Internal affairs: investigating the Brucella intracellular lifestyle
Kristine von Bargen
Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, UM 2, Marseille Cedex, France
INSERM, U 1104, Marseille, France
CNRS, UMR 7280, Marseille, France
Search for more papers by this authorJean-Pierre Gorvel
Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, UM 2, Marseille Cedex, France
INSERM, U 1104, Marseille, France
CNRS, UMR 7280, Marseille, France
Search for more papers by this authorCorresponding Author
Suzana P. Salcedo
Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, UM 2, Marseille Cedex, France
INSERM, U 1104, Marseille, France
CNRS, UMR 7280, Marseille, France
Correspondence: Suzana P. Salcedo, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Case 906, Marseille, 13288 Cedex 9, France. Tel.: +33 491 269 116 and +33 491 269 115 ; fax: +33 491 269 430; e-mail: [email protected]Search for more papers by this authorKristine von Bargen
Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, UM 2, Marseille Cedex, France
INSERM, U 1104, Marseille, France
CNRS, UMR 7280, Marseille, France
Search for more papers by this authorJean-Pierre Gorvel
Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, UM 2, Marseille Cedex, France
INSERM, U 1104, Marseille, France
CNRS, UMR 7280, Marseille, France
Search for more papers by this authorCorresponding Author
Suzana P. Salcedo
Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, UM 2, Marseille Cedex, France
INSERM, U 1104, Marseille, France
CNRS, UMR 7280, Marseille, France
Correspondence: Suzana P. Salcedo, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Case 906, Marseille, 13288 Cedex 9, France. Tel.: +33 491 269 116 and +33 491 269 115 ; fax: +33 491 269 430; e-mail: [email protected]Search for more papers by this authorAbstract
Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular ‘lifestyle’. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.
References
- Akopyan K, Edgren T, Wang-Edgren H, Rosqvist R, Fahlgren A, Wolf-Watz H & Fallman M (2011) Translocation of surface-localized effectors in type III secretion. P Natl Acad Sci USA 108: 1639–1644.
- Allen CA, Adams LG & Ficht TA (1998) Transposon-derived Brucella abortus rough mutants are attenuated and exhibit reduced intracellular survival. Infect Immun 66: 1008–1016.
- Alvarez-Martinez CE & Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73: 775–808.
- Anderson TD & Cheville NF (1986) Ultrastructural morphometric analysis of Brucella abortus-infected trophoblasts in experimental placentitis. Bacterial replication occurs in rough endoplasmic reticulum. Am J Pathol 124: 226–237.
- Anderson ES, Paulley JT, Gaines JM, Valderas MW, Martin DW, Menscher E, Brown TD, Burns CS & Roop RM II (2009) The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun 77: 3466–3474.
- Antunes LC, Ferreira RB, Buckner MM & Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156: 2271–2282.
- Archambaud C, Salcedo SP, Lelouard H, Devilard E, de Bovis B, Van Rooijen N, Gorvel JP & Malissen B (2010) Contrasting roles of macrophages and dendritic cells in controlling initial pulmonary Brucella infection. Eur J Immunol 40: 3458–3471.
- Arellano-Reynoso B, Lapaque N, Salcedo S, Briones G, Ciocchini AE, Ugalde R, Moreno E, Moriyon I & Gorvel JP (2005) Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol 6: 618–625.
- Arenas-Gamboa AM, Ficht TA, Kahl-McDonagh MM & Rice-Ficht AC (2008) Immunization with a single dose of a microencapsulated Brucella melitensis mutant enhances protection against wild-type challenge. Infect Immun 76: 2448–2455.
- Ariza J, Bosilkovski M, Cascio A et al. (2007) Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations. PLoS Med 4: e317.
- Audic S, Lescot M, Claverie JM & Scholz HC (2009) Brucella microti: the genome sequence of an emerging pathogen. BMC Genomics 10: 352.
- Baldwin CL & Goenka R (2006) Host immune responses to the intracellular bacteria Brucella: does the bacteria instruct the host to facilitate chronic infection? Crit Rev Immunol 26: 407–442.
- Barbier T, Nicolas C & Letesson JJ (2011) Brucella adaptation and survival at the crossroad of metabolism and virulence. FEBS Lett 585: 2929–2934.
- Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzman-Verri C, Chacon-Diaz C, Rucavado A, Moriyon I & Moreno E (2007) Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS ONE 2: e631.
- Barrionuevo P, Delpino MV, Velasquez LN, Garcia Samartino C, Coria LM, Ibanez AE, Rodriguez ME, Cassataro J & Giambartolomei GH (2011) Brucella abortus inhibits IFN-gamma-induced FcgammaRI expression and FcgammaRI-restricted phagocytosis via toll-like receptor 2 on human monocytes/macrophages. Microbes Infect 13: 239–250.
- Bellaire BH, Roop RM II & Cardelli JA (2005) Opsonized virulent Brucella abortus replicates within nonacidic, endoplasmic reticulum-negative, LAMP-1-positive phagosomes in human monocytes. Infect Immun 73: 3702–3713.
- Bergagna S, Zoppi S, Ferroglio E, Gobetto M, Dondo A, Di Giannatale E, Gennero MS & Grattarola C (2009) Epidemiologic survey for Brucella suis biovar 2 in a wild boar (Sus scrofa) population in northwest Italy. J Wildl Dis 45: 1178–1181.
- Billard E, Cazevieille C, Dornand J & Gross A (2005) High susceptibility of human dendritic cells to invasion by the intracellular pathogens Brucella suis, B. abortus, and B. melitensis. Infect Immun 73: 8418–8424.
- Billard E, Dornand J & Gross A (2007) Brucella suis prevents human dendritic cell maturation and antigen presentation through regulation of tumor necrosis factor alpha secretion. Infect Immun 75: 4980–4989.
- Boschiroli ML, Ouahrani-Bettache S, Foulongne V, Michaux-Charachon S, Bourg G, Allardet-Servent A, Cazevieille C, Liautard JP, Ramuz M & O'Callaghan D (2002) The Brucella suis virB operon is induced intracellularly in macrophages. P Natl Acad Sci USA 99: 1544–1549.
