Sinus floor augmentation with recombinant human growth and differentiation factor-5 (rhGDF-5): a pilot study in the Goettingen miniature pig comparing autogenous bone and rhGDF-5
Rudolf Matthias Gruber
Department of Oral and Maxillofacial Surgery, Georgia Augusta University, Goettingen, Germany
Search for more papers by this authorHans-Albert Merten
Department of Orthodontics, Hanover Medical School, Hanover, Germany
Search for more papers by this authorFranz-Josef Kramer
Department of Oral and Maxillofacial Surgery, Georgia Augusta University, Goettingen, Germany
Search for more papers by this authorHenning Schliephake
Department of Oral and Maxillofacial Surgery, Georgia Augusta University, Goettingen, Germany
Search for more papers by this authorRudolf Matthias Gruber
Department of Oral and Maxillofacial Surgery, Georgia Augusta University, Goettingen, Germany
Search for more papers by this authorHans-Albert Merten
Department of Orthodontics, Hanover Medical School, Hanover, Germany
Search for more papers by this authorFranz-Josef Kramer
Department of Oral and Maxillofacial Surgery, Georgia Augusta University, Goettingen, Germany
Search for more papers by this authorHenning Schliephake
Department of Oral and Maxillofacial Surgery, Georgia Augusta University, Goettingen, Germany
Search for more papers by this authorAbstract
Aim: The aim of this study was to test the hypothesis that recombinant human growth and differentiation factor-5 (rhGDF-5) in combination with a β-tricalcium phosphate (β-TCP) scaffold material results in superior bone formation in sinus floor augmentations in miniature pigs compared with a particulated autogenous bone graft combined with the scaffold material.
Material and methods: Six adult female Goettingen minipigs underwent a maxillary sinus floor augmentation procedure. In a split-mouth design, the sinus floors were augmented with β-TCP mixed with autogenous cortical bone chips, in a ratio of approximately 1 : 1, on one side. The contralateral test site was augmented using β-TCP coated with two concentrations of rhGDF-5 (400 μg rhGDF-5/g β-TCP or 800 μg rhGDF-5/g β-TCP; three animals in each case). Simultaneously, one dental implant was inserted into each sinus floor augmentation. After 12 weeks, a histological and histomorphometric assessment of non-decalcified histological specimens was made.
Results: There were significantly higher mean values of volume density of newly formed bone using β-TCP coated with two concentrations of rhGDF-5 (400 μg: 32.9%; 800 μg: 23.9%) than with the corresponding control (autogenous bone/β-TCP) (14.6%, 12.9%) (P=0.012, P=0.049). The bone-to-implant contact rates (BIC) were significantly enhanced in test sites (400 μg: 84.2%; 800 μg: 69.8%) compared with the corresponding control sites (24.8%, 40.8%) (P=.027, P=.045).
Conclusion: rhGDF-5 delivered on β-TCP significantly enhanced bone formation compared with β-TCP combined with autogenous bone in sinus lift procedures in miniature pigs.
References
- Albrektsson, T. & Johansson, C. (2001) Osteoinduction, osteoconduction and osseointegration. European Spine Journal 10 (Suppl 2): S96–S101.
- Boyne, P.J. & James, R.A. (1980) Grafting of the maxillary sinus floor with autogenous marrow and bone. Journal of Oral Surgery 38: 613–616.
- Boyne, P.J., Marx, R.E., Nevins, M., Triplett, G., Lazaro, E., Lilly, L.C., Alder, M. & Nummikoski, P. (1997) A feasibility study evaluating rhbmp-2/absorbable collagen sponge for maxillary sinus floor augmentation. The International Journal of Periodontics & Restorative Dentistry 17: 11–25.
- Buxton, P., Edwards, C., Archer, C.W. & Francis-West, P. (2001) Growth/differentiation factor-5 (gdf-5) and skeletal development. The Journal of Bone and Joint Surgery 83-A (Suppl 1): S23–S30.
- Chang, S.C., Hoang, B., Thomas, J.T., Vukicevic, S., Luyten, F.P., Ryba, N.J., Kozak, C.A., Reddi, A.H. & Moos, M. Jr. (1994) Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-beta superfamily predominantly expressed in long bones during human embryonic development. The Journal of biological chemistry 269: 28227–28234.
- Donath, K. & Breuner, G. (1982) A method for the study of undecalcified bones and teeth with attached soft tissues. The sage-schliff (sawing and grinding) technique. Journal of Oral Pathology 11: 318–326.
