Role of Slug transcription factor in human mesenchymal stem cells
Elena Torreggiani
Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
Search for more papers by this authorGina Lisignoli
Struttura Complessa Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Bologna, Italy
Laboratorio RAMSES, Bologna, Italy
Search for more papers by this authorCristina Manferdini
Struttura Complessa Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Bologna, Italy
Laboratorio RAMSES, Bologna, Italy
Search for more papers by this authorElisabetta Lambertini
Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
Search for more papers by this authorLetizia Penolazzi
Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
Search for more papers by this authorRenata Vecchiatini
Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
Search for more papers by this authorElena Gabusi
Struttura Complessa Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Bologna, Italy
Laboratorio RAMSES, Bologna, Italy
Search for more papers by this authorPasquale Chieco
Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Bologna, Italy
Search for more papers by this authorAndrea Facchini
Struttura Complessa Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Bologna, Italy
Laboratorio RAMSES, Bologna, Italy
Dipartimento di Medicina Clinica, Università degli Studi di Bologna, Bologna, Italy
Search for more papers by this authorRoberto Gambari
Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
Search for more papers by this authorCorresponding Author
Roberta Piva
Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
Roberta PIVA, Department of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara, 74, 44121 Ferrara, Italy. Tel.: +39-532-974405 Fax: +39-532-974484 E-mail: [email protected]Search for more papers by this authorElena Torreggiani
Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
Search for more papers by this authorGina Lisignoli
Struttura Complessa Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Bologna, Italy
Laboratorio RAMSES, Bologna, Italy
Search for more papers by this authorCristina Manferdini
Struttura Complessa Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Bologna, Italy
Laboratorio RAMSES, Bologna, Italy
Search for more papers by this authorElisabetta Lambertini
Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
Search for more papers by this authorLetizia Penolazzi
Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
Search for more papers by this authorRenata Vecchiatini
Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
Search for more papers by this authorElena Gabusi
Struttura Complessa Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Bologna, Italy
Laboratorio RAMSES, Bologna, Italy
Search for more papers by this authorPasquale Chieco
Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Bologna, Italy
Search for more papers by this authorAndrea Facchini
Struttura Complessa Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Bologna, Italy
Laboratorio RAMSES, Bologna, Italy
Dipartimento di Medicina Clinica, Università degli Studi di Bologna, Bologna, Italy
Search for more papers by this authorRoberto Gambari
Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
Search for more papers by this authorCorresponding Author
Roberta Piva
Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
Roberta PIVA, Department of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara, 74, 44121 Ferrara, Italy. Tel.: +39-532-974405 Fax: +39-532-974484 E-mail: [email protected]Search for more papers by this authorAbstract
The pathways that control mesenchymal stem cells (MSCs) differentiation are not well understood, and although some of the involved transcription factors (TFs) have been characterized, the role of others remains unclear. We used human MSCs from tibial plateau (TP) trabecular bone, iliac crest (IC) bone marrow and Wharton’s jelly (WJ) umbilical cord demonstrating a variability in their mineral matrix deposition, and in the expression levels of TFs including Runx2, Sox9, Sox5, Sox6, STAT1 and Slug, all involved in the control of osteochondroprogenitors differentiation program. Because we reasoned that the basal expression level of some TFs with crucial role in the control of MSC fate may be correlated with osteogenic potential, we considered the possibility to affect the hMSCs behaviour by using gene silencing approach without exposing cells to induction media. In this study we found that Slug-silenced cells changed in morphology, decreased in their migration ability, increased Sox9 and Sox5 and decreased Sox6 and STAT1 expression. On the contrary, the effect of Slug depletion on Runx2 was influenced by cell type. Interestingly, we demonstrated a direct in vivo regulatory action of Slug by chromatin immunoprecipitation, showing a specific recruitment of this TF in the promoter of Runx2 and Sox9 genes. As a whole, our findings have important potential implication on bone tissue engineering applications, reinforcing the concept that manipulation of specific TF expression levels may elucidate MSC biology and the molecular mechanisms, which promote osteogenic differentiation.