- Breedveld MW, Yoo JS, Reinhold VN & Miller KJ (1994) Synthesis of glycerophosphorylated cyclic beta-(1,2)-glucans by Rhizobium meliloti ndv mutants. J Bacteriol 176: 1047–1051.
- Briones G, Inon de Iannino N, Roset M, Vigliocco A, Paulo PS & Ugalde RA (2001) Brucella abortus cyclic beta-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells. Infect Immun 69: 4528–4535.
- Bukata L, Altabe S, de Mendoza D, Ugalde RA & Comerci DJ (2008) Phosphatidylethanolamine synthesis is required for optimal virulence of Brucella abortus. J Bacteriol 190: 8197–8203.
- Caron E, Gross A, Liautard JP & Dornand J (1996) Brucella species release a specific, protease-sensitive, inhibitor of TNF-alpha expression, active on human macrophage-like cells. J Immunol 156: 2885–2893.
- Casadevall A & Pirofski LA (1999) Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun 67: 3703–3713.
- Casino P, Rubio V & Marina A (2010) The mechanism of signal transduction by two-component systems. Curr Opin Struct Biol 20: 763–771.
- Castaneda-Roldan EI, Avelino-Flores F, Dall'Agnol M, Freer E, Cedillo L, Dornand J & Giron JA (2004) Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues. Cell Microbiol 6: 435–445.
- Castaneda-Roldan EI, Ouahrani-Bettache S, Saldana Z, Avelino F, Rendon MA, Dornand J & Giron JA (2006) Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells. Cell Microbiol 8: 1877–1887.
- Caswell CC, Gaines JM & Roop RM II (2012) The RNA chaperone Hfq independently coordinates expression of the VirB Type IV secretion system and the LuxR-type regulator BabR in Brucella abortus 2308. J Bacteriol 194: 3–14.
- Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E & Gorvel JP (2003) Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 198: 545–556.
- Celli J, Salcedo SP & Gorvel JP (2005) Brucella coopts the small GTPase Sar1 for intracellular replication. P Natl Acad Sci USA 102: 1673–1678.
- Chaudhary A, Ganguly K, Cabantous S, Waldo GS, Micheva-Viteva SN, Nag K, Hlavacek WS & Tung CS (2011) The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochem Biophys Res Commun 417: 299–304.
- Chaves-Olarte E, Guzman-Verri C, Meresse S, Desjardins M, Pizarro-Cerda J, Badilla J, Gorvel JP & Moreno E (2002) Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking. Cell Microbiol 4: 663–676.
- Chen F & He Y (2009) Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus. PLoS ONE 4: e6830.
- Chen F, Ding X, Ding Y, Xiang Z, Li X, Ghosh D, Schurig GG, Sriranganathan N, Boyle SM & He Y (2011) Proinflammatory caspase-2-mediated macrophage cell death induced by a rough attenuated Brucella suis strain. Infect Immun 79: 2460–2469.
- Cheville NF, Jensen AE, Halling SM, Tatum FM, Morfitt DC, Hennager SG, Frerichs WM & Schurig G (1992) Bacterial survival, lymph node changes, and immunologic responses of cattle vaccinated with standard and mutant strains of Brucella abortus. Am J Vet Res 53: 1881–1888.
- Cirl C, Wieser A, Yadav M et al. (2008) Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 14: 399–406.
- Cloeckaert A, Verger JM, Grayon M, Paquet JY, Garin-Bastuji B, Foster G & Godfroid J (2001) Classification of Brucella spp. isolated from marine mammals by DNA polymorphism at the omp2 locus. Microbes Infect 3: 729–738.
- Comerci DJ, Martinez-Lorenzo MJ, Sieira R, Gorvel JP & Ugalde RA (2001) Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell Microbiol 3: 159–168.
- Conde-Alvarez R, Grillo MJ, Salcedo SP, de Miguel MJ, Fugier E, Gorvel JP, Moriyon I & Iriarte M (2006) Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol 8: 1322–1335.
- Cvetnic Z, Spicic S, Toncic J, Majnaric D, Benic M, Albert D, Thiebaud M & Garin-Bastuji B (2009) Brucella suis infection in domestic pigs and wild boar in Croatia. Rev Sci Tech 28: 1057–1067.
- Czibener C & Ugalde JE (2012) Identification of a unique gene cluster of Brucella spp. that mediates adhesion to host cells. Microbes Infect 14: 79–85.
- de Barsy M, Jamet A, Filopon D et al. (2011) Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol 13: 1044–1058.
- de Jong MF & Tsolis R (2012) Brucellosis and type IV secretion. Future Microbiol 7: 47–58.
- de Jong MF, Sun YH, den Hartigh AB, van Dijl JM & Tsolis RM (2008) Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol 70: 1378–1396.
- Delpino MV, Fossati CA & Baldi PC (2009) Proinflammatory response of human osteoblastic cell lines and osteoblast-monocyte interaction upon infection with Brucella spp. Infect Immun 77: 984–995.
- Delrue RM, Martinez-Lorenzo M, Lestrate P, Danese I, Bielarz V, Mertens P, De Bolle X, Tibor A, Gorvel JP & Letesson JJ (2001) Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol 3: 487–497.
- Delrue RM, Deschamps C, Leonard S et al. (2005) A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. Cell Microbiol 7: 1151–1161.
- den Hartigh AB, Rolan HG, de Jong MF & Tsolis RM (2008) VirB3 to VirB6 and VirB8 to VirB11, but not VirB7, are essential for mediating persistence of Brucella in the reticuloendothelial system. J Bacteriol 190: 4427–4436.
- Detilleux PG, Deyoe BL & Cheville NF (1990) Entry and intracellular localization of Brucella spp. in Vero cells: fluorescence and electron microscopy. Vet Pathol 27: 317–328.
- Dorrell N, Spencer S, Foulonge V, Guigue-Talet P, O'Callaghan D & Wren BW (1998) Identification, cloning and initial characterisation of FeuPQ in Brucella suis: a new sub-family of two-component regulatory systems. FEMS Microbiol Lett 162: 143–150.
