Enzymes in the acquired enamel pellicle
Christian Hannig
Department of Operative Dentistry, Preventive Dentistry and Periodontology, University of Göttingen, Göttingen, Germany
Search for more papers by this authorMatthias Hannig
Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Homburg/Saar, Germany
Search for more papers by this authorThomas Attin
Department of Operative Dentistry, Preventive Dentistry and Periodontology, University of Göttingen, Göttingen, Germany
Search for more papers by this authorChristian Hannig
Department of Operative Dentistry, Preventive Dentistry and Periodontology, University of Göttingen, Göttingen, Germany
Search for more papers by this authorMatthias Hannig
Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Homburg/Saar, Germany
Search for more papers by this authorThomas Attin
Department of Operative Dentistry, Preventive Dentistry and Periodontology, University of Göttingen, Göttingen, Germany
Search for more papers by this authorAbstract
The acquired pellicle is a biofilm, free of bacteria, covering oral hard and soft tissues. It is composed of mucins, glycoproteins and proteins, among which are several enzymes. This review summarizes the present state of research on enzymes and their functions in the dental pellicle. Theoretically, all enzymes present in the oral cavity could be incorporated into the pellicle, but apparently enzymes are adsorbed selectively onto dental surfaces. There is clear evidence that enzymes are structural elements of the pellicle. Thereby they exhibit antibacterial properties but also facilitate bacterial colonization of dental hard tissues. Moreover, the immobilized enzymes are involved in modification and in homeostasis of the salivary pellicle. It has been demonstrated that amylase, lysozyme, carbonic anhydrases, glucosyltransferases and fructosyltransferase are immobilized in an active conformation in the pellicle layer formed in vivo. Other enzymes, such as peroxidase or transglutaminase, have been investigated in experimental pellicles. Despite the depicted impact of enzymes on the formation and function of pellicle, broader knowledge on their properties in the in vivo-formed pellicle is required. This might be beneficial in the development of new preventive and diagnostic strategies.
References
- 1 Lendenmann K, Grogan J, Oppenheim FG. Saliva and dental pellicle – a review. Adv Dent Res 2000; 14: 22–28.
- 2 Dawes C, Jenkins GN, Tonge CH. The nomenclature of the integuments of the enamel surface of the teeth. Br Dent J 1963; 115: 65–68.
- 3 Hannig M, Balz M. Protective properties of salivary pellicles from two different intraoral sites on enamel erosion. Caries Res 2001; 35: 142–148.
- 4 Al-Hashimi I, Levine MJ. Characterization of in vivo salivary-derived enamel pellicle. Arch Oral Biol 1989; 34: 289–295.
- 5 Bradway SD, Bergey EJ, Scannapieco FA, Ramasubbu N, Zawacki S, Levine MJ. Formation of salivary–mucosal pellicle: the role of transglutaminase. Biochem J 1992; 284: 557–564.
- 6 Hannig M. The protective nature of the salivary pellicle. Int Dent J 2002; 52: 417–423.
- 7 Hannig M, Balz B. Influence of in vivo formed salivary pellicle on enamel erosion. Caries Res 1999; 33: 372–379.
- 8 Amaechi BT, Higham SM, Edgar WM, Milosevic A. Thickness of acquired salivary pellicle as a determinant of the sites of dental erosion. J Dent Res 1999; 78: 1821–1828.
- 9 Hannig M. Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin Oral Invest 1999; 3: 88–95.
- 10 Hahn Berg IC, Lindh L, Arnebrandt T. Intraoral lubrication of PRP-1, statherin and mucin, as studied by AFM. Biofouling 2004; 20: 65–70.
- 11 Hannig C, Attin T, Hannig M, Henze E, Brinkmann K, Zech R. Immobilisation and activity of human α-amylase in the acquired enamel pellicle. Arch Oral Biol 2004; 49: 469–478.
- 12 Vacca Smith AM, Bowen WH. In situ studies of pellicle formation on hydroxyapatite discs. Arch Oral Biol 2000; 45: 277–291.
- 13 Hannig M, Fiebiger M, Guntzer M, Dobert A, Zimehl R, Nekrashevych Y. Protective effect of the in situ-formed short-term salivary pellicle. Arch Oral Biol 2004; 49: 903–910.
- 14 Rosan B, Lamont RJ. Dental plaque formation. Microb Infect 2000; 2: 1599–1607.