Supporting Information
Additional Supporting Information may be found in the online version of this article:
Fig S1 Effect of Slug overexpression on osteogenic differentiation of hWJ-MSCs
Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
Filename | Description |
---|---|
jcmm1352_sm_FigS1.TIF1.7 MB | Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Caplan AI. Mesenchymal stem cell: cell-based reconstructive therapy in orthopaedics. Tiss Eng. 2005; 11: 1198–211.
- 2Arthur A, Zannettino A, Gronthos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol. 2009; 218: 237–45.
- 3Arvidson K, Abdallah BM, Applegate LA, et al. Bone regeneration and stem cells. J Cell Mol Med. 2011; 15: 718–46.
- 4Robey PG, Kuznetsov SA, Riminucci M, et al. Skeletal (“mesenchymal”) stem cells for tissue engineering. Methods Mol Med. 2007; 140: 83–99.
- 5Satija NK, Singh VK, Verma YK, et al. Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J Cell Mol Med. 2009; 13: 4385–402.
- 6Augello A, De Bari C. The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther. 2010; 21: 1226–38.
- 7Satija NK, Gurudutta GU, Sharma S, et al. Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev 2007; 16: 7–23.
- 8Squillaro T, Alessio N, Cipollaro M, et al. Partial silencing of methyl cytosine protein binding 2 (MECP2) in mesenchymal stem cells induces senescence with an increase in damaged DNA. FASEB J. 2010; 24: 1593–603.
- 9Qi H, Aguiar DJ, Williams SM, et al. Identification of genes responsible for osteoblast differentiation from human mesodermal progenitor cells. Proc Natl Acad Sci USA. 2003; 100: 3305–10.
- 10Karsenty G. The complexities of skeletal biology. Nature. 2003; 423: 316–8.
- 11Shibata KR, Aoyama T, Shima Y, et al. Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells. 2007; 25: 2371–82.
- 12Mosna F, Senseb L, Krampera M. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev. 2010; 19: 1449–70.
- 13Hsieh JY, Fu YS, Chang SJ, et al. Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells Dev. 2010; 19: 1895–910.
- 14Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001; 19: 180–92.
- 15Lavrentieva A, Majore I, Kasper C, et al. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun Signal. 2010; 8: 18–26.
- 16Noël D, Caton D, Roche S, et al. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res. 2008; 314: 1575–84.
- 17Mannello F, Tonti GA. Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with foetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold!Stem Cells. 2007; 25: 1603–9.
- 18Lambertini E, Lisignoli G, Torreggiani E, et al. Slug gene expression supports human osteoblast maturation. Cell Mol Life Sci. 2009; 66: 3641–53.
- 19Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002; 3: 155–66.
- 20Conacci-Sorrell M, Simcha I, Ben-Yedidia T, et al. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta catenin signaling, Slug, and MAPK. J Cell Biol. 2003; 163: 847–57.
- 21Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005; 132: 3151–61.
- 22Lambertini E, Franceschetti T, Torreggiani E, et al. SLUG: a new target of lymphoid enhancer factor-1 in human osteoblasts. BMC Mol Biol. 2010; 11: 13–24.
- 23Lian JB, Stein GS. The temporal and spatial subnuclear organization of skeletal gene regulatory machinery: integrating multiple levels of transcriptional control. Calcif Tissue Int. 2003; 72: 631–7.
- 24Barzilay R, Melamed E, Offen D. Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells. 2009; 27: 2509–15.
- 25Chang HH, Hemberg M, Barahona M, et al. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature. 2008; 453: 544–7.
- 26Lisignoli G, Codeluppi K, Todoerti K, et al. Gene array profile identifies collagen type XV as a novel human osteoblast-secreted matrix protein. J Cell Physiol. 2009; 220: 401–9.
- 27Penolazzi L, Tavanti E, Vecchiatini R, et al. Encapsulation of mesenchymal stem cells from Wharton’s jelly in alginate microbeads. Tissue Eng Part C Methods. 2010; 16: 141–55.
- 28Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010; 339: 189–95.
- 29Kim IS, Otto F, Zabel B, et al. Regulation of chondrocyte differentiation by Cbfa1. Mech Dev. 1999; 80: 159–70.
- 30Lefebvre V. Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol. 1998; 16: 529–40.
- 31Bi W, Deng JM, Zhang Z, et al. Sox9 is required for cartilage formation. Nat Genet. 1999; 22: 85–9.