- Dozot M, Boigegrain RA, Delrue RM, Hallez R, Ouahrani-Bettache S, Danese I, Letesson JJ, De Bolle X & Kohler S (2006) The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB. Cell Microbiol 8: 1791–1802.
- El-Tras WF, Tayel AA, Eltholth MM & Guitian J (2010) Brucella infection in fresh water fish: evidence for natural infection of Nile catfish, Clarias gariepinus, with Brucella melitensis. Vet Microbiol 141: 321–325.
- Elzer PH, Enright FM, McQuiston JR, Boyle SM & Schurig GG (1998) Evaluation of a rough mutant of Brucella melitensis in pregnant goats. Res Vet Sci 64: 259–260.
- Endley S, McMurray D & Ficht TA (2001) Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection. J Bacteriol 183: 2454–2462.
- Eskra L, Mathison A & Splitter G (2003) Microarray analysis of mRNA levels from RAW264.7 macrophages infected with Brucella abortus. Infect Immun 71: 1125–1133.
- Eze MO, Yuan L, Crawford RM, Paranavitana CM, Hadfield TL, Bhattacharjee AK, Warren RL & Hoover DL (2000) Effects of opsonization and gamma interferon on growth of Brucella melitensis 16M in mouse peritoneal macrophages in vitro. Infect Immun 68: 257–263.
- Falkow S (1988) Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis 10(suppl 2): S274–S276.
- Ferguson GP, Datta A, Baumgartner J, Roop RM II, Carlson RW & Walker GC (2004) Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. P Natl Acad Sci USA 101: 5012–5017.
- Fernandez-Prada CM, Zelazowska EB, Nikolich M, Hadfield TL, Roop RM II, Robertson GL & Hoover DL (2003) Interactions between Brucella melitensis and human phagocytes: bacterial surface O-Polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect Immun 71: 2110–2119.
- Ferrero MC, Fossati CA & Baldi PC (2009) Smooth Brucella strains invade and replicate in human lung epithelial cells without inducing cell death. Microbes Infect 11: 476–483.
- Fontes P, Alvarez-Martinez MT, Gross A, Carnaud C, Kohler S & Liautard JP (2005) Absence of evidence for the participation of the macrophage cellular prion protein in infection with Brucella suis. Infect Immun 73: 6229–6236.
- Forestier C, Moreno E, Pizarro-Cerda J & Gorvel JP (1999) Lysosomal accumulation and recycling of lipopolysaccharide to the cell surface of murine macrophages, an in vitro and in vivo study. J Immunol 162: 6784–6791.
- Forestier C, Deleuil F, Lapaque N, Moreno E & Gorvel JP (2000) Brucella abortus lipopolysaccharide in murine peritoneal macrophages acts as a down-regulator of T cell activation. J Immunol 165: 5202–5210.
- Foster G, Osterman BS, Godfroid J, Jacques I & Cloeckaert A (2007) Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol 57: 2688–2693.
- Foulongne V, Bourg G, Cazevieille C, Michaux-Charachon S & O'Callaghan D (2000) Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 68: 1297–1303.
- Foulongne V, Walravens K, Bourg G, Boschiroli ML, Godfroid J, Ramuz M & O'Callaghan D (2001) Aromatic compound-dependent Brucella suis is attenuated in both cultured cells and mouse models. Infect Immun 69: 547–550.
- Franco MP, Mulder M & Smits HL (2007) Persistence and relapse in brucellosis and need for improved treatment. Trans R Soc Trop Med Hyg 101: 854–855.
- Fretin D, Fauconnier A, Kohler S et al. (2005) The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell Microbiol 7: 687–698.
- Fugier E, Salcedo SP, de Chastellier C, Pophillat M, Muller A, Arce-Gorvel V, Fourquet P & Gorvel JP (2009) The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog 5: e1000487.
- Galdiero E, Romano Carratelli C, Vitiello M, Nuzzo I, Del Vecchio E, Bentivoglio C, Perillo G & Galdiero F (2000) HSP and apoptosis in leukocytes from infected or vaccinated animals by Brucella abortus. New Microbiol 23: 271.
- Galindo RC, Munoz PM, de Miguel MJ, Marin CM, Labairu J, Revilla M, Blasco JM, Gortazar C & de la Fuente J (2010) Gene expression changes in spleens of the wildlife reservoir species, Eurasian wild boar (Sus scrofa), naturally infected with Brucella suis biovar 2. J Genet Genomics 37: 725–736.
- Garcia Samartino C, Delpino MV, Pott Godoy C et al. (2010) Brucella abortus induces the secretion of proinflammatory mediators from glial cells leading to astrocyte apoptosis. Am J Pathol 176: 1323–1338.
- Gauthier A, Thomas NA & Finlay BB (2003) Bacterial injection machines. J Biol Chem 278: 25273–25276.
- Gee JM, Valderas MW, Kovach ME, Grippe VK, Robertson GT, Ng WL, Richardson JM, Winkler ME & Roop RM II (2005) The Brucella abortus Cu,Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect Immun 73: 2873–2880.
- Godfroid F, Taminiau B, Danese I, Denoel P, Tibor A, Weynants V, Cloeckaert A, Godfroid J & Letesson JJ (1998) Identification of the perosamine synthetase gene of Brucella melitensis 16M and involvement of lipopolysaccharide O side chain in Brucella survival in mice and in macrophages. Infect Immun 66: 5485–5493.
- Gonzalez L, Patterson IA, Reid RJ et al. (2002) Chronic meningoencephalitis associated with Brucella sp. infection in live-stranded striped dolphins (Stenella coeruleoalba). J Comp Pathol 126: 147–152.
- Gonzalez D, Grillo MJ, De Miguel MJ et al. (2008) Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS ONE 3: e2760.
- Gorvel JP & de Chastellier C (2005) Bacteria spurned by self-absorbed cells. Nat Med 11: 18–19.