- 15 Rølla G, Mathiesen P. The adsorption of salivary proteins and dextrans to hydroxyapatite. In: WD McHugh, ed. Dental Plaque. Edinburgh: E & S. Livingstone Ltd, 1970; 129–141.
- 16 Rølla G, Ciardi JE, Bowen WH. Identification of IgA, IgG, lysozyme, albumin, α-amylase and glucosyltransferase in the protein layer adsorbed to hydroxyapatite from whole saliva. Scand J Dent Res 1983; 91: 186–190.
- 17 Stiefel DJ. Characteristics of an in vitro dental pellicle. J Dent Res 1976; 55: 66–73.
- 18 Pruitt KM, Caldwell RC, Jamieson AD, Taylor RE. The interaction of salivary proteins with tooth surface. J Dent Res 1969; 48: 818–823.
- 19 Fine DH, Wilton JMA, Caravana C. In vitro sorption of albumin, immunoglobulin G and lysozyme to enamel and cementum from human teeth. Infect Immun 1984; 44: 332–338.
- 20 Tenovuo J, Valtakoski J, Mle Knuuttila J. Antibacterial activity of lactoperoxidase adsorbed by human salivary sediment and hydroxyapatite. Caries Res 1977; 11: 257–262.
- 21 Leinonen J, Kivelä J, Parkkila S, Parkkila A-K, Rajaniemi H. Salivary carbonic anhydrase isoenzyme VI is located in the human enamel pellicle. Caries Res 1999; 33: 185–190.
- 22 De Jong HP, De Boer P, Busscher HJ, Van Pelt AWJ, Arends J. Surface free energy of human enamel after pellicle formation and fluoride application. In: JM Ten Cate, SA Leach, J Arends, eds. Bacterial Adhesion and Preventive Dentistry. Oxford: IRI Press, 1984; 125–131.
- 23 Van der Mei HC, White DJ, Kamminga-Rasker HJ, Knight J, Baig AA, Smit J, Busscher HJ. Influence of dentifrices and dietary components in saliva on wettability of pellicle-coated enamel in vitro and in vivo. Eur J Oral Sci 2002; 110: 434–438.
- 24 Li J, Helmerhorst EJ, Corley RB, Luus LE, Troxler RF, Oppenheim FG. Characterization of the immunologic responses to human in vivo acquired enamel pellicle as a novel means to investigate its composition. Oral Microbiol Immunol 2003; 18: 183–191.
- 25 Carlen A, Borjesson AC, Nikdel K, Olsson J. Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Res 1998; 32: 447–455.
- 26 Jensen JL, Lamkin MS, Oppenheim FG. Adsorption of human salivary proteins to hydroxyapatite: a comparison between whole saliva and glandular salivary secretions. J Dent Res 1992; 71: 1569–1576.
- 27
Sønju T,
Rølla G.
Chemical analysis of the acquired pellicle formed in two hours on cleaned human teeth in vivo. Rate of formation and amino acid analysis.
Caries Res
1963; 7: 30–38.
10.1159/000259822 Google Scholar
- 28 Yao Y, Grogan J, Zehnder M, Lendenmann U, Nam B, Wu Z, Costello CE, Oppenheim FG. Compositional analysis of human acquired enamel pellicle by mass spectrometry. Arch Oral Biol 2001; 46: 293–303.
- 29 Perdok JF, Busscher HJ, Weerkamp AH, Arends J. The effect of an aminfluoride-stannous fluoride containing mouthrinse on enamel surface free energy and the development of plaque and gingivitis. Clin Prev Dent 1988; 10: 3–9.
- 30 Kajisa L, Prakobphol A, Schiodt M, Fisher SJ. Effect of plasma on composition of human enamel and cementum pellicle. Scand J Dent Res 1990; 98: 461–471.
- 31 Boackle RJ, Dutton SL, Robinson WL, Vesely J, Lever JK, Su HR, Chang NS. Effects of removing the negatively charged N-terminal region of the salivary acidic proline-rich proteins by human leucocyte elastase. Arch Oral Biol 1999; 44: 575–585.
- 32 Stevanato R, Porchia M, Befani O, Mondovi B, Rigo A. Characterization of free and immobilized amine oxidases. Biotechnol Appl Biochem 1989; 11: 266–272.
- 33 Manjon A, Ferragut JA, Garcia-Borron JC, Iborra JL. Conformational studies of soluble and immobilized frog epidermis tyrosinase by fluorescence. Appl Biochem Biotechnol 1984; 9: 173–185.