- Esposito, M., Grusovin, M.G., Coulthard, P. & Worthington, H.V. (2006) The efficacy of various bone augmentation procedures for dental implants: a cochrane systematic review of randomized controlled clinical trials. International Journal of Oral & Maxillofacial Implants 21: 696–710.
- Francis-West, P.H., Abdelfattah, A., Chen, P., Allen, C., Parish, J., Ladher, R., Allen, S., MacPherson, S., Luyten, F.P. & Archer, C.W. (1999) Mechanisms of gdf-5 action during skeletal development. Development 126: 1305–1315.
- Fuerst, G., Gruber, R., Tangl, S., Sanroman, F. & Watzek, G. (2004) Effects of fibrin sealant protein concentrate with and without platelet-released growth factors on bony healing of cortical mandibular defects. An experimental study in minipigs. Clinical Oral Implants Research 15: 301–307.
- Groeneveld, E.H. & Burger, E.H. (2000) Bone morphogenetic proteins in human bone regeneration. European Journal of Endocrinology 142: 9–21.
- Groeneveld, E.H., Van Den Bergh, J.P., Holzmann, P., Ten Bruggenkate, C.M., Tuinzing, D.B. & Burger, E.H. (1999) Histomorphometrical analysis of bone formed in human maxillary sinus floor elevations grafted with op-1 device, demineralized bone matrix or autogenous bone. Comparison with non-grafted sites in a series of case reports. Clinical Oral Implants Research 10: 499–509.
- Gruber, R., Mayer, C., Schulz, W., Graninger, W., Peterlik, M., Watzek, G., Luyten, F.P. & Erlacher, L. (2000) Stimulatory effects of cartilage-derived morphogenetic proteins 1 and 2 on osteogenic differentiation of bone marrow stromal cells. Cytokine 12: 1630–1638.
- Gruber, R.M., Ludwig, A., Merten, H.A., Achilles, M., Poehling, S. & Schliephake, H. (2008) Sinus floor augmentation with recombinant human growth and differentiation factor-5 (rhGDF-5): a histological and histomorphometric study in the Goettingen miniature pig. Clinical Oral Implants Research 19: 522–529.
- Gulliksen, H. (1959) A balanced incomplete block design for paired comparisons. American Psychologist 14: 415–415.
- Hallman, M., Sennerby, L. & Lundgren, S. (2002) A clinical and histologic evaluation of implant integration in the posterior maxilla after sinus floor augmentation with autogenous bone, bovine hydroxyapatite, or a 20:80 mixture. International Journal of Oral & Maxillofacial Implants 17: 635–643.
- Hoexter, D.L. (2002) Bone regeneration graft materials. Journal of Oral Implantology 28: 290–294.
- Horch, H.H., Sader, R., Pautke, C., Neff, A., Deppe, H. & Kolk, A. (2006) Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (cerasorb) for bone regeneration in the reconstructive surgery of the jaws. International Journal of Oral and Maxillofacial Surgery 35: 708–713.
- Hotten, G.C., Matsumoto, T., Kimura, M., Bechtold, R.F., Kron, R., Ohara, T., Tanaka, H., Satoh, Y., Okazaki, M., Shirai, T., Pan, H., Kawai, S., Pohl, J.S. & Kudo, A. (1996) Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs. Growth Factors 13: 65–74.
- Jahng, T.A., Fu, T.S., Cunningham, B.W., Dmitriev, A.E. & Kim, D.H. (2004) Endoscopic instrumented posterolateral lumbar fusion with healos and recombinant human growth/differentiation factor-5. Neurosurgery 54: 171–180; discussion 180–171.
- Jensen, O.T., Shulman, L.B., Block, M.S. & Iacono, V.J. (1998) Report of the sinus consensus conference of 1996. International Journal of Oral & Maxillofacial Implants 13 (Suppl): 11–45.
- Kuniyasu, H., Hirose, Y., Ochi, M., Yajima, A., Sakaguchi, K., Murata, M. & Pohl, J. (2003) Bone augmentation using rhgdf-5-collagen composite. Clinical Oral Implants Research 14: 490–499.
- Magit, D.P., Maak, T., Trioano, N., Raphael, B., Hamouria, Q., Polzhofer, G., Drespe, I., Albert, T.J. & Grauer, J.N. (2006) Healos/recombinant human growth and differentiation factor-5 induces posterolateral lumbar fusion in a New Zealand white rabbit model. Spine 31: 2180–2188.
