Salmonella's long-term relationship with its host
Thomas Ruby
Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
Search for more papers by this authorLaura McLaughlin
Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
Search for more papers by this authorSmita Gopinath
Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
Search for more papers by this authorCorresponding Author
Denise Monack
Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
Correspondence: Denise Monack, 299 Campus Drive, D347, Fairchild Building, D300, Stanford, CA 94305, USA. Tel.: +1 650 723 1221; fax: +1 650 725 7282; e-mail: [email protected]Search for more papers by this authorThomas Ruby
Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
Search for more papers by this authorLaura McLaughlin
Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
Search for more papers by this authorSmita Gopinath
Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
Search for more papers by this authorCorresponding Author
Denise Monack
Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
Correspondence: Denise Monack, 299 Campus Drive, D347, Fairchild Building, D300, Stanford, CA 94305, USA. Tel.: +1 650 723 1221; fax: +1 650 725 7282; e-mail: [email protected]Search for more papers by this authorAbstract
Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time and pose significant public-health problems. Multidrug-resistant S. enterica serovar Typhi (S. Typhi) and nontyphoidal Salmonella (NTS) are on the increase and are often associated with HIV infection. Chronically infected hosts are often asymptomatic and transmit disease to naïve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. Salmonella utilizes multiple ways to evade and modulate host innate and adaptive immune responses in order to persist in the presence of a robust immune response. Survival in macrophages and modulation of immune cells migration allow Salmonella to evade various immune responses. The ability of Salmonella to persist depends on a balance between immune responses that lead to the clearance of the pathogen and avoidance of damage to host tissues.
References
- Albaghdadi H, Robinson N, Finlay B, Krishnan L & Sad S (2009) Selectively reduced intracellular proliferation of Salmonella enterica serovar typhimurium within APCs limits antigen presentation and development of a rapid CD8 T cell response. J Immunol 183: 3778–3787.
- Alegado RA & Tan MW (2008) Resistance to antimicrobial peptides contributes to persistence of Salmonella typhimurium in the C. elegans intestine. Cell Microbiol 10: 1259–1273.
- Ammendola S, Pasquali P, Pistoia C, Petrucci P, Petrarca P, Rotilio G & Battistoni A (2007) High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect Immun 75: 5867–5876.
- Arpaia N, Godec J, Lau L, Sivick KE, McLaughlin LM, Jones MB, Dracheva T, Peterson SN, Monack DM, Barton GM (2011) TLR signaling is required for Salmonella typhimurium virulence. Cell 144: 675–688.
- Arques JL, Hautefort I, Ivory K et al. (2009) Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen. Gastroenterology 137: 579–587, 587 e571–572.
- Aussel L, Zhao W, Hebrard M et al. (2011) Salmonella detoxifying enzymes are sufficient to cope with the host oxidative burst. Mol Microbiol 80: 628–640.
- Axelrod L, Munster AM & O'Brien TF (1971) Typhoid cholecystitis and gallbladder carcinoma after interval of 67 years. JAMA 217: 83.
- Bader MW, Sanowar S, Daley ME et al. (2005) Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122: 461–472.
- Balaram P, Kien PK & Ismail A (2009) Toll-like receptors and cytokines in immune responses to persistent mycobacterial and Salmonella infections. Int J Med Microbiol 299: 177–185.
- Bang IS, Liu L, Vazquez-Torres A, Crouch ML, Stamler JS & Fang FC (2006) Maintenance of nitric oxide and redox homeostasis by the Salmonella flavohemoglobin hmp. J Biol Chem 281: 28039–28047.
- Bao X, Qiu J, Yang N, Mei L & Chen X (1992) [Study and preparation of Vi-PHA reagent and its application for detection of Salmonella typhi carriers]. Wei Sheng Wu Xue Bao 32: 289–295.
- Barr TA, Brown S, Mastroeni P & Gray D (2010) TLR and B cell receptor signals to B cells differentially program primary and memory Th1 responses to Salmonella enterica. J Immunol 185: 2783–2789.
- Barthel M, Hapfelmeier S, Quintanilla-Martinez L et al. (2003) Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun 71: 2839–2858.
- Bearson BL, Wilson L & Foster JW (1998) A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J Bacteriol 180: 2409–2417.