- 34 Hofstee BHJ. Immobilization of enzymes through non covalent binding to substituted agaroses. Biochem Biophys Res Commun 1973; 53: 1137–1144.
- 35 Woodward J, Marquess HJ, Picker CS. Affinity chromatography of beta-glucosidase and endo-beta-glucanase from Aspergillus niger on concanavalin A-Sepharose: implications for cellulase component purification and immobilization. Prep Biochem 1986; 16: 337–352.
- 36 Ericson T. Enzyme activity at hydroxyapatite surfaces. J Dent Res 1969; 5: 777–780.
- 37 Schilling KM, Bowen WH. The activity of glucosyltransferase adsorbed onto saliva coated hydroxyapatite. J Dent Res 1988; 67: 2–8.
- 38 Vacca-Smith AM, Bowen WH. The effect of milk and kappa casein on streptococcal glucosyltransferase. Caries Res 1995; 29: 498–506.
- 39 Ngo TT, Laidler KJ, Yam CF. Kinetics of acetylcholinesterase immobilized on polyethylene tubing. Can J Biochem 1979; 57: 1200–1203.
- 40 ØRstavik D, Kraus FW. The acquired pellicle: enzyme and antibody activities. Scand J Dent Res 1974; 82: 202–205.
- 41 Kraus WK, Mestecky J. Salivary proteins and the development of dental plaque. J Dent Res 1976; 55: C149–C152.
- 42 ØRstavik D, Kraus FW. The acquired pellicle: immunofluorescent demonstration of specific proteins. J Oral Pathol 1973; 2: 68–76.
- 43 Scannapieco FA. Saliva–bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med 1994; 5: 102–119.
- 44 Eggen KH, Rølla G. Further studies on composition of the acquired enamel pellicle. Scand J Dent Res 1983; 91: 439–446.
- 45 Iontcheva I, Oppenheim FG, Troxler RF. Human salivary mucin MG 1 selectively forms heterotypic complexes with amylase, proline-rich proteins, statherin, and histatins. J Dent Res 1997; 76: 734–743.
- 46 Rykke M, Smistadt G, Rølla G, Karlsen J. Micelle-like structures in human saliva. Colloids Surfaces B Biointerfaces 1995; 4: 33–40.
- 47 Rølla G, Rykke G. Evidence for presence of micelle-like protein globules in human saliva. Colloids Surface B Biointerfaces 1994; 3: 177–182.
- 48 Vitkov L, Hannig M, Nekrashevych Y, Krautgartner WD. Supramolecular pellicle precursors. Eur J Oral Sci 2004; 112: 320–325.
- 49 Soares RV, Lin T, Siqueira CC, Bruno LS, Li X, Oppenheim FG, Offner G, Troxler RF. Salivary micelles: identification of complexes containing MG2, sIgA, lactoferrin, amylase, glycosylated proline-rich protein and lysozyme. Arch Oral Biol 2004; 49: 337–343.
- 50 Morishita Y, Jinuma Y, Nakashima N, Majima K, Mizuguchi K, Kawamura Y. Total and pancreatic amylase measured with 2-chloro-4-nitrophenyl-4-O-α-d-galactopyranosylmaltoside. Clin Chem 2000; 46: 928–933.
- 51 Sreebny LM. Sugar and human dental caries. World Rev Nutr Diet 1982; 40: 19–65.
- 52 Sas R, Dawes C. The intra-oral distribution of unstimulated and chewing-gum stimulated parotid saliva. Arch Oral Biol 1997; 42: 469–474.
- 53 Veerman ECI, Van den Keybus PAM, Vissink A, Nieuw Amerongen AV. Human glandular salivas. Their separate collection and analysis. Eur J Oral Sci 1996; 104: 346–352.
- 54 Deimling D, Breschi L, Hoth-Hannig W, Ruggeri A, Hannig C, Nekrashevych Y, Prati C, Hannig M. Electron microscopic detection of α-amylase in the in situ-formed pellicle. Eur J Oral Sci 2004; 112: 503–509.
- 55 Yao Y, Berg EA, Costello CE, Troxler RF, Oppenheim FG. Indentification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches. J Biol Chem 2003; 279: 5300–5308.
- 56 Rogers JD, Palmer RJ, Kolenbrander PE, Scannapieco FA. Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. Infect Immun 2001; 69: 7046–7056.