- 32Han Y, Lefebvre V. L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer. Mol Cell Biol. 2008; 28: 4999–5013.
- 33Xiao L, Naganawa T, Obugunde E, et al. Stat1 controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts. J Biol Chem. 2004; 279: 27743–52.
- 34Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006; 97: 33–44.
- 35Lin L, Chen L, Wang H, et al. Adenovirus-mediated transfer of siRNA against Runx2/Cbfa1 inhibits the formation of heterotopic ossification in animal model. Biochem Biophys Res Commun. 2006; 349: 564–72.
- 36Gordeladze JO, Noël D, Bony C, et al. Transient down-regulation of cbfa1/Runx2 by RNA interference in murine C3H10T1/2 mesenchymal stromal cells delays in vitro and in vivo osteogenesis, but does not overtly affect chondrogenesis. Exp Cell Res. 2008; 314: 1495–506.
- 37Miraoui H, Severe N, Vaudin P, et al. Molecular silencing of Twist1 enhances osteogenic differentiation of murine mesenchymal stem cells: implication of FGFR2 signaling. J Cell Biochem. 2010; 110: 1147–54.
- 38Tominaga H, Maeda S, Miyoshi H, et al. Expression of osterix inhibits bone morphogenetic protein-induced chondrogenic differentiation of mesenchymal progenitor cells. J Bone Miner Metab. 2009; 27: 36–45.
- 39Deng ZL, Sharff KA, Tang N, et al. Regulation of osteogenic differentiation during skeletal development. Front Biosci. 2008; 13: 2001–21.
- 40Yano F, Kugimiya F, Ohba S, et al. The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner. Biochem Biophys Res Commun. 2005; 333: 1300–8.
- 41Wan C, Shao J, Gilbert SR, et al. Role of HIF-1alpha in skeletal development. Ann N Y Acad Sci. 2010; 1192: 322–6. 42. Bhandari DR, Seo KW, Roh KH, et al. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells. PLoS One. 2010; 5: e10493.
- 43da Silva Meirelles L, Caplan AI, Beyer Nardi N. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008; 26: 2287–99.
- 44Karsenty G. Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet. 2008; 9: 183–96.
- 45Marie PJ. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys. 2008; 473: 98–105.
- 46Maruyama Z, Yoshida CA, Furuichi T, et al. Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency. Dev Dyn. 2007; 236: 1876–90.
- 47Moretti P, Hatlapatka T, Marten D, et al. Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applications. Adv Biochem Eng Biotechnol. 2010; 123: 29–54.
- 48Troyer DL, Weiss ML. Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008; 26: 591–9.
- 49Kim D, Song J, Jin EJ. MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J Biol Chem. 2010; 285: 26900–7.
- 50Ikeda T, Kamekura S, Mabuchi A, et al. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum. 2004; 50: 3561–73.
- 51Park JS, Yang HN, Woo DG, et al. Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles. Biomaterials. 2011; 32: 3679–88.
- 52Fernandez-Lloris R, Vinals F, Lopez-Rovira T, et al. Induction of the Sry-related factor SOX6 contributes to bone morphogenetic protein-2-induced chondroblastic differentiation of C3H10T1/2 cells. Mol Endocrinol. 2003; 17: 1332–43.
- 53Spagnoli A, Torello M, Nagalla SR, et al. Identification of STAT-1 as a molecular target of IGFBP-3 in the process of chondrogenesis. J Biol Chem. 2002; 277: 18860–7.
- 54Durbin JE, Hackenmiller R, Simon MC, et al. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell. 1996; 84: 443–50.
- 55Tajima K, Takaishi H, Takito J, et al. Inhibition of STAT1 accelerates bone fracture healing. J Orthop Res. 2010; 28: 937–41.
- 56Newkirk KM, Duncan FJ, Brannick EM, et al. The acute cutaneous inflammatory response is attenuated in Slug-knockout mice. Lab Invest. 2008; 88: 831–41.
- 57Zhao P, Iezzi S, Carver E, et al. Slug is a novel downstream target of MyoD. Temporal profiling in muscle regeneration. J Biol Chem. 2002; 277: 30091–101.