- Becker Y (2004) The changes in the T helper 1 (Th1) and T helper 2 (Th2) cytokine balance during HIV-1 infection are indicative of an allergic response to viral proteins that may be reversed by Th2 cytokine inhibitors and immune response modifiers–a review and hypothesis. Virus Genes 28: 5–18.
- Blackwell JM, Black GF, Sharples C, Soo SS, Peacock CS & Miller N (1999) Roles of Nramp1, HLA, and a gene(s) in allelic association with IL-4, in determining T helper subset differentiation. Microbes Infect 1: 95–102.
- Blanc-Potard AB & Groisman EA (1997) The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 16: 5376–5385.
- Bogunovic M, Ginhoux F, Helft J et al. (2009) Origin of the lamina propria dendritic cell network. Immunity 31: 513–525.
- Bohnhoff M, Drake BL & Miller CP (1954) Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proc Soc Exp Biol Med 86: 132–137.
- Bouree P, Botterel F & Romand S (2002) Delayed Salmonella bacteriuria in a patient infected with Schistosoma haematobium. J Egypt Soc Parasitol 32: 355–360.
- Boyer E, Bergevin I, Malo D, Gros P & Cellier MF (2002) Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun 70: 6032–6042.
- Brodsky IE, Ghori N, Falkow S & Monack D (2005) Mig-14 is an inner membrane-associated protein that promotes Salmonella typhimurium resistance to CRAMP, survival within activated macrophages and persistent infection. Mol Microbiol 55: 954–972.
- Brown NF, Coombes BK, Bishop JL et al. (2011) Salmonella phage ST64B encodes a member of the SseK/NleB effector family. PLoS ONE 6: e17824.
- Bueno SM, Wozniak A, Leiva ED et al. (2010) Salmonella pathogenicity island 1 differentially modulates bacterial entry to dendritic and non-phagocytic cells. Immunology 130: 273–287.
- Butler T & Girard AE (1993) Comparative efficacies of azithromycin and ciprofloxacin against experimental Salmonella typhimurium infection in mice. J Antimicrob Chemother 31: 313–319.
- Caron J (2006) Influence of Slc11a1 on the outcome of Salmonella enterica serovar Enteritidis in mice is associated with Th polarizationand Th polarization. Infect Immun 74: 2787–2802.
- Chakravortty D, Hansen-Wester I & Hensel M (2002) Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195: 1155–1166.
- Cheminay C, Mohlenbrink A & Hensel M (2005) Intracellular Salmonella inhibit antigen presentation by dendritic cells. J Immunol 174: 2892–2899.
- Cirillo DM, Valdivia RH, Monack DM & Falkow S (1998) Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol 30: 175–188.
- Collins FM & Carter PB (1978) Growth of salmonellae in orally infected germfree mice. Infect Immun 21: 41–47.
- Courville P, Chaloupka R & Cellier MF (2006) Recent progress in structure–function analyses of Nramp proton-dependent metal-ion transporters. Biochem Cell Biol 84: 960–978.
- Crawford RW, Rosales-Reyes R, Ramirez-Aguilar MdeL, Chapa-Azuela O, Alpuche-Aranda C & Gunn JS (2010) Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. P Natl Acad Sci USA 107: 4353–4358.
- Detweiler CS, Monack DM, Brodsky IE, Mathew H & Falkow S (2003) virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol Microbiol 48: 385–400.
- van Diepen A, van der Straaten T, Holland SM, Janssen R & van Dissel JT (2002) A superoxide-hypersusceptible Salmonella enterica serovar Typhimurium mutant is attenuated but regains virulence in p47(phox−/−) mice. Infect Immun 70: 2614–2621.
- Dorsey CW, Laarakker MC, Humphries AD, Weening EH & Baumler AJ (2005) Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Mol Microbiol 57: 196–211.
- Dougan G, John V, Palmer S & Mastroeni P (2011) Immunity to salmonellosis. Immunol Rev 240: 196–210.
- Dunlap NE, Benjamin WH Jr, Berry AK, Eldridge JH & Briles DE (1992) A ‘safe-site' for Salmonella typhimurium is within splenic polymorphonuclear cells. Microb Pathog 13: 181–190.
- Endt K, Stecher B, Chaffron S et al. (2010) The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog 6: e1001097.