- Gorvel JP & Moreno E (2002) Brucella intracellular life: from invasion to intracellular replication. Vet Microbiol 90: 281–297.
- Gross A, Terraza A, Ouahrani-Bettache S, Liautard JP & Dornand J (2000) In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect Immun 68: 342–351.
- Guzman-Verri C, Chaves-Olarte E, von Eichel-Streiber C, Lopez-Goni I, Thelestam M, Arvidson S, Gorvel JP & Moreno E (2001) GTPases of the Rho subfamily are required for Brucella abortus internalization in nonprofessional phagocytes: direct activation of Cdc42. J Biol Chem 276: 44435–44443.
- Guzman-Verri C, Manterola L, Sola-Landa A, Parra A, Cloeckaert A, Garin J, Gorvel JP, Moriyon I, Moreno E & Lopez-Goni I (2002) The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae. P Natl Acad Sci USA 99: 12375–12380.
- Haag AF, Myka KK, Arnold MF, Caro-Hernandez P & Ferguson GP (2010) Importance of lipopolysaccharide and cyclic beta-1,2-glucans in Brucella-mammalian infections. Int J Microbiol 2010: 124509.
- Haine V, Sinon A, Van Steen F, Rousseau S, Dozot M, Lestrate P, Lambert C, Letesson JJ & De Bolle X (2005) Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. Infect Immun 73: 5578–5586.
- Haine V, Dozot M, Dornand J, Letesson JJ & De Bolle X (2006) NnrA is required for full virulence and regulates several Brucella melitensis denitrification genes. J Bacteriol 188: 1615–1619.
- Hanna N, de Bagues MP, Ouahrani-Bettache S, El Yakhlifi Z, Kohler S & Occhialini A (2011) The virB operon is essential for lethality of Brucella microti in the Balb/c murine model of infection. J Infect Dis 203: 1129–1135.
- He Y, Reichow S, Ramamoorthy S, Ding X, Lathigra R, Craig JC, Sobral BW, Schurig GG, Sriranganathan N & Boyle SM (2006) Brucella melitensis triggers time-dependent modulation of apoptosis and down-regulation of mitochondrion-associated gene expression in mouse macrophages. Infect Immun 74: 5035–5046.
- Hernandez-Castro R, Verdugo-Rodriguez A, Puente JL & Suarez-Guemes F (2008) The BMEI0216 gene of Brucella melitensis is required for internalization in HeLa cells. Microb Pathog 44: 28–33.
- Hong PC, Tsolis RM & Ficht TA (2000) Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun 68: 4102–4107.
- Iannino F, Ugalde JE & Inon de Iannino N (2012) Brucella abortus efp gene is required for an efficient internalization in HeLa cells. Microb Pathog 52: 31–40.
- Inon de Iannino N, Briones G, Tolmasky M & Ugalde RA (1998) Molecular cloning and characterization of cgs, the Brucella abortus cyclic beta(1-2) glucan synthetase gene: genetic complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants. J Bacteriol 180: 4392–4400.
- Iriarte M, González D, Delrue RM, Monreal D, Conde R, López-Goñi I, Letesson J-J & Moriyón I (2004) Brucella lipopolysaccharide: structure, biosynthesis and genetics. Brucella: Molecular and Cellular Biology ( I López-Goñi & I Moriyón, eds.), pp. 152–183. Horizon Bioscience, Norfolk.
- Iyankan L & Singh DK (2002) The effect of Brucella abortus on hydrogen peroxide and nitric oxide production by bovine polymorphonuclear cells. Vet Res Commun 26: 93–102.
- Jiang X & Baldwin CL (1993) Effects of cytokines on intracellular growth of Brucella abortus. Infect Immun 61: 124–134.
- Jimenez de Bagues MP, Ouahrani-Bettache S, Quintana JF et al. (2010) The new species Brucella microti replicates in macrophages and causes death in murine models of infection. J Infect Dis 202: 3–10.
- Kahl-McDonagh MM & Ficht TA (2006) Evaluation of protection afforded by Brucella abortus and Brucella melitensis unmarked deletion mutants exhibiting different rates of clearance in BALB/c mice. Infect Immun 74: 4048–4057.
- Kahl-McDonagh MM, Elzer PH, Hagius SD et al. (2006) Evaluation of novel Brucella melitensis unmarked deletion mutants for safety and efficacy in the goat model of brucellosis. Vaccine 24: 5169–5177.
- Khan MY, Mah MW & Memish ZA (2001) Brucellosis in pregnant women. Clin Infect Dis 32: 1172–1177.
- Kim S, Watarai M, Kondo Y, Erdenebaatar J, Makino S & Shirahata T (2003) Isolation and characterization of mini-Tn5Km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells. Infect Immun 71: 3020–3027.
- Kim S, Kurokawa D, Watanabe K, Makino S, Shirahata T & Watarai M (2004a) Brucella abortus nicotinamidase (PncA) contributes to its intracellular replication and infectivity in mice. FEMS Microbiol Lett 234: 289–295.
- Kim S, Watarai M, Suzuki H, Makino S, Kodama T & Shirahata T (2004b) Lipid raft microdomains mediate class A scavenger receptor-dependent infection of Brucella abortus. Microb Pathog 37: 11–19.
- Kim S, Watanabe K, Suzuki H & Watarai M (2005a) Roles of Brucella abortus SpoT in morphological differentiation and intramacrophagic replication. Microbiology 151: 1607–1617.
- Kim S, Lee DS, Watanabe K, Furuoka H, Suzuki H & Watarai M (2005b) Interferon-gamma promotes abortion due to Brucella infection in pregnant mice. BMC Microbiol 5: 22.
- Kohler S, Foulongne V, Ouahrani-Bettache S, Bourg G, Teyssier J, Ramuz M & Liautard JP (2002) The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. P Natl Acad Sci USA 99: 15711–15716.
- Lamkanfi M & Dixit VM (2010) Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 8: 44–54.
- Lamontagne J, Butler H, Chaves-Olarte E et al. (2007) Extensive cell envelope modulation is associated with virulence in Brucella abortus. J Proteome Res 6: 1519–1529.