- McKay, W.F., Peckham, S.M. & Badura, J.M. (2007) A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). International Orthopaedics (SICOT) 31: 729–734.
- Misch, C.E. & Dietsh, F. (1993) Bone-grafting materials in implant dentistry. Implant Dentistry 2: 158–167.
- Niere, M., Braun, B., Gass, R., Sturany, S. & Volkmer, H. (2006) Combination of engineered neural cell adhesion molecules and GDF-5 for improved neurite extension in nerve guide concepts. Biomaterials 27: 3432–3440.
- Palti, A. & Hoch, T. (2002) A concept for the treatment of various dental bone defects. Implant Dentistry 11: 73–78.
- Poehling, S. (2002) Enhancement of bone growth by coating of osteoinductive beta-tricalcium phosphate (beta-tcp) with recombinant human growth factor-5 (rhgdf-5) 2nd European Conference on Bone Morphogenetic Proteins. Zagreb.
- Poehling, S., Pippig, S.D., Hellerbrand, K., Siedler, M., Schutz, A. & Dony, C. (2006) Superior effect of md05, beta-tricalcium phosphate coated with recombinant human growth/differentiation factor-5, compared to conventional bone substitutes in the rat calvarial defect model. Journal of Periodontology 77: 1582–1590.
- Roldan, J.C., Jepsen, S., Schmidt, C., Knuppel, H., Rueger, D.C., Acil, Y. & Terheyden, H. (2004) Sinus floor augmentation with simultaneous placement of dental implants in the presence of platelet-rich plasma or recombinant human bone morphogenetic protein-7. Clinical Oral Implants Research 15: 716–723.
- Shen, F.H., Zeng, Q., Lv, Q., Choi, L., Balian, G., Li, X. & Laurencin, C.T. (2006) Osteogenic differentiation of adipose-derived stromal cells treated with gdf-5 cultured on a novel three-dimensional sintered microsphere matrix. The Spine Journal 6: 615–623.
- Shimaoka, H., Dohi, Y., Ohgushi, H., Ikeuchi, M., Okamoto, M., Kudo, A., Kirita, T. & Yonemasu, K. (2004) Recombinant growth/differentiation factor-5 (gdf-5) stimulates osteogenic differentiation of marrow mesenchymal stem cells in porous hydroxyapatite ceramic. Journal of Biomedical Materials Research 68A: 168–176.
- Smiler, D.G., Johnson, P.W., Lozada, J.L., Misch, C., Rosenlicht, J.L., Tatum, O.H. Jr. & Wagner, J.R. (1992) Sinus lift grafts and endosseous implants. Treatment of the atrophic posterior maxilla. Dental Clinics of North America 36: 151–186; discussion 187–158.
- Spiro, R.C., Liu, L., Heidaran, M.A., Thompson, A.Y., Ng, C.K., Pohl, J. & Poser, J.W. (2000) Inductive activity of recombinant human growth and differentiation factor-5. Biochemical Society Transactions 28: 362–368.
- Storm, E.E., Huynh, T.V., Copeland, N.G., Jenkins, N.A., Kingsley, D.M. & Lee, S.J. (1994) Limb alterations in brachypodism mice due to mutations in a new member of the tgf beta-superfamily. Nature 368: 639–643.
- Storm, E.E. & Kingsley, D.M. (1999) Gdf5 coordinates bone and joint formation during digit development. Developmental Biology 209: 11–27.
- Sullivan, A.M., Opacka-Juffry, J., Hotten, G., Pohl, J. & Blunt, S.B. (1997) Growth/differentiation factor-5 protects nigrostriatal dopaminergic neurons in a rat model of Parkinson`s disease. Neuroscience Letters 233: 73–76.
- Szabo, G., Huys, L., Coulthard, P., Maiorana, C., Garagiola, U., Barabas, J., Nemeth, Z., Hrabak, K. & Suba, Z. (2005) A prospective multicenter randomized clinical trial of autogenous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevation: histologic and histomorphometric evaluation. International Journal of Oral & Maxillofacial Implants 20: 371–381.
- Szabo, G., Suba, Z., Hrabak, K., Barabas, J. & Nemeth, Z. (2001) Autogenous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevations (2- and 3-dimensional computed tomographic, histologic, and histomorphometric evaluations): preliminary results. International Journal of Oral & Maxillofacial Implants 16: 681–692.
