A molecular study of pathways involved in the inhibition of cell proliferation in neuroblastoma B65 cells by the GSK-3 inhibitors lithium and SB-415286
Javier G. Pizarro
Unitat de Farmacologia i Farmacognòsia, Institut de Biomedicina and Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona, Spain
Search for more papers by this authorJaume Folch
Unitat de Bioquimica and Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Reus (Tarragona), Spain
Search for more papers by this authorJosé Luis Esparza
Unitat de Toxicologìa. Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Reus (Tarragona), Spain
Search for more papers by this authorJ. Jordan
Grupo de Neurofarmacologìa, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
Search for more papers by this authorMercè Pallàs
Unitat de Farmacologia i Farmacognòsia, Institut de Biomedicina and Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona, Spain
Search for more papers by this authorCorresponding Author
Antoni Camins
Unitat de Farmacologia i Farmacognòsia, Institut de Biomedicina and Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona, Spain
Correspondence to: Antoni CAMINS, Unitat de Farmacologia i Farmacognòsia, Institut de Biomedicina, Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain.Tel.: 003493 4024531Fax: 93403 5982E-mail: [email protected]Search for more papers by this authorJavier G. Pizarro
Unitat de Farmacologia i Farmacognòsia, Institut de Biomedicina and Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona, Spain
Search for more papers by this authorJaume Folch
Unitat de Bioquimica and Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Reus (Tarragona), Spain
Search for more papers by this authorJosé Luis Esparza
Unitat de Toxicologìa. Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Reus (Tarragona), Spain
Search for more papers by this authorJ. Jordan
Grupo de Neurofarmacologìa, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
Search for more papers by this authorMercè Pallàs
Unitat de Farmacologia i Farmacognòsia, Institut de Biomedicina and Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona, Spain
Search for more papers by this authorCorresponding Author
Antoni Camins
Unitat de Farmacologia i Farmacognòsia, Institut de Biomedicina and Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona, Spain
Correspondence to: Antoni CAMINS, Unitat de Farmacologia i Farmacognòsia, Institut de Biomedicina, Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain.Tel.: 003493 4024531Fax: 93403 5982E-mail: [email protected]Search for more papers by this authorAbstract
Pharmacological GSK-3 inhibitors are potential drugs for the treatment of neurodegenerative diseases, cancer and diabetes. We examined the antiproliferative effects of two GSK-3 inhibitors, lithium and SB-415286, on B65 neuroblastoma cell line. Treatment of B65 cells with either drug administered separately caused a decrease in cell proliferation that was associated with G2/M cell cycle arrest. Cell-cycle proteins such as cyclins D, E, A, cdk4 and cdk2 were up-regulated. Since lithium and SB-415286-induced G2/M arrest we studied changes in the expression of proteins involved in this phase, specifically cyclin B, cdc2 and the phosphorylated form of this protein (tyr15-cdc2). Both drugs increased the expression of tyr15-cdc2, thus inhibiting mitosis. On the other hand, SB-415286 increased the expression of SIRT2, involved in the regulation of proliferation. Moreover, cell-cycle arrest mediated by SB-415286 was accompanied by apoptosis that was not prevented by 100 μM of zVAD-fmk (benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone), a pan-caspase inhibitor. Likewise, GSK-3 inhibitors did not affect the mitochondrial release of apoptosis inducing factor (AIF). We conclude that inhibitors of GSK-3 induced cell-cycle arrest, mediated by the phosphorylation of cdc2 and, in the case of SB-415286, SIRT2 expression, which induced apoptosis in a caspase-independent manner.
References
- 1 Forde JE, Dale TC. Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol Life Sci. 2007; 64: 1930–44.
- 2 Phiel CJ, Klein PS. Molecular targets of lithium action. Annu Rev Pharmacol Toxicol. 2001; 41: 789–813.
- 3 Chuang DM, Manji HK. In search of the Holy Grail for the treatment of neurodegenerative disorders: has a simple cation been overlooked Biol Psychiatry. 2007; 62: 4–6.
- 4 Gould TD, Picchini AM, Einat H, et al . Targeting glycogen synthase kinase-3 in the CNS: implications for the development of new treatments for mood disorders, Curr Drug Targets. 2006; 7: 1399–409.
- 5 Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci. 2004; 25: 471–80.
- 6 Gould TD, Manji HK. Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology. 2005; 30: 1223–337.