- Lapaque N, Takeuchi O, Corrales F, Akira S, Moriyon I, Howard JC & Gorvel JP (2006) Differential inductions of TNF-alpha and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cell Microbiol 8: 401–413.
- Lavigne JP, Patey G, Sangari FJ, Bourg G, Ramuz M, O'Callaghan D & Michaux-Charachon S (2005) Identification of a new virulence factor, BvfA, in Brucella suis. Infect Immun 73: 5524–5529.
- Lelouard H, Henri S, De Bovis B, Mugnier B, Chollat-Namy A, Malissen B, Meresse S & Gorvel JP (2010) Pathogenic bacteria and dead cells are internalized by a unique subset of Peyer's patch dendritic cells that express lysozyme. Gastroenterology 138: 173–184, e171–173.
- Lelouard H, Fallet M, de Bovis B, Méresse S & Gorvel JP (2011) Peyer's Patch denditric cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology 142: 592–601.
- Lestrate P, Delrue RM, Danese I, Didembourg C, Taminiau B, Mertens P, De Bolle X, Tibor A, Tang CM & Letesson JJ (2000) Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol Microbiol 38: 543–551.
- Lestrate P, Dricot A, Delrue RM, Lambert C, Martinelli V, De Bolle X, Letesson JJ & Tibor A (2003) Attenuated signature-tagged mutagenesis mutants of Brucella melitensis identified during the acute phase of infection in mice. Infect Immun 71: 7053–7060.
- Lindgren SW, Stojiljkovic I & Heffron F (1996) Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. P Natl Acad Sci USA 93: 4197–4201.
- Loisel-Meyer S, Jimenez de Bagues MP, Basseres E, Dornand J, Kohler S, Liautard JP & Jubier-Maurin V (2006) Requirement of norD for Brucella suis virulence in a murine model of in vitro and in vivo infection. Infect Immun 74: 1973–1976.
- Luhrmann A, Nogueira CV, Carey KL & Roy CR (2010) Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. P Natl Acad Sci USA 107: 18997–19001.
- Maddocks SE & Oyston PC (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154: 3609–3623.
- Mancilla M, Lopez-Goni I, Moriyon I & Zarraga AM (2010) Genomic island 2 is an unstable genetic element contributing to Brucella lipopolysaccharide spontaneous smooth-to-rough dissociation. J Bacteriol 192: 6346–6351.
- Manterola L, Moriyon I, Moreno E, Sola-Landa A, Weiss DS, Koch MH, Howe J, Brandenburg K & Lopez-Goni I (2005) The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. J Bacteriol 187: 5631–5639.
- Maquart M, Zygmunt MS & Cloeckaert A (2009) Marine mammal Brucella isolates with different genomic characteristics display a differential response when infecting human macrophages in culture. Microbes Infect 11: 361–366.
- Marchesini MI, Herrmann CK, Salcedo SP, Gorvel JP & Comerci DJ (2011) In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system. Cell Microbiol 13: 1261–1274.
- Martinez-Nunez C, Altamirano-Silva P, Alvarado-Guillen F, Moreno E, Guzman-Verri C & Chaves-Olarte E (2010) The two-component system BvrR/BvrS regulates the expression of the type IV secretion system VirB in Brucella abortus. J Bacteriol 192: 5603–5608.
- Martin-Martin AI, Caro-Hernandez P, Orduna A, Vizcaino N & Fernandez-Lago L (2008) Importance of the Omp25/Omp31 family in the internalization and intracellular replication of virulent B. ovis in murine macrophages and HeLa cells. Microbes Infect 10: 706–710.
- Martin-Martin AI, Caro-Hernandez P, Sancho P, Tejedor C, Cloeckaert A, Fernandez-Lago L & Vizcaino N (2009) Analysis of the occurrence and distribution of the Omp25/Omp31 family of surface proteins in the six classical Brucella species. Vet Microbiol 137: 74–82.
- Martin-Martin Al, Vizcaino N & Fernandez-Lago L (2010) Cholesterol, galglioside GM1 and class A scavenger receptor contribute to infection by Brucella ovis and Brucella canis in murine macropgaes. Microbes Infect 12: 246–251.
- Martirosyan A, Moreno E & Gorvel JP (2011) An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev 240: 211–234.
- McDonald WL, Jamaludin R, Mackereth G et al. (2006) Characterization of a Brucella sp. strain as a marine-mammal type despite isolation from a patient with spinal osteomyelitis in New Zealand. J Clin Microbiol 44: 4363–4370.
- McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR Jr & Russell DG (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735–738.
- McLean DR, Russell N & Khan MY (1992) Neurobrucellosis: clinical and therapeutic features. Clin Infect Dis 15: 582–590.
- McQuiston JR, Vemulapalli R, Inzana TJ et al. (1999) Genetic characterization of a Tn5-disrupted glycosyltransferase gene homolog in Brucella abortus and its effect on lipopolysaccharide composition and virulence. Infect Immun 67: 3830–3835.
- Meador VP & Deyoe BL (1989) Intracellular localization of Brucella abortus in bovine placenta. Vet Pathol 26: 513–515.
- Meador VP, Hagemoser WA & Deyoe BL (1988) Histopathologic findings in Brucella abortus-infected, pregnant goats. Am J Vet Res 49: 274–280.
- Memish ZA & Balkhy HH (2004) Brucellosis and international travel. J Travel Med 11: 49–55.
- Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36: 2491–2502.
- Moreno E & Moriyon I (2006) The genus Brucella. The Prokaryotes, Vol. 5 ( M Dworkin, S Falkow, E Rosenberg, K Schleifer & E Stackebrandt, eds), pp. 315–456. Springer, New York.
10.1007/0-387-30745-1_17 Google Scholar
- Moreno E, Speth SL, Jones LM & Berman DT (1981) Immunochemical characterization of Brucella lipopolysaccharides and polysaccharides. Infect Immun 31: 214–222.
- Moreno E, Cloeckaert A & Moriyon I (2002) Brucella evolution and taxonomy. Vet Microbiol 90: 209–227.
