The development of tools for diagnosis of tularemia and typing of Francisella tularensis†
ANDERS JOHANSSON
Department of Clinical Microbiology, Infectious Diseases and
Swedish Defence Research Agency, Umeå, Sweden
Search for more papers by this authorCorresponding Author
ANDERS SJÖSTEDT
Clinical Bacteriology, Umeå University, and
Anders Sjöstedt, Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, S-901 85 Umeå, Sweden. e-mail: [email protected]Search for more papers by this authorANDERS JOHANSSON
Department of Clinical Microbiology, Infectious Diseases and
Swedish Defence Research Agency, Umeå, Sweden
Search for more papers by this authorCorresponding Author
ANDERS SJÖSTEDT
Clinical Bacteriology, Umeå University, and
Anders Sjöstedt, Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, S-901 85 Umeå, Sweden. e-mail: [email protected]Search for more papers by this authorInvited Review.
Abstract
Rapid development of molecular techniques for the diagnosis of infections and typing of microbes has been seen during the last 10 years. The present review exemplifies this development by presenting the work of the authors and others regarding techniques for the diagnosis of tularemia and typing of Francisella tularensis. The lack of rapid and safe methods for the laboratory diagnosis of tularemia was the rationale behind the development of methods for the direct detection of F. tularensis in clinical specimens. Today, detection by polymerase chain reaction has become an important adjunct to clinical decisions for the early diagnosis of tularemia. The elucidation of the epidemiology and epizootology of the disease has been hampered by the lack of suitable methods. During recent years several DNA-based methods that allow rapid identification of the four F. tularensis subspecies, including differentiation of strains of the two clinically important subspecies, the highly virulent type A strains and less virulent type B strains, have been developed. Since F. tularensis strains of any origin exhibit highly conserved genomic sequences, the availability of extensive genome sequence data was a prerequisite for the development of a typing system that allows discrimination of individual isolates. The most discriminatory method is based on multiple-locus variable-number tandem repeat analysis (MLVA) and uses highly variable parts of the F. tularensis genome. The method will be an important tool in future studies of the molecular epidemiology of tularemia.
REFERENCES
- 1 Sjöstedt A. Family XVII. Francisellaceae, genus. I. Francisella. In: DJ Brenner editor. Bergey's Manual of Systematic Bacteriology. New York: Springer-Verlag, 111–35.
- 2 Dennis DT, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, et al. Tularemia as a biological weapon: medical and public health management. JAMA 2001; 285: 2763–73.DOI: 10.1001/jama.285.21.2763
- 3 Burke DS. Immunization against tularemia: analysis of the effectiveness of live Francisella tularensis vaccine in prevention of laboratory-acquired tularemia. J Infect Dis 1977; 135: 55–60.
- 4 Hayes E, Marshall S, Dennis D, Feldman K. Tularemia–United States, 1990–2000. MMWR Morb Mortal Wkly Rep 2002; 51: 181–4.
- 5 Jusatz HJ. Tularemia in Europe, 1926–1951. In: E Rodenwaldt editor. Welt-Suchen Atlas. Hamburg: Falk-Verlag, 1952: 7–16.
- 6 Reintjes R, Dedushaj I, Gjini A, Jorgensen TR, Cotter B, Lieftucht A, et al. Tularemia outbreak investigation in Kosovo: case control and environmental studies. Emerg Infect Dis 2002; 8: 69–73.
- 7 Tärnvik A. Tularaemia in Europe: an epidemiological overview. Scand J Infect Dis 2004; 36: 350–5.DOI: 10.1080/00365540410020442
- 8 Cross JT, Penn RL. Francisella tularensis (Tularemia). In: GL Mandell, JE Bennet, R Dolin editors. Mandell, Douglas and Bennet's Principles and Practice of Infectious Diseases. 5th ed.. Philadelphia: Churchill Livingstone, 2000: 2393–402.
- 9 Hubalek M, Hernychova L, Havlasova J, Kasalova I, Neubauerova V, Stulik J, et al. Towards proteome database of Francisella tularensis. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 787: 149–77.