- 57 Scannapieco FA, Bhandary K, Ramasubbu N, Levine MJ. Structural relationship between the enzymatic and streptococcal binding sites of human salivary alpha-amylase. Biochem Biophys Res Commun 1990; 31: 1109–1115.
- 58 Kandra L, Gyemant G, Zajacz A, Batta G. Inhibitory effects of tannin on human salivary α-amylase. Biochem Biophys Res Commun 2004; 319: 1265–1271.
- 59 Yan Q, Bennick A. Identification of histatins as tannin binding proteins in human saliva. Biochem J 1995; 311: 341–347.
- 60 Gong K, Mailloux L, Herzberg MC. Salivary film expresses a complex, macromolecular binding site for Streptococcus sanguis. J Biol Chem 2000; 275: 8970–8974.
- 61 Scannapieco FA, Bergey EJ, Reddy MS, Levine MJ. Characterization of salivary α-amylase binding to Streptococcus sanguis. Infect Immun 1989; 57: 2853–2863.
- 62 Scannapieco FA, Torres GI, Levine MJ. Salivary amylase promotes adhesion of oral streptococci to hydroxyapatite. J Dent Res 1995; 74: 1360–1366.
- 63 Douglas CW. Bacterial–protein interactions in the oral cavity. Adv Dent Res 1994; 8: 254–262.
- 64 Douglas CWI. Characterisation of the alpha-amylase receptor of Streptococcus gordinii NCTC 7868. J Dent Res 1990; 69: 1746–1752.
- 65 Kilian M, Nyvad B. Ability to bind salivary α-amylase discriminates certain viridans streptococcal species. J Clin Microbiol 1990; 28: 2576–2577.
- 66 Handley P, Coykendall A, Beighton D, Hardie JM, Whiley RA. Streptococcus christa sp.nov., a viridans streptococcus with tufted fibrils, isolated from the human oral cavity and throat. Int J Syst Bacteriol 1991; 41: 543–547.
- 67 Gwyn JP, Douglas CWI. Comparison of amylase binding proteins in oral streptococci. FEMS Microbial Lett 1994; 124: 373–380.
- 68 Brown AE, Rogers JD, Haase EM, Zelasko PM, Scannapieco FA. Prevalence of the amylase-binding protein A gene (abpA) in oral streptococci. J Clin Microbiol 1999; 37: 4081–4085.
- 69 Aguirre A, Levine MJ, Cohen RE, Tabak LA. Immunochemical quantitation of α-amylase and secretory IgA in parotid saliva from people of various age. Arch Oral Biol 1987; 32: 297–301.
- 70 Tenovuo J. Nonimmunoglobulin defense factors in human saliva. In: J Tenovuo, ed. Human Saliva. Clinical Chemistry and Microbiology, Vol. 2. Boca Raton: CRC Press, 1989; 55–91.
- 71 Wang YB, Germaine GR. Effects of pH, potassium, magnesium and bacterial growth phase on lysozyme inhibition of glucose fermentation by Streptococcus mutans 10449. J Dent Res 1993; 72: 907–911.
- 72 Laible NJ, Germaine GR. Bactericidal activity of human lysozyme, muraminidase inactive lysozyme and cationic polypeptides against Streptococcus sanguis and Streptococcus faecalis: inhibition by chitin oligosaccharides. Infect Immun 1985; 48: 720–728.
- 73 Stuchell RN, Mandel ID. A comparative study of salivary lysozyme in caries resistant and caries susceptible adults. J Dent Res 1983; 62: 552–554.
- 74 Li J, Helmerhorst EJ, Troxler RF, Oppenheim FG. Identification of in vivo pellicle constituents by analysis of serum immune responses. J Dent Res 2004; 83: 60–64.
- 75 Tellefson LM, Germaine GR. Adherence of Streptococcus sanguis to hydroxyapatite coated with lysozyme and lysozyme-supplemented saliva. Infect Immun 1986; 51: 750–759.
- 76 Cimasoni G, Song M, McBride BC. Effect of crevicular fluid and lysosomal enzymes on the adherence of streptococci and bacteroides to hydroxyapatite. Infect Immun 1987; 55: 1484–1489.
- 77 Pollock JJ, Iacono VJ, Goodman Bicker H, MacKay BJ, Katona LI, Taichman LB, Thomas E. The binding, aggregation and the properties of lysozyme. In: HM Stiles, WJ Loesche, TC O'Brien, eds. Proceedings: Microbial Aspects of Dental Caries, Sp Suppl Microbial Abstracts. Washington: Information Retrieval, 1976; 325–352.
