51 Sugi T., Matsubayashi H., Nemoto T., Makino T. Kininogen-dependence of antiphosphatidylethanolamine antibodies (aPE) in patients with recurrent fetal loss. Lupus 1996; 5: 510.
- 52 Wachtfogel YT, De La Cadena RA, Colman RW. Structural biology, cellular interactions and pathophysiology of the contact system. Thromb Res 1993; 72: 1–21.
- 53 Gjonnaess H. Cold promoting activation of factor VII. I. Evidence for existence of an activator. Thromb Diath Haemorrh 1972; 28: 155–168.
- 54 Schmaier AH, Zuckerberg A., Silverman C., et al. High molecular weight kininogen. A secreted platelet coagulant protein. J Clin Invest 1983; 71: 1477–1489.
- 55 Jacobsen S., Kriz M. Some data on two purified kininogens from human plasma. Br J Pharmacol 1967; 29: 25.
- 56 Muller-Esterl W., Vohle-Timmerman B., Boos B., Dittman B. Purification and properties of human low molecular weight kininogen. Biochim Biophys Acta 1982; 106: 145–152.
- 57 De La Cadena RA, Wachtfogel YT, Colman RW. Contact activation pathway, inflammation and coagulation. In Hemostasis and Thrombosis. Basic Principles and Clinical Practice, Third Edition. RW Colman, J. Hirsh, VJ Marder, EW Salzman (eds.). Philadelphia, JB Lippincott, 1994, p 219.
- 58 Ohkubo I., Kurachi K., Takasawa T., Shiokawa H., Sasaki M. Isolation of a human cDNA for alpha 2-thiol proteinase inhibitor and its identity with low molecular weight kininogen. Biochemistry 1984; 23: 5691–5697.
- 59 Ohkubo I., Namikawa C., Higashiyama S., et al. Purification and characterization of α1-thiol proteinase inhibitor and its identity with kinin and fragment 1,2 free high molecular weight kininogen. Int J Biochem 1988; 20: 243–251.
- 60 Puri RN, Zhou F., Hu CJ, Colman RF, Colman RW. High molecular weight kininogen inhibits thrombin-induced platelet aggregation and cleavage of aggregin by inhibiting binding of thrombin to platelets. Blood 1991; 77: 500–507.
- 61 Colman RW. Aggregin. A platelet ADP receptor that mediates activation. FASEBJ 1990; 4: 1425–1435.
- 62 Figures WR, Niewiarowski S., Morinelli TA, Colman RF, Colman RW. Affinity labeling of a human platelet membrane protein with 5′-p-flurosulfonylbenzoyl adenosine. J Bio Chem 1981; 256: 7789–7795.
- 63 Figures WR, Scearce LM, Wachtfogel Y., Chen J., Colman RF, Colman RW. Platelet ADP receptor and α2-adrenoreceptor interaction. Evidence for an ADP requirement for epinephrine-induced platelet activation and an influence of epinephrine on ADP binding. J Biol Chem 1986; 261: 5981–5986.
- 64 Colman RW, Figures WF, Scearce LM, Strimpler AM, Zhou F., Rao AK. Inhibition of collagen-induced platelet activation by 5′p-fluorosulfonylbenzoyl adenosine. Evidence for an ADP requirement and synergistic influence of prostaglandin endoperoxides. Blood 1986; 68: 565–570.
- 65 Morinelli TA, Niewiarowski S., Kornecki E., Figures WR, Wachtfogel Y., Colman RW. Platelet aggregation and exposure of fibrinogen receptors by prostaglandin endoperoxide analogues. Blood 1983; 61: 41–49.
- 66 Puri RN, Zhou F., Colman RF, Colman RW. Cleavage of a 100 kD membrane protein (aggregin) during thrombin-induced platelet aggregation is mediated by high affinity thrombin receptors. Biochem Biophys Res Commun 1989; 162: 1017–1024.
- 67 Puri RN, Zhou F., Bradford HN, Hu C-J, Colman RF, Colman RW. Thrombin-induced platelet aggregation involves an indirect proteolytic cleavage of a 100 kD membrane protein. Arch Biochem Biophys 1989; 271: 346–358.