- 10 DeBey BM, Andrews GA, Chard-Bergstrom C, Cox L. Immunohistochemical demonstration of Francisella tularensis in lesions of cats with tularemia. J Vet Diagn Invest 2002; 14: 162–4.
- 11 Tärnvik A, Löfgren S, Öhlund L, Sandström G. Detection of antigen in urine of a patient with tularemia. Eur J Clin Microbiol 1987; 6: 318–9.
- 12 Grunow R, Splettstoesser W, McDonald S, Otterbein C, O'Brien T, Morgan C, et al. Detection of Francisella tularensis in biological specimens using a capture enzyme-linked immunosorbent assay, an immunochromatographic handheld assay, and a PCR. Clin Diagn Lab Immunol 2000; 7: 86–90.
- 13 Fulop M, Leslie D, Titball R. A rapid, highly sensitive method for the detection of Francisella tularensis in clinical samples using the polymerase chain reaction. Am J Trop Med Hyg 1996; 54: 364–6.
- 14 Long GW, Oprandy JJ, Narakyanan AH, Fortier AH, Portier KR, Nacy CA. Detection of Francisella tularensis in blood by polymerase chain reaction. J Clin Microbiol 1993; 31: 152–4.
- 15 Johansson A, Berglund L, Eriksson U, Göransson I, Wollin R, Forsman M, et al. Comparative analysis of PCR versus culture for diagnosis of ulceroglandular tularemia. J Clin Microbiol 2000; 38: 22–6.
- 16 Sjöstedt A, Eriksson U, Berglund L, Tärnvik A. Detection of Francisella tularensis in ulcers of patients with tularemia by PCR. J Clin Microbiol 1997; 35: 1045–8.
- 17 Versage JL, Severin DD, Chu MC, Petersen JM. Development of a multitarget real-time TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. J Clin Microbiol 2003; 41: 5492–9.DOI: 10.1128/JCM.41.12.5492-5499.2003
- 18 Lamps LW, Havens JM, Sjöstedt A, Page DL, Scott MA. Histologic and molecular diagnosis of tularemia: a potential bioterrorism agent endemic to North America. Mod Pathol 2004; 17: 489–95.DOI: 10.1038/modpathol.3800087
- 19 Higgins JA, Hubalek Z, Halouzka J, Elkins KL, Sjöstedt A, Shipley M, et al. Detection of Francisella tularensis in infected mammals and vectors using a probe-based polymerase chain reaction. Am J Trop Med Hyg 2000; 62: 310–8.
- 20 Emanuel PA, Bell R, Dang JL, McClanahan R, David JC, Burgess RJ, et al. Detection of Francisella tularensis within infected mouse tissues by using a hand-held PCR thermocycler. J Clin Microbiol 2003; 41: 689–93.DOI: 10.1128/JCM.41.2.689-693.2003
- 21 Sjöstedt A, Kuoppa K, Johansson T, Sandström G. The 17 kDa lipoprotein and encoding gene of Francisella tularensis LVS are conserved in strains of Francisella tularensis. Microb Pathog 1992; 13: 243–9.DOI: 10.1016/0882-4010(92)90025-J
- 22 Forsman M, Sandström G, Sjöstedt A. Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int J Syst Bacteriol 1994; 44: 38–46.
- 23 Forsman M, Kuoppa K, Sjöstedt A, Tärnvik A. Use of RNA hybridization in the diagnosis of a case of ulceroglandular tularemia. Eur J Clin Microbiol Infect Dis 1990; 9: 784–5.
- 24 Ibrahim A, Gerner-Smidt P, Sjöstedt A. Amplification and restriction endonuclease digestion of a large fragment of genes coding for rRNA as a rapid method for discrimination of closely related pathogenic bacteria. J Clin Microbiol 1996; 34: 2894–6.