- 7 Avila J, Hernández F. GSK-3 inhibitors for Alzheimer's disease. Expert Rev Neurother. 2007; 7: 1527–33.
- 8 Wang W, Yang Y, Ying C, et al . Inhibition of glycogen synthase kinase-3beta protects dopaminergic neurons from MPTP toxicity. Neuropharmacology. 2007; 52: 1678–84.
- 9 Ougolkov AV, Billadeau DD. Targeting GSK-3: a promising approach for cancer therapy Future Oncol. 2006; 2: 91–100.
- 10 Sun A, Shanmugam I, Song J, et al . Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate. 2007; 67: 976–88.
- 11 Takahashi-Yanaga F, Sasaguri T. GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal. 2008; 20: 581–9.
- 12 Ryves WJ, Dajani R, Pearl L, et al . Glycogen synthase kinase-3 inhibition by lithium and beryllium suggests the presence of two magnesium binding sites. Biochem Biophys Res Commun. 2002; 290: 967–72.
- 13 Yeste-Velasco M, Folch J, Trullàs R, et al . Glycogen synthase kinase-3 is involved in the regulation of the cell cycle in cerebellar granule cells. Neuropharmacology. 2007; 53: 295–307.
- 14
García-Pérez J,
Avila J,
Díaz-Nido J.
Lithium induces morphological differentiation of mouse neuroblastoma cells.
J Neurosci Res.
1999; 57: 261–70.
10.1002/(SICI)1097-4547(19990715)57:2<261::AID-JNR12>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 15 Karlovic D, Jakopec S, Dubravcic K, et al . Lithium increases expression of p21(WAF/Cip1) and survivin in human glioblastoma cells. Cell Biol Toxicol. 2007; 23: 83–90.
- 16 Mao CD, Hoang P, DiCorleto PE. Lithium inhibits cell cycle progression and induces stabilization of p53 in bovine aortic endothelial cells. J. Biol. Chem. 2001; 276: 26180–8.
- 17 Facci L, Stevens DA, Skaper SD. Glycogen synthase kinase-3 inhibitors protect central neurons against excitotoxicity. Neuroreport. 2003; 14: 1467–70.
- 18 Coghlan MP, Culbert AA, Cross DA, et al . Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol. 2007; 88: 793–803.
- 19 Cao Q, Lu X, Feng YJ. Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells. Cell Res. 2006; 16: 671–7.
- 20 Christensen BM, Kim YH, Kwon TH, et al . Lithium treatment induces a marked proliferation of primarily principal cells in rat kidney inner medullary collecting duct. Am J Physiol Renal Physiol. 2006; 291: F39–48.
- 21 Erdal E, Ozturk N, Cagatay T, et al . Lithium-mediated downregulation of PKB/Akt and cyclin E with growth inhibition in hepatocellular carcinoma cells. Int J Cancer. 2005; 115: 903–10.
- 22 Mazor M, Kawano Y, Zhu H, et al . Inhibition of glycogen synthase kinase-3 represses androgen receptor activity andprostate cancer cell growth. Oncogene. 2004; 23: 7882–92.
- 23 Garcea G, Manson MM, Neal CP, et al . Glycogen synthase kinase-3 beta; a new target in pancreatic cancer Curr Cancer Drug Targets. 2007; 7: 209–15.
- 24 Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA, et al . Inactivation of glycogen synthase kinase-3beta, a downstream target of the raf-1 pathway, is associated with growth suppression in medullary thyroid cancer cells. Mol Cancer Ther. 2007; 6: 1151–8.
- 25 Di Daniel E, Mudge AW, Maycox PR. Comparative analysis of the effects of four mood stabilizers in SH-SY5Y cells and in primary neurons. Bipolar Disord. 2005; 7: 33–41.
- 26 Diehl JA, Cheng M, Roussel MF, et al . Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998; 15: 3499–511.
- 27 Dong J, Peng J, Zhang H, et al . Role of glycogen synthase kinase 3beta in rapamycin-mediated cell cycle regulation and chemosensitivity. Cancer Res. 2005; 65: 1961–72.
- 28 Karim R, Tse G, Putti T, et al . The significance of the Wnt pathway in the pathology of human cancers. Pathology. 2004; 36: 120–8.
- 29 Massagué J. G1 cell-cycle control and cancer. Nature. 2004; 432: 298–306.
- 30 Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci. 2003; 24: 135–49.