- Erickson KD & Detweiler CS (2006) The Rcs phosphorelay system is specific to enteric pathogens/commensals and activates ydeI, a gene important for persistent Salmonella infection of mice. Mol Microbiol 62: 883–894.
- Fang FC, DeGroote MA, Foster JW et al. (1999) Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. P Natl Acad Sci USA 96: 7502–7507.
- Fang FC, Libby SJ, Castor ME & Fung AM (2005) Isocitrate lyase (AceA) is required for Salmonella persistence but not for acute lethal infection in mice. Infect Immun 73: 2547–2549.
- Fernandez-Cabezudo MJ, Ali SAE, Ullah A et al. (2007) Pronounced susceptibility to infection by Salmonella enterica serovar Typhimurium in mice chronically exposed to lead correlates with a shift to Th2-type immune responses. Toxicol Appl Pharmacol 218: 215–226.
- Fields PI, Swanson RV, Haidaris CG & Heffron F (1986) Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. P Natl Acad Sci USA 83: 5189–5193.
- Fitzgerald TJ (1992) The Th1/Th2-like switch in syphilitic infection: is it detrimental? Infect Immun 60: 3475–3479.
- Galan JE (2001) Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17: 53–86.
- Gallois A, Klein JR, Allen LA, Jones BD & Nauseef WM (2001) Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J Immunol 166: 5741–5748.
- Gal-Mor O, Gibson DL, Baluta D, Vallance BA & Finlay BB (2008) A novel secretion pathway of Salmonella enterica acts as an antivirulence modulator during salmonellosis. PLoS Pathog 4: e1000036.
- Godinez I, Raffatellu M, Chu H et al. (2009) Interleukin-23 orchestrates mucosal responses to Salmonella enterica serotype Typhimurium in the intestine. Infect Immun 77: 387–398.
- Govoni G, Vidal S, Cellier M, Lepage P, Malo D & Gros P (1995) Genomic structure, promoter sequence, and induction of expression of the mouse Nramp1 gene in macrophages. Genomics 27: 9–19.
- Griffin AJ & McSorley SJ (2011) Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda. Mucosal Immunol 4: 371–382.
- Groisman EA & Saier MH Jr(1990) Salmonella virulence: new clues to intramacrophage survival. Trends Biochem Sci 15: 30–33.
- Groisman EA, Kayser J & Soncini FC (1997) Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179: 7040–7045.
- Guina T, Yi EC, Wang H, Hackett M & Miller SI (2000) A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 182: 4077–4086.
- Gulig PA, Doyle TJ, Hughes JA & Matsui H (1998) Analysis of host cells associated with the Spv-mediated increased intracellular growth rate of Salmonella typhimurium in mice. Infect Immun 66: 2471–2485.
- Gunzel D, Kucharski LM, Kehres DG, Romero MF & Maguire ME (2006) The MgtC virulence factor of Salmonella enterica serovar Typhimurium activates Na(+),K(+)-ATPase. J Bacteriol 188: 5586–5594.
- Halici S, Zenk SF, Jantsch J & Hensel M (2008) Functional analysis of the Salmonella pathogenicity island 2-mediated inhibition of antigen presentation in dendritic cells. Infect Immun 76: 4924–4933.
- Halle S, Bumann D, Herbrand H, Willer Y, Dahne S, Forster R & Pabst O (2007) Solitary intestinal lymphoid tissue provides a productive port of entry for Salmonella enterica serovar Typhimurium. Infect Immun 75: 1577–1585.
- Haraga A, Ohlson MB & Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6: 53–66.
- Helaine S, Thompson JA, Watson KG, Liu M, Boyle C & Holden DW (2010) Dynamics of intracellular bacterial replication at the single cell level. P Natl Acad Sci USA 107: 3746–3751.
- Hensel M, Shea JE, Waterman SR et al. (1998) Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30: 163–174.
- Hoiseth SK & Stocker BA (1981) Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291: 238–239.
- Hormaeche CE (1979) Natural resistance to Salmonella typhimurium in different inbred mouse strains. Immunology 37: 311–318.
- House D, Bishop A, Parry C, Dougan G & Wain J (2001) Typhoid fever: pathogenesis and disease. Curr Opin Infect Dis 14: 573–578.
- Ibarra JA & Steele-Mortimer O (2009) Salmonella–the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 11: 1579–1586.