- 25 Grif K, Dierich MP, Much P, Hofer E, Allerberger F. Identifying and subtyping species of dangerous pathogens by automated ribotyping. Diagn Microbiol Infect Dis 2003; 47: 313–20.DOI: 10.1016/S0732-8893(03)00095-6
- 26 Johansson A, Ibrahim A, Göransson I, Eriksson U, Gurycova D, Clarridge JE 3rd, et al. Evaluation of PCR-based methods for discrimination of Francisella species and subspecies and development of a specific PCR that distinguishes the two major subspecies of Francisella tularensis. J Clin Microbiol 2000; 38: 4180–5.
- 27 Johansson A. DNA-based tools for identification, classification, and epidemiological investigations of Francisella tularensis. PhD thesis, Umeå University: Umeå, 2002.
- 28 Johansson A, Farlow J, Larsson P, Dukerich M, Byström M, Fox J, et al. World-wide genetic relationships among Francisella tularensis isolates using multiple-locus variable-number randem repeat analysis (MLVA). J Bacteriol 2004. In press.
- 29 Petersen JM, Schriefer ME, Carter LG, Zhou Y, Sealy T, Bawiec D, et al. Laboratory analysis of tularemia in wild-trapped, commercially traded prairie dogs, Texas, 2002. Emerg Infect Dis 2004; 10: 419–25.
- 30 Garcia Del Blanco N, Dobson ME, Vela AI, De La Puente VA, Gutierrez CB, Hadfield TL, et al. Genotyping of Francisella tularensis strains by pulsed-field gel electrophoresis, amplified fragment length polymorphism fingerprinting, and 16S rRNA gene sequencing. J Clin Microbiol 2002; 40: 2964–72.DOI: 10.1128/JCM.40.8.2964-2972.2002
- 31 De La Puente-Redondo VA, Del Blanco NG, Gutierrez-Martin CB, Garcia-Pena FJ, Rodriguez Ferri EF. Comparison of different PCR approaches for typing of Francisella tularensis strains. J Clin Microbiol 2000; 38: 1016–22.
- 32 Clarridge JE 3rd, Raich TJ, Sjosted A, Sandström G, Darouiche RO, Shawar RM, et al. Characterization of two unusual clinically significant Francisella strains. J Clin Microbiol 1996; 34: 1995–2000.
- 33 Enright MC, Spratt BG. Multilocus sequence typing. Trends Microbiol 1999; 7: 482–7.DOI: 10.1016/S0966-842X(99)01609-1
- 34 Broekhuijsen M, Larsson P, Johansson A, Byström M, Eriksson U, Larsson E, et al. Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive Genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subspecies tularensis. J Clin Microbiol 2003; 41: 2924–31.
- 35 Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous mutation. Genetics 1998; 148: 1667–86.
- 36 Thomas R, Johansson A, Neeson B, Isherwood K, Sjöstedt A, Ellis J, et al. Discrimination of human pathogenic subspecies of Francisella tularensis by using restriction fragment length polymorphism. J Clin Microbiol 2003; 41: 50–7.DOI: 10.1128/JCM.41.1.50-57.2003
- 37 Johansson A, Göransson I, Larsson P, Sjöstedt A. Extensive allelic variation among Francisella tularensis strains in a short-sequence tandem repeat region. J Clin Microbiol 2001; 39: 3140–6.DOI: 10.1128/JCM.39.9.3140-3146.2001
- 38 Van Soolingen D, De Haas PE, Hermans PW, Van Embden JD. DNA fingerprinting of Mycobacterium tuberculosis. Methods Enzymol 1994; 235: 196–205.
- 39 Van Belkum A, Scherer S, Van Alphen L, Verbrugh H. Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 1998; 62: 275–93.
- 40 Mazars E, Lesjean S, Banuls AL, Gilbert M, Vincent V, Gicquel B, et al. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci U S A 2001; 98: 1901–6.DOI: 10.1073/pnas.98.4.1901
- 41 Farlow J, Smith KL, Wong J, Abrams M, Lytle M, Keim P. Francisella tularensis strain typing using multiple-locus, variable-number tandem repeat analysis. J Clin Microbiol 2001; 39: 3186–92.DOI: 10.1128/JCM.39.9.3186-3192.2001