- 31 Hiratsuka M, Inoue T, Toda T, et al . Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun. 2003; 309: 558–66.
- 32 Diaz-Corrales FJ, Asanuma M, Miyazaki I, et al . Rotenone induces disassembly of the Golgi apparatus in the rat dopaminergic neuroblastoma B65 cell line. Neurosci Lett. 2004; 354: 59–63.
- 33 Inoue T, Hiratsuka M, Osaki M, et al . SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene. 2007; 26: 945–57.
- 34 Inoue T, Hiratsuka M, Osaki M, et al . The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle. 2007; 6: 1011–88.
- 35 Jackson JR, Patrick DR, Dar MM, et al . Targeted anti-mitotic therapies: can we improve on tubulin agents Nat Rev Cancer. 2007; 7: 107–17.
- 36 Kappes A, Vaccaro A, Kunnimalaiyaan M, et al . Lithium ions: a novel treatment for pheochromocytomas and paragangliomas. Surgery. 2007; 141: 161–5.
- 37 Nahhas F, Dryden SC, Abrams J, et al . Mutations in SIRT2 deacetylase which regulate enzymatic activity but not its interaction with HDAC6 and tubulin. Mol Cell Biochem. 2007; 303: 221–330.
- 38 Obligado SH, Ibraghimov-Beskrovnaya O, Zuk A, et al . CDK/GSK-3 inhibitors as therapeutic agents for parenchymal renal diseases. Kidney Int. 2008; 73: 684–90.
- 39 Rao AS, Kremenevskaja N, Resch J, et al . Lithium stimulates proliferation in cultured thyrocytes by activating Wnt/beta-catenin signalling. Eur J Endocrinol. 2007; 153: 929–38.
- 40 Shakoori A, Mai W, Miyashita K, et al . Inhibition of GSK-3 beta activity attenuates proliferation of human colon cancer cells in rodents. Cancer Sci. 2007; 98: 1388–93.
- 41 Smits VA, Essers MA, Loomans DS, et al . Inhibition of cell proliferation by lithium is associated with interference in cdc2 activation. FEBS Lett. 1999; 457: 23–7.
- 42 Tighe A, Ray-Sinha A, Staples OD, et al . GSK-3 inhibitors induce chromosome instability. BMC Cell Biol. 2007; 14: 8.
- 43 Wakefield JG, Stephens DJ, Tavare JM. A role for glycogen synthase kinase-3 in mitotic spindle dynamics and chromosome alignment. J Cell Sci. 2003; 116: 637–46.
- 44 Wang Y, Kreisberg JI, Ghosh PM. Cross-talk between the androgen receptor and the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer. Curr Cancer Drug Targets. 2007; 7: 591–604.
- 45 Verdaguer E, Susana Gde A, Clemens A, et al . Implication of the transcription factor E2F-1 in the modulation of neuronal apoptosis. Biomed Pharmacother. 2007; 61: 390–9.
- 46 Pallàs M, Camins A. Molecular and biochemical features in Alzheimer's disease. Curr Pharm Des. 2006; 12: 4389–408.
- 47 Camins A, Verdaguer E, Folch J, et al . Involvement of calpain activation in neurodegenerative processes. CNS Drug Rev. 2006; 12: 135–48.
- 48 Nunomura A, Moreira PI, Lee HG, et al . Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol Disord Drug Target. 2007; 6: 411–23.
- 49 Zhu X, Lee HG, Perry G, et al . Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta. 2007; 1772: 494–502.
- 50 Webber KM, Casadesus G, Zhu X, et al . The cell cycle and hormonal fluxes in Alzheimer disease: a novel therapeutic target Curr Pharm Des. 2006; 12: 691–7.
- 51 Dranovsky A, Vincent I, Gregori L, et al . Cdc2 phosphorylation of nucleolin demarcates mitotic stages and Alzheimer's disease pathology. Neurobiol Aging. 2001; 22: 517–28.
- 52 Aulia S, Tang BL. Cdh1-APC/C, cyclin B-Cdc2, and Alzheimer's disease pathology. Biochem Biophys Res Commun. 2006; 339: 1–6.
- 53 Bonni A. The E2F-Cdc2 cell-cycle pathway specifically mediates activity deprivation-induced apoptosis of postmitotic neurons. J Neurosci. 2003; 23: 1649–61.
- 54 Konishi Y, Lehtinen M, Donovan N, et al . Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery. Mol Cell. 2002; 9: 1005–16.