- Naroeni A & Porte F (2002) Role of cholesterol and the ganglioside GM(1) in entry and short-term survival of Brucella suis in murine macrophages. Infect Immun 70: 1640–1644.
- Naroeni A, Jouy N, Ouahrani-Bettache S, Liautard JP & Porte F (2001) Brucella suis-impaired specific recognition of phagosomes by lysosomes due to phagosomal membrane modifications. Infect Immun 69: 486–493.
- Nymo IH, Tryland M & Godfroid J (2011) A review of Brucella infection in marine mammals, with special emphasis on Brucella pinnipedialis in the hooded seal (Cystophora cristata). Vet Res 42: 93.
- O'Callaghan D, Cazevieille C, Allardet-Servent A, Boschiroli ML, Bourg G, Foulongne V, Frutos P, Kulakov Y & Ramuz M (1999) A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33: 1210–1220.
- Olsen SC (2010) Brucellosis in the United States: role and significance of wildlife reservoirs. Vaccine 28(suppl 5): F73–F76.
- Orduna A, Orduna C, Eiros JM, Bratos MA, Gutierrez P, Alonso P & Rodriguez Torres A (1991) Inhibition of the degranulation and myeloperoxidase activity of human polymorphonuclear neutrophils by Brucella melitensis. Microbiologia 7: 113–119.
- Paixao TA, Roux CM, den Hartigh AB, Sankaran-Walters S, Dandekar S, Santos RL & Tsolis RM (2009) Establishment of systemic Brucella melitensis infection through the digestive tract requires urease, the type IV secretion system, and lipopolysaccharide O antigen. Infect Immun 77: 4197–4208.
- Pantoja M, Chen L, Chen Y & Nester EW (2002) Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm. Mol Microbiol 45: 1325–1335.
- Pappas G (2010) The changing Brucella ecology: novel reservoirs, new threats. Int J Antimicrob Agents 36(suppl 1): S8–S11.
- Parent MA, Goenka R, Murphy E, Levier K, Carreiro N, Golding B, Ferguson G, Roop RM II, Walker GC & Baldwin CL (2007) Brucella abortus bacA mutant induces greater pro-inflammatory cytokines than the wild-type parent strain. Microbes Infect 9: 55–62.
- Pei J & Ficht TA (2004) Brucella abortus rough mutants are cytopathic for macrophages in culture. Infect Immun 72: 440–450.
- Pei J, Turse JE, Wu Q & Ficht TA (2006) Brucella abortus rough mutants induce macrophage oncosis that requires bacterial protein synthesis and direct interaction with the macrophage. Infect Immun 74: 2667–2675.
- Pei J, Turse JE & Ficht TA (2008a) Evidence of Brucella abortus OPS dictating uptake and restricting NF-kappaB activation in murine macrophages. Microbes Infect 10: 582–590.
- Pei J, Wu Q, Kahl-McDonagh M & Ficht TA (2008b) Cytotoxicity in macrophages infected with rough Brucella mutants is type IV secretion system dependent. Infect Immun 76: 30–37.
- Pizarro-Cerda J, Moreno E, Sanguedolce V, Mege JL & Gorvel JP (1998a) Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect Immun 66: 2387–2392.
- Pizarro-Cerda J, Meresse S, Parton RG, van der Goot G, Sola-Landa A, Lopez-Goni I, Moreno E & Gorvel JP (1998b) Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 66: 5711–5724.
- Porte F, Liautard JP & Kohler S (1999) Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 67: 4041–4047.
- Porte F, Naroeni A, Ouahrani-Bettache S & Liautard JP (2003) Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect Immun 71: 1481–1490.
- Qin QM, Pei J, Ancona V, Shaw BD, Ficht TA & de Figueiredo P (2008) RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1alpha in supporting Brucella replication. PLoS Pathog 4: e1000110.
- Radhakrishnan GK, Yu Q, Harms JS & Splitter GA (2009) Brucella TIR domain-containing protein mimics properties of the Toll-like receptor adaptor protein TIRAP. J Biol Chem 284: 9892–9898.
- Radhakrishnan GK, Harms JS & Splitter GA (2011) Modulation of microtubule dynamics by a TIR domain protein from the intracellular pathogen Brucella melitensis. Biochem J 439: 79–83.
- Rajashekara G, Glover DA, Krepps M & Splitter GA (2005) Temporal analysis of pathogenic events in virulent and avirulent Brucella melitensis infections. Cell Microbiol 7: 1459–1473.
- Rajashekara G, Glover DA, Banai M, O'Callaghan D & Splitter GA (2006) Attenuated bioluminescent Brucella melitensis mutants GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091) confer protection in mice. Infect Immun 74: 2925–2936.
- Rambow-Larsen AA, Rajashekara G, Petersen E & Splitter G (2008) Putative quorum-sensing regulator BlxR of Brucella melitensis regulates virulence factors including the type IV secretion system and flagella. J Bacteriol 190: 3274–3282.
- Rambow-Larsen AA, Petersen EM, Gourley CR & Splitter GA (2009) Brucella regulators: self-control in a hostile environment. Trends Microbiol 17: 371–377.
- Riley LK & Robertson DC (1984) Ingestion and intracellular survival of Brucella abortus in human and bovine polymorphonuclear leukocytes. Infect Immun 46: 224–230.
- Rittig MG, Kaufmann A, Robins A, Shaw B, Sprenger H, Gemsa D, Foulongne V, Rouot B & Dornand J (2003) Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. J Leukoc Biol 74: 1045–1055.
- Robertson GT & Roop RM Jr (1999) The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol 34: 690–700.
- Rolan HG & Tsolis RM (2007) Mice lacking components of adaptive immunity show increased Brucella abortus virB mutant colonization. Infect Immun 75: 2965–2973.
- Rolan HG, Xavier MN, Santos RL & Tsolis RM (2009) Natural antibody contributes to host defense against an attenuated Brucella abortus virB mutant. Infect Immun 77: 3004–3013.