- 78 Roger V, Tenovuo J, Lenander Lumikari M, Söderling E, Vilja P. Lysozyme and lactoperoxidase inhibit the adherence of Streptococcus mutans NCTC 10449 (seotype c) to saliva treated hydroxyapatite in vitro. Caries Res 1994; 28: 421–428.
- 79 Germaine GR, Tellefson LM. Potential role of lysozyme in bactericidal activity of in vitro acquired salivary pellicle against Streptococcus faecium 9790. Infect Immun 1986; 54: 846–854.
- 80 Mansson-Rahemtulla B, Rahemtulla F, Baldone DC, Pruitt KM, Hjerpe A. Purification and characterisation of human salivary peroxidase. Biochemistry 1988; 12: 233–239.
- 81 Edgerton M, Koshlukova SE. Salivary histatin 5 and its similarities to the other antimicrobial proteins in human saliva. Adv Dent Res 2000; 14: 16–21.
- 82 Lenander-Lumikari M, Tenovuo J, Mikola H. Effects of a lactoperoxidase system-containing toothpaste on levels of hypothiocyanate and bacteria in saliva. Caries Res 1993; 27: 285–291.
- 83 Bjorck L, Rosen C, Marshall V, Reiter B. Antibacterial activity of the lactoperoxidase system in milk against pseudomonads and other Gram-negative bacteria. Appl Microbiol 1975; 30: 199–204.
- 84 Steele WF, Morrison M. Antistreptococcal activity of lactoperoxidase. J Bacteriol 1969; 97: 635–639.
- 85 Pruitt KM, Adamson M. Enzyme activity of salivary lactoperoxidase adsorbed to human enamel. Infect Immun 1977; 17: 112–116.
- 86 Marquis RE, Clock SA, Mota-Meira M. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol Rev 2003; 26: 493–510.
- 87 Dowd FJ. Saliva and dental caries. Dent Clin North Am 1999; 43: 579–597.
- 88 Lumikari M, Tenovuo J. Effects of lysozyme–thiocyanate combinations on the viability and lactic acid production of Streptococcus mutans and Streptococcus rattus. Acta Odontol Scand 1991; 49: 175–181.
- 89 Rudney JD, Hickey KL, Ji Z. Cumulative correlations of lysozyme, lactoferrin, peroxidase, S-IgA, amylase, and total protein concentrations with adherence of oral viridans streptococci to microplates coated with human saliva. J Dent Res 1999; 78: 759–768.
- 90 Korpela A, Yu X, Loimaranta V, Lenander-Lumikari M, Vacca-Smith A, Wunder D, Bowen WH, Tenovuo J. Lactoperoxidase inhibits glucosyltransferases from Streptococcus mutans in vitro. Caries Res 2002; 36: 116–121.
- 91 Matis BA, Gaiao U, Blackman D, Schultz FA, Eckert GJ. In vivo degradation of bleaching gel used in whitening teeth. J Am Dent Assoc 1999; 130: 227–235.
- 92 Bayton KJ, Bewtra JK, Biswars N, Taylor KE. Inactivation of horseradish peroxidase by phenol and hydrogen peroxide: a kinetic investigation. Biochim Biophys Acta 1994; 1206: 272–278.
- 93 Parkkila S, Parkkila AK, Juvonen T, Rajaniemi H. Distribution of the carbonic anhydrase isoenzymes I, II, and VI in the human alimentary tract. Gut 1994; 35: 646–650.
- 94 Parkkila S, Kaunisto K, Rajaniemi L, Kumpulainen T, Jokinen K, Rajaniemi H. Immunohistochemical localization of carbonic anhydrase isoenzymes VI, II, and I in human parotid and submandibular glands. J Histochem Cytochem 1990; 38: 941–947.
- 95 Lenander-Lumikari M, Loimaranta V. Saliva and dental caries. Adv Dent Res 2000; 14: 40–47.
- 96 Kadoya Y, Kuwahara H, Shimazaki M, Ogawa Y, Yagi T. Isolation of a novel carbonic anhydrase from human saliva and immunohistochemical demonstration of its related isozymes in salivary gland. Osaka City Med J 1987; 33: 99–109.