- 68 Meloni FJ, Schmaier AH. Low molecular weight kininogen binds to platelets to modulate thrombin-induced platelet activation. J Biol Chem 1991; 266: 6786–6794.
- 69 Schmaier AH, Smith PM, Purdon AD, White JG, Colman RW. High molecular weight kininogen. Localization in the unstimulated and activated platelet and activation by a platelet calpain(s). Blood 1986; 67: 119–130.
- 70 Gustafson EJ, Schutsky D., Knight LC, Schmaier AH. High molecular weight kininogen binds to unstimulated platelets. J Clin Invest 1986; 78: 310–318.
- 71 Schmaier AH, Bradford H., Silver LD, Farver A., Scott CF, Schutsky D., Colman RW. High molecular weight kininogen is an inhibitor of platelet calpain. J Clin Invest 1986; 77: 1565–1573.
- 72 Muller-Esterl W., Fritz H., Machleidt W., et al. Human plasma kininogens are identical with alpha-cysteine proteinase inhibitors. Evidence from immunological, enzymological and sequence data. FEBS Lett 1985; 182: 310–314.
- 73 Puri RN, Zhou FX, Colman RF, Colman RW. Plasmin-induced platelet aggregation is accompanied by cleavage of aggregin and indirectly mediated by calpain. Am J Physiol 1990; 259: C862–868.
- 74 Jiang YP, Esterl Muller W., Schmaier AH. Domain 3 of kininogens contains a cell-binding site and a site that modifies thrombin activation of platelets. J Biol Chem 1992; 267: 3712–3717.
- 75 Bevers EM, Comfurius P., Zwaal RFA. Changes in membrane phospholipid distribution during platelet activation. Biochim Biophys Acta 1983; 736: 57–66.
- 76 Sugi T., McIntyre JA. Phosphatidylethanolamine induces specific conformational changes in the kininogens recognizable by antiphosphatidylethanolamine antibodies. Thromb Haemostas 1996; 76: 354–360.
- 77 Sugi T., McIntyre JA. Plasma proteins required for antiphospholipid antibody detection. Nouv Rev Fr Hematol 1995; 37: 49–52.
- 78 Sugi T., McIntyre JA. Autoantibodies to kininogen phosphatidylethanolamine complexes augment thrombin-induced platelet aggregation. Thromb Res 1996; 84: 97–109.
- 79 Hansen SR, Harker LA. Interruption of acute platelet-depen###dent thrombosis by the synthetic antithrombin PPACK. Proc Natl Acad Sci USA 1988; 85: 3184–3188.
- 80 Eidt JF, Allison P., Nobel S., Ashton J., Golino P., McNatt J., Buja LM, Willerson J. Thrombin is an important mediator of platelet aggregation in stenosed coronary arteries. J Clin Invest 1989; 84: 18–27.
- 81 Kelly AB, Marzec UM, Krupski W., Bass A., Cadroy Y., Hanson SR, Harker LA. Hiruidin interruption of heparin-resistant arterial thrombosis formation in baboons. Blood 1991; 77: 1006–1012.
- 82 Wagenknecht DR, McIntyre JA. Changes in β2-glycoprotein I antigenicity induced by phospholipid binding. Thromb Haemostas 1993; 69: 361–365.
- 83 Weisel JW, Nagaswami C., Woodhead JI, De La Cadena RA, Page JD, Colman RW. The shape of high molecular weight kininogen. J Biol Chem 1994; 269: 10100–10106.
- 84 Greengard JS, Griffin JH. Receptors for high molecular weight kininogen on stimulated washed human platelets. Biochemistry 1984; 23: 6863–6869.
- 85 Schmaier AH, Kuo A., Lundberg D., Murrary S., Cines DB. Expression of high molecular weight kininogen on human umbilical vein endothelial cells. J Biol Chem 1988; 263: 16327–16333.
- 86 Van Iwaarden F., DeGroot PG, Bouma BN. The binding of high molecular weight kininogen to cultured human endothelial cells. J Biol Chem 1988; 263: 4698–4703.