- Roop RM II, Jeffers G, Bagchi T, Walker J, Enright FM & Schurig GG (1991) Experimental infection of goat fetuses in utero with a stable, rough mutant of Brucella abortus. Res Vet Sci 51: 123–127.
- Roop RM II, Robertson GT, Ferguson GP, Milford LE, Winkler ME & Walker GC (2002) Seeking a niche: putative contributions of the hfq and bacA gene products to the successful adaptation of the brucellae to their intracellular home. Vet Microbiol 90: 349–363.
- Roop RM II, Gaines JM, Anderson ES, Caswell CC & Martin DW (2009) Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Med Microbiol Immunol 198: 221–238.
- Rossetti CA, Galindo CL, Garner HR & Adams LG (2010) Selective amplification of Brucella melitensis mRNA from a mixed host-pathogen total RNA. BMC Res Notes 3: 244.
- Rouot B, Alvarez-Martinez MT, Marius C, Menanteau P, Guilloteau L, Boigegrain RA, Zumbihl R, O'Callaghan D, Domke N & Baron C (2003) Production of the type IV secretion system differs among Brucella species as revealed with VirB5- and VirB8-specific antisera. Infect Immun 71: 1075–1082.
- Roux CM, Rolan HG, Santos RL, Beremand PD, Thomas TL, Adams LG & Tsolis RM (2007) Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice. Cell Microbiol 9: 1851–1869.
- Salcedo SP, Marchesini MI, Lelouard H et al. (2008) Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog 4: e21.
- Samartino LE, Traux RE & Enright FM (1994) Invasion and replication of Brucella abortus in three different trophoblastic cell lines. Zentralbl Veterinarmed B 41: 229–236.
- Sathiyaseelan J, Jiang X & Baldwin CL (2000) Growth of Brucella abortus in macrophages from resistant and susceptible mouse strains. Clin Exp Immunol 121: 289–294.
- Scholz HC, Hubalek Z, Nesvadbova J et al. (2008a) Isolation of Brucella microti from soil. Emerg Infect Dis 14: 1316–1317.
- Scholz HC, Hubalek Z, Sedlacek I et al. (2008b) Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol 58: 375–382.
- Scholz HC, Nockler K, Gollner C et al. (2010) Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol 60: 801–808.
- Scian R, Barrionuevo P, Giambartolomei GH, Fossati CA, Baldi PC & Delpino MV (2011) Granulocyte-macrophage colony-stimulating factor- and tumor necrosis factor alpha-mediated matrix metalloproteinase production by human osteoblasts and monocytes after infection with Brucella abortus. Infect Immun 79: 192–202.
- Scurlock BM & Edwards WH (2010) Status of brucellosis in free-ranging elk and bison in Wyoming. J Wildl Dis 46: 442–449.
- Seleem MN, Boyle SM & Sriranganathan N (2008) Brucella: a pathogen without classic virulence genes. Vet Microbiol 129: 1–14.
- Sengupta D, Koblansky A, Gaines J, Brown T, West AP, Zhang D, Nishikawa T, Park SG, Roop RM II & Ghosh S (2010) Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J Immunol 184: 956–964.
- Sieira R, Comerci DJ, Sanchez DO & Ugalde RA (2000) A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol 182: 4849–4855.
- Sieira R, Comerci DJ, Pietrasanta LI & Ugalde RA (2004) Integration host factor is involved in transcriptional regulation of the Brucella abortus virB operon. Mol Microbiol 54: 808–822.
- Sieira R, Arocena GM, Bukata L, Comerci DJ & Ugalde RA (2010) Metabolic control of virulence genes in Brucella abortus: HutC coordinates virB expression and the histidine utilization pathway by direct binding to both promoters. J Bacteriol 192: 217–224.
- Silva TM, Costa EA, Paixao TA, Tsolis RM & Santos RL (2011) Laboratory animal models for brucellosis research. J Biomed Biotechnol 2011: 518323.
- Sohn AH, Probert WS, Glaser CA, Gupta N, Bollen AW, Wong JD, Grace EM & McDonald WC (2003) Human neurobrucellosis with intracerebral granuloma caused by a marine mammal Brucella spp. Emerg Infect Dis 9: 485–488.
- Sola-Landa A, Pizarro-Cerda J, Grillo MJ, Moreno E, Moriyon I, Blasco JM, Gorvel JP & Lopez-Goni I (1998) A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol Microbiol 29: 125–138.
10.1046/j.1365-2958.1998.00913.x Google Scholar
- Spera JM, Ugalde JE, Mucci J, Comerci DJ & Ugalde RA (2006) A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection. P Natl Acad Sci USA 103: 16514–16519.
- Starr T, Ng TW, Wehrly TD, Knodler LA & Celli J (2008) Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 9: 678–694.
- Steele KH, Baumgartner JE, Valderas MW & Roop RM II (2010) Comparative study of the roles of AhpC and KatE as respiratory antioxidants in Brucella abortus 2308. J Bacteriol 192: 4912–4922.
- Swartz TE, Tseng TS, Frederickson MA et al. (2007) Blue-light-activated histidine kinases: two-component sensors in bacteria. Science 317: 1090–1093.
- Taminiau B, Daykin M, Swift S, Boschiroli ML, Tibor A, Lestrate P, De Bolle X, O'Callaghan D, Williams P & Letesson JJ (2002) Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect Immun 70: 3004–3011.
- Tatum FM, Detilleux PG, Sacks JM & Halling SM (1992) Construction of Cu-Zn superoxide dismutase deletion mutants of Brucella abortus: analysis of survival in vitro in epithelial and phagocytic cells and in vivo in mice. Infect Immun 60: 2863–2869.
- Tatum FM, Morfitt DC & Halling SM (1993) Construction of a Brucella abortus RecA mutant and its survival in mice. Microb Pathog 14: 177–185.
- Tiller RV, Gee JE, Frace MA, Taylor TK, Setubal JC, Hoffmaster AR & De BK (2010a) Characterization of novel Brucella strains originating from wild native rodent species in North Queensland, Australia. Appl Environ Microbiol 76: 5837–5845.