- 97 Murakami H, Sly WS. Purification and characterization of human salivary carbonic anhydrase. J Biol Chem 1987; 262: 1382–1388.
- 98 Kivela J, Parkkila S, Parkkila AK, Leinonen J, Rajaniemi H. Salivary carbonic anhydrase isoenzyme VI. J Physiol 1999; 15: 315–320.
- 99 Kivela J, Parkkila S, Parkkila AK, Rajaniemi H. A low concentration of carbonic anhydrase isoenzyme VI in whole saliva is associated with caries prevalence. Caries Res 1999; 33: 178–184.
- 100 Kivela J, Laine M, Parkkila S, Rajaniemi H. Salivary carbonic anhydrase VI and its relation to salivary flow rate and buffer capacity in pregnant and non-pregnant women. Arch Oral Biol 2003; 48: 547–551.
- 101 Szabo I. Carbonic anhydrase activity in the saliva of children and its relation to caries activity. Caries Res 1974; 8: 187–191.
- 102 Folk JE, Finlayson JS. The epsilon-(gamma-glutamyl) lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem 1977; 31: 1–133.
- 103 Williams-Ashman HG, Canellakis ZN. Transglutaminase-mediated covalent attachment of polyamines to proteins: mechanisms and potential physiological significance. Physiol Chem Phys 1980; 12: 457–472.
- 104 Ichinose A, Bottenus RE, Davie EW. Structure of transglutaminases. J Biol Chem 1990; 265: 13411–13414.
- 105 Aeschlimann D, Paulsson M, Mann K. Identification of Gln726 in nidogen as the amine acceptor in transglutaminase-catalyzed cross-linking of laminin–nidogen complexes. J Biol Chem 1992; 267: 11316–11321.
- 106 Goldsmith LA, Martin CM. Human epidermal transamidase. Invest Dermatol 1975; 64: 316–321.
- 107 Wajdai I, Acs G, Clarke DD, Waelsch H. Liver transglutaminase activity under various experimental conditions. Biochem Pharmacol 1963; 12: 241–250.
- 108 Chung SI. Comparative studies on tissue transglutaminase and factor XIII. Ann N Y Acad Sci 1972; 202: 240–255.
- 109 Bradway SD, Bergey EJ, Jones PC, Levine MJ. Oral mucosal pellicle. Adsorption and transpeptidation of salivary components to buccal epithelial cells. Biochem J 1989; 261: 887–896.
- 110 Yao Y, Lamkin MS, Oppenheim FG. Pellicle precursor protein crosslinking: characterization of an adduct between acidic proline-rich protein (PRP-1) and statherin generated by transglutaminase. J Dent Res 2000; 79: 930–938.
- 111 Yao Y, Lamkin MS, Oppenheim FG. Pellicle precursor proteins: acidic proline-rich proteins, statherin and histatins, and their crosslinking reaction by oral transglutaminase. J Dent Res 1999; 78: 1696–1703.
- 112 Kuramitsu HK. Adherence of Streptococcus mutans to dextran synthesized in the presence of extracellular dextransucrase. Infect Immun 1974; 9: 764–765.
- 113 Kuramitsu HK. Characterization of cell-associated dextransucrase activity from glucose-grown cells of Streptococcus mutans. Infect Immun 1974; 10: 227–235.
- 114 Scheie AA, Rølla G. Cell-free glucosyltransferase in saliva. Caries Res 1986; 20: 344–348.
- 115 Vacca-Smith AM, Venkitaraman AR, Quivey RG Jr, Bowen WH. Interactions of streptococcal glucosyltransferases with alpha-amylase and starch on the surface of saliva-coated hydroxyapatite. Arch Oral Biol 1996; 41: 291–298.
- 116 Vacca-Smith AM, Venkitaraman AR, Schilling KM, Bowen WH. Characterization of glucosyltransferase of human saliva adsorbed onto hydroxyapatite surfaces. Caries Res 1996; 30: 354–360.
- 117 Scheie AA, Eggen KH, Rølla G. Glucosyltransferase activity in human in vivo formed enamel pellicle and in whole saliva. Scand J Dent Res 1987; 95: 212–215.
- 118 Russel RRB. The application of molecular genetics to the microbiology of dental caries. Caries Res 1994; 28: 69–82.
- 119 Banas JA, Russell RR, Ferretti JJ. Sequence analysis of the gene for the glucan-binding protein of Streptococcus mutans Ingbritt. Infect Immun 1990; 58: 667–673.