- Terheyden, H., Jepsen, S., Moller, B., Tucker, M.M. & Rueger, D.C. (1999) Sinus floor augmentation with simultaneous placement of dental implants using a combination of deproteinized bone xenografts and recombinant human osteogenic protein-1. A histometric study in miniature pigs. Clinical Oral Implants Research 10: 510–521.
- Thomas, J.T., Lin, K., Nandedkar, M., Camargo, M., Cervenka, J. & Luyten, F.P. (1996) A human chondrodysplasia due to a mutation in a tgf-beta superfamily member. Nature Genetics 12: 315–317.
- Uludag, H., Friess, W., Williams, D., Porter, T., Timony, G., D'Augusta, D., Blake, C., Palmer, R., Biron, B. & Wozney, J. (1999) Rhbmp-collagen sponges as osteoinductive devices: effects of in vitro sponge characteristics and protein pi on in vivo rhbmp pharmacokinetics. Annals of the New York Academy of Science 875: 369–378.
- Urist, M.R., Lietze, A. & Dawson, E. (1984) Beta-tricalcium phosphate delivery system for bone morphogenetic protein. Clinical Orthopaedics and Related Research 187: 277–280.
- Urist, M.R., Nilsson, O., Rasmussen, J., Hirota, W., Lovell, T., Schmalzreid, T. & Finerman, G.A. (1987) Bone regeneration under the influence of a bone morphogenetic protein (bmp) beta tricalcium phosphate (tcp) composite in skull trephine defects in dogs. Clinical Orthopaedics and Related Research 214: 295–304.
- Van Den Bergh, J.P., Ten Bruggenkate, C.M., Groeneveld, H.H., Burger, E.H. & Tuinzing, D.B. (2000) Recombinant human bone morphogenetic protein-7 in maxillary sinus floor elevation surgery in 3 patients compared to autogenous bone grafts. A clinical pilot study. Journal of Clinical Periodontology 27: 627–636.
- Varma, A.A., Chilton, N.W. & Kutscher, A.H. (1970) Studies in the design and analysis of dental experiments. 13. Balanced incomplete block design. Journal of Dental Research 49: 1166–1171.
- Wang, X., Xiao, F., Yang, Q., Liang, B., Tang, Z., Jiang, L., Zhu, Q., Chang, W., Jiang, J., Jiang, C., Ren, X., Liu, J.Y., Wang, Q.K. & Liu, M. (2006) A novel mutation in gdf5 causes autosomal dominant symphalangism in two Chinese families. American Journal of Medical Genetics A140: 1846–1853.
- Wheeler, S.L., Holmes, R.E. & Calhoun, C.J. (1996) Six-year clinical and histologic study of sinus-lift grafts. International Journal of Oral & Maxillofacial Implants 11: 26–34.
- Yamashita, H., Shimizu, A., Kato, M., Nishitoh, H., Ichijo, H., Hanyu, A., Morita, I., Kimura, M., Makishima, F. & Miyazono, K. (1997) Growth/differentiation factor-5 induces angiogenesis in vivo. Experimental Cell Research 235: 218–226.
- Yildirim, M., Spiekermann, H., Handt, S. & Edelhoff, D. (2001) Maxillary sinus augmentation with the xenograft bio-oss and autogenous intraoral bone for qualitative improvement of the implant site: a histologic and histomorphometric clinical study in humans. International Journal of Oral & Maxillofacial Implants 16: 23–33.
- Yoshimoto, T., Yamamoto, M., Kadomatsu, H., Sakoda, K., Yonamine, Y. & Izumi, Y. (2006) Recombinant human growth/differentiation factor-5 (rhgdf-5) induced bone formation in murine calvariae. Journal of Periodontal Research 41: 140–147.
- Zeng, Q., Li, X., Beck, G., Balian, G. & Shen, F.H. (2007) Growth and differentiation factor-5 (gdf-5) stimulates osteogenic differentiation and increases vascular endothelial growth factor (vegf) levels in fat-derived stromal cells in vitro. Bone 40: 374–381.
- Zeng, Q., Li, X., Choi, L., Beck, G., Balian, G. & Shen, F.H. (2006) Recombinant growth/differentiation factor-5 stimulates osteogenic differentiation of fat-derived stromal cells in vitro. Connective Tissue Research 47: 264–270.
- Zerbo, I.R., Bronckers, A.L., De Lange, G.L., Van Beek, G.J. & Burger, E.H. (2001) Histology of human alveolar bone regeneration with a porous tricalcium phosphate. A report of two cases. Clinical Oral Implants Research 12: 379–384.