- Tiller RV, Gee JE, Lonsway DR, Gribble S, Bell SC, Jennison AV, Bates J, Coulter C, Hoffmaster AR & De BK (2010b) Identification of an unusual Brucella strain (BO2) from a lung biopsy in a 52 year-old patient with chronic destructive pneumonia. BMC Microbiol 10: 23.
- Tisdale EJ, Kelly C & Artalejo CR (2004) Glyceraldehyde-3-phosphate dehydrogenase interacts with Rab2 and plays an essential role in endoplasmic reticulum to Golgi transport exclusive of its glycolytic activity. J Biol Chem 279: 54046–54052.
- Tobias L, Cordes DO & Schurig GG (1993) Placental pathology of the pregnant mouse inoculated with Brucella abortus strain 2308. Vet Pathol 30: 119–129.
- Tolomeo M, Di Carlo P, Abbadessa V, Titone L, Miceli S, Barbusca E, Cannizzo G, Mancuso S, Arista S & Scarlata F (2003) Monocyte and lymphocyte apoptosis resistance in acute and chronic brucellosis and its possible implications in clinical management. Clin Infect Dis 36: 1533–1538.
- Turse JE, Pei J & Ficht TA (2011) Lipopolysaccharide-deficient Brucella variants arise spontaneously during infection. Front Microbiol 2: 54.
- Ugalde RA (1999) Intracellular lifestyle of Brucella spp. Common genes with other animal pathogens, plant pathogens, and endosymbionts. Microbes Infect 1: 1211–1219.
- Ugalde JE, Czibener C, Feldman MF & Ugalde RA (2000) Identification and characterization of the Brucella abortus phosphoglucomutase gene: role of lipopolysaccharide in virulence and intracellular multiplication. Infect Immun 68: 5716–5723.
- Uzureau S, Godefroid M, Deschamps C, Lemaire J, De Bolle X & Letesson JJ (2007) Mutations of the quorum sensing-dependent regulator VjbR lead to drastic surface modifications in Brucella melitensis. J Bacteriol 189: 6035–6047.
- Viadas C, Rodriguez MC, Sangari FJ, Gorvel JP, Garcia-Lobo JM & Lopez-Goni I (2010) Transcriptome analysis of the Brucella abortus BvrR/BvrS two-component regulatory system. PLoS ONE 5: e10216.
- Wang Y, Chen Z, Qiao F et al. (2009) Comparative proteomics analyses reveal the virB of B. melitensis affects expression of intracellular survival related proteins. PLoS ONE 4: e5368.
- Wang Y, Chen Z, Qiao F et al. (2010) The type IV secretion system affects the expression of Omp25/Omp31 and the outer membrane properties of Brucella melitensis. FEMS Microbiol Lett 303: 92–100.
- Wassenaar TM & Gaastra W (2001) Bacterial virulence: can we draw the line? FEMS Microbiol Lett 201: 1–7.
- Watanabe K, Tachibana M, Kim S & Watarai M (2009) Participation of ezrin in bacterial uptake by trophoblast giant cells. Reprod Biol Endocrinol 7: 95.
- Watarai M, Makino S, Fujii Y, Okamoto K & Shirahata T (2002) Modulation of Brucella-induced macropinocytosis by lipid rafts mediates intracellular replication. Cell Microbiol 4: 341–355.
- Watarai M, Kim S, Erdenebaatar J, Makino S, Horiuchi M, Shirahata T, Sakaguchi S & Katamine S (2003) Cellular prion protein promotes Brucella infection into macrophages. J Exp Med 198: 5–17.
- Weeks JN, Galindo CL, Drake KL, Adams GL, Garner HR & Ficht TA (2010) Brucella melitensis VjbR and C12-HSL regulons: contributions of the N-dodecanoyl homoserine lactone signaling molecule and LuxR homologue VjbR to gene expression. BMC Microbiol 10: 167.
- Wells DH & Long SR (2003) Mutations in rpoBC suppress the defects of a Sinorhizobium meliloti relA mutant. J Bacteriol 185: 5602–5610.
- West NP, Sansonetti P, Mounier J et al. (2005) Optimization of virulence functions through glucosylation of Shigella LPS. Science 307: 1313–1317.
- Whatmore AM, Dawson CE, Groussaud P, Koylass MS, King AC, Shankster SJ, Sohn AH, Probert WS & McDonald WL (2008) Marine mammal Brucella genotype associated with zoonotic infection. Emerg Infect Dis 14: 517–518.
- Winter AJ, Schurig GG, Boyle SM, Sriranganathan N, Bevins JS, Enright FM, Elzer PH & Kopec JD (1996) Protection of BALB/c mice against homologous and heterologous species of Brucella by rough strain vaccines derived from Brucella melitensis and Brucella suis biovar 4. Am J Vet Res 57: 677–683.
- World Health Organization (2005) The Control of Neglected Zoonotic Diseases. World Health Organization, Geneva.
- Wu Q, Pei J, Turse C & Ficht TA (2006) Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol 6: 102.
- Yeoman KH, Delgado MJ, Wexler M, Downie JA & Johnston AW (1997) High affinity iron acquisition in Rhizobium leguminosarum requires the cycHJKL operon and the feuPQ gene products, which belong to the family of two-component transcriptional regulators. Microbiology 143(Pt 1): 127–134.
- Zhong Z, Wang Y, Qiao F et al. (2009) Cytotoxicity of Brucella smooth strains for macrophages is mediated by increased secretion of the type IV secretion system. Microbiology 155: 3392–3402.
- Zhou Y & Xie J (2011) The roles of pathogen small RNAs. J Cell Physiol 226: 968–973.
- Zwerdling A, Delpino MV, Barrionuevo P, Cassataro J, Pasquevich KA, Garcia Samartino C, Fossati CA & Giambartolomei GH (2008) Brucella lipoproteins mimic dendritic cell maturation induced by Brucella abortus. Microbes Infect 10: 1346–1354.
- Zygmunt MS, Hagius SD, Walker JV & Elzer PH (2006) Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host. Microbes Infect 8: 2849–2854.