- 120 Ueda S, Shiroza T, Kuramitsu HK. Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. Gene 1988; 69: 101–109; 112.
- 121 Schilling KM, Bowen WH. Glucans synthesised in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infect Immun 1992; 60: 284–295.
- 122 Vacca Smith AM, Ng-Evans L, Wunder D, Bowen WH. Studies concerning the glucosyltransferase of Streptococcus sanguis. Caries Res 2000; 34: 295–302.
- 123 Gibbons RJ, Fitzgerald RJ. Dextran induced agglutination of Streptococcus mutans and its potential role in the formation of microbial dental plaques. J Bacteriol 1969; 98: 341–346.
- 124 Göcke R, Gerath F, Von Schwanewede H. Quantitative determination of salivary components in the pellicle on PMMA denture base material. Clin Oral Invest 2002; 6: 227–235.
- 125 Hajishengallis G, Nikolova E, Russell MW. Inhibition of Streptococcus mutans adherence to saliva-coated hydroxyapatite by human secretory immunoglobulin A (S-IgA) antibodies to cell surface protein antigen I/II: reversal by IgA1 protease cleavage. Infect Immun 1992; 60: 5057–5064.
- 126 Tjaderhane L, Larjava H, Sorsa T, Uitto VJ, Larmas M, Salo T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res 1998; 77: 1622–1629.
- 127 Van Strijp AJ, Jansen DC, Degroot J, Ten Cate JM, Everts V. Host-derived proteinases and degradation of dentine collagen in situ. Caries Res 2003; 37: 58–65.
- 128 Gusman H, Travis J, Helmerhorst EJ, Potempa J, Troxler RF, Oppenheim FG. Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontal disease. Infect Immun 2001; 69: 1402–1408.
- 129 Lamkin MS, Jensen JL, Setayesh MR, Troxler RF, Oppenheim FG. Salivary cystatin SA-III, a potential precursor of the acquired enamel pellicle, is phosphorylated at both its amino- and carboxyl-terminal regions. Arch Biochem Biophys 1999; 288: 664–670.
- 130 Baron A, Decarlo A, Featherstone J. Functional aspects of the human salivary cystatins in the oral environment. Oral Dis 1999; 5: 234–240.
- 131 Hahn Berg IC, Kalfas S, Malmsten M, Arnebrandt T. Proteolytic degradation of oral biofilms in vitro and in vivo: potential of proteases originating from Euphasia superba for plaque control. Eur J Oral Sci 2001; 109: 316–324.
- 132 Leach SA. Release and breakdown of sialic acid from human salivary mucin and its role in the formation of dental plaque. Nature 1963; 199: 486–487.
- 133 Perlitsh MJ, Glickman I. Salivary neuraminidase. 3. Its relation to oral disease. J Periodontol 1967; 38: 189–192.
- 134 Perlitsh MJ, Glickman I. Salivary neuraminidase. I. The presence of neuraminidase in human saliva. J Periodontol 1966; 37: 368–373.
- 135 Perlitsh MJ, Glickman I. Salivary neuraminidase. II. Its source in human whole saliva. J Dent Res 1966; 45: 1239.
- 136 Briscoe JM Jr, Pruitt KM, Caldwell RC. The effect of neuraminidase on the properties of salivary proteins. J Dent Res 1972; 51: 819–824.
- 137 Liljemark WF, Bloomquist CG, Fenner LJ, Antonelli PJ, Coulter MC. Effect of neuraminidase on the adherence to salivary pellicle of Streptococcus sanguis and Streptococcus mitis. Caries Res 1989; 23: 141–145.
- 138 Gibbons RJ, Etherden I, Moreno EC. Association of neuraminidase-sensitive receptors and putative hydrophobic interactions with high-affinity binding sites for Streptococcus sanguis C5 in salivary pellicles. Infect Immun 1983; 42: 1006–1012.
- 139 Bennick A. Structural and genetic aspects of proline-rich proteins. J Dent Res 1987; 66: 457–461.
- 140 Hay DI, Bennick A, Schlesinger DH, Minaguchi K, Madapallimattam G, Schluckebier SK. The primary structures of six human salivary acidic proline-rich proteins (PRP-1, PRP-2, PRP-3, PRP-4, PIF-s and PIF-f). Biochem J 1988; 255: 15–21.
- 141 Gibbons RJ, Hay DI. Adsorbed salivary acidic proline-rich proteins contribute to the adhesion of Streptococcus mutans JBP to apatitic surfaces. J Dent Res 1989; 68: 1303–1307.
- 142 Lamkin MS, Araniello AA, Oppenheim FG. Temporal and compositional characteristics of salivary protein adsorption to hydroxyapatite. J Dent Res 1996; 75: 803–808.
- 143 Chan M, Bennick A. Proteolytic processing of a human salivary proline-rich protein precursor by proprotein convertases. Eur J Biochem 2001; 268: 3423–3431.
- 144 Hay DI. The adsorption of salivary proteins on hydroxyapatite and enamel. Arch Oral Biol 1967; 12: 937–946.
- 145 Kuboki Y, Teraoka K, Okada S. X-ray photoelectron spectroscopic studies of the adsorption of salivary constituents on enamel. J Dent Res 1987; 66: 1016–1019.
- 146 Skjørland K, Rykke M, Sønju T. Rate of pellicle formation in vivo. Acta Odontol Scand 1995; 53: 358–362.
- 147 Hannig M. Transmission electron microscopic study of in vivo pellicle formation on dental restorative materials. Eur J Oral Sci 1997; 105: 422–433.
- 148 Young A, Rykke M, Rølla G. Quantitative and qualitative analyses of human salivary micelle-like globules. Acta Odontol Scand 1999; 57: 105–110.
- 149 Moran J, Addy M, Newcombe R. Comparison of the effect of toothpastes containing enzymes or antimicrobial compounds with a conventional fluoride toothpaste on the development of plaque and gingivitis. J Clin Periodontol 1989; 16: 295–299.
- 150 Afseth J, Rølla G. Clinical experiments with a toothpaste containing amyloglucosidase and glucose oxidase. Caries Res 1983; 17: 472–475.
- 151 Etemzadeh H, Ainamo J, Murtomau J. Plaque growth-inhibiting effects of an abrasive fluoride chlorhexidin toothpaste and a fluoride toothpaste containing oxidative enzymes. J Clin Periodontol 1985; 16: 607–616.
- 152 Gibbons RJ, Etherden I. Enzymatic modification of bacterial receptors on saliva-treated hydroxyapatite surfaces. Infect Immun 1982; 36: 52–58.
- 153 Steinberg D, Beeman D, Bowen WH. The effect of delmopinol on glucosyltransferase adsorbed onto saliva-coated hydroxyapatite. Arch Oral Biol 1992; 37: 33–38.
- 154 Hayacibara MF, Duarte S, Koo H, Ikegaki M, Bowen WH, Posalen PL, Cury JH. Effects of Brazilian propolis type 3 and its hexane fraction on mutans streptococci and on glucosyltransferases. Caries Res 2003; 37: 302.
- 155 Vacca Smith AM, Bowen WH. The effects of milk and Kappa-casein on salivary pellicle formed on hydroxyapatite discs in situ. Caries Res 2000; 34: 88–93.
- 156 Matsumoto M, Hamada S, Ooshima T. Molecular analysis of the inhibitory effects of oolong tea polyphenols on glucan-binding domain of recombinant glucosyltransferases from Streptococcus mutans MT8148. FEMS Microbiol Lett 2003; 228: 73–80.
- 157 Nakahara K, Kawabata S, Ono H, Ogura K, Tanaka T, Ooshima T, Hamada S. Inhibitory effect of oolong tea polyphenols on glycosyltransferases of mutans Streptococci. Appl Environ Microbiol 1993; 59: 968–973.
- 158 Kashket S, Paolino VJ, Lewis DA, Van Houte J. In-vitro inhibition of glucosyltransferase from the dental plaque bacterium Streptococcus mutans by common beverages and food extracts. Arch Oral Biol 1985; 30: 821–826.
- 159 Slomiany BL, Murty VLN, Mandel ID, Sengputa S, Slomiany A. Effect of lipids on the lactic acid retardation capacity of tooth enamel and cementum pellicles formed in vitro from saliva of caries-resistant and caries-susceptible human adults. Arch Oral Biol 1990; 35: 175–180.
- 160 Slomiany BL, Murty VLN, Zdebska E, Slomiany A, Gwozdzinski K, Mandel ID. Tooth surface-pellicle lipids and their role in the protection of dental enamel against lactic-acid diffusion in man. Arch Oral Biol 1986; 31: 187–192.