- Jackson A, Nanton MR, O'Donnell H, Akue AD & McSorley SJ (2010) Innate immune activation during Salmonella infection initiates extramedullary erythropoiesis and splenomegaly. J Immunol 185: 6198–6204.
- Jensen VB, Harty JT & Jones BD (1998) Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer's patches. Infect Immun 66: 3758–3766.
- Jepson MA & Clark MA (2001) The role of M cells in Salmonella infection. Microbes Infect 3: 1183–1190.
- Johanns TM, Ertelt JM, Rowe JH & Way SS (2010) Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection. PLoS Pathog 6: e1001043.
- Jones BD & Falkow S (1996) Salmonellosis: host immune responses and bacterial virulence determinants. Annu Rev Immunol 14: 533–561.
- Killar LM & Eisenstein TK (1985) Immunity to Salmonella typhimurium infection in C3H/HeJ and C3H/HeNCrlBR mice: studies with an aromatic-dependent live S. Typhimurium strain as a vaccine. Infect Immun 47: 605–612.
- Kim H, White CD & Sacks DB (2011a) IQGAP1 in microbial pathogenesis: targeting the actin cytoskeleton. FEBS Lett 585: 723–729.
- Kim H, White CD, Li Z & Sacks DB (2011b) Salmonella Typhimurium usurps the scaffold protein IQGAP1 to manipulate Rac1 and MAP kinase signaling. Biochem J 15;440(3): 309–318.
- Kingsley RA, van Amsterdam K, Kramer N & Baumler AJ (2000) The shdA gene is restricted to serotypes of Salmonella enterica subspecies I and contributes to efficient and prolonged fecal shedding. Infect Immun 68: 2720–2727.
- Kingsley RA, Humphries AD, Weening EH et al. (2003) Molecular and phenotypic analysis of the CS54 island of Salmonella enterica serotype typhimurium: identification of intestinal colonization and persistence determinants. Infect Immun 71: 629–640.
- Kingsley RA, Keestra AM, de Zoete MR & Baumler AJ (2004a) The ShdA adhesin binds to the cationic cradle of the fibronectin 13FnIII repeat module: evidence for molecular mimicry of heparin binding. Mol Microbiol 52: 345–355.
- Kingsley RA, Abi Ghanem D, Puebla-Osorio N, Keestra AM, Berghman L & Baumler AJ (2004b) Fibronectin binding to the Salmonella enterica serotype Typhimurium ShdA autotransporter protein is inhibited by a monoclonal antibody recognizing the A3 repeat. J Bacteriol 186: 4931–4939.
- Kingsley RA, Msefula CL, Thomson NR et al. (2009) Epidemic multiple drug resistant Salmonella typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 19: 2279–2287.
- Knodler LA, Vallance BA, Celli J, Winfree S, Hansen B, Montero M & Steele-Mortimer O (2010) Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. P Natl Acad Sci USA 107: 17733–17738.
- Krishnakumar R, Craig M, Imlay JA & Slauch JM (2004) Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium strain 14028. J Bacteriol 186: 5230–5238.
- Lawley TD, Chan K, Thompson LJ, Kim CC, Govoni GR & Monack DM (2006) Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2: e11.
- Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA & Monack DM (2008) Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and the indigenous intestinal microbiota. Infect Immun 76: 403–416.
- Ledingham JCG & Arkwright JA (1912) The Carrier Problem in Infectious Disease, pp. 5–135. Edward Arnold, London.
- Levine MM, Black RE & Lanata C (1982) Precise estimation of the numbers of chronic carriers of Salmonella typhi in Santiago, Chile, an endemic area. J Infect Dis 146: 724–726.
- Lin FY, Becke JM, Groves C et al. (1988) Restaurant-associated outbreak of typhoid fever in Maryland: identification of carrier facilitated by measurement of serum Vi antibodies. J Clin Microbiol 26: 1194–1197.
- Liu JZ, Pezeshki M & Raffatellu M (2009) Th17 cytokines and host-pathogen interactions at the mucosa: dichotomies of help and harm. Cytokine 48: 156–160.
- Malo D, Vogan K, Vidal S et al. (1994) Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 23: 51–61.
- Mastroeni P (2002) Immunity to systemic Salmonella infections. Curr Mol Med 2: 393–406.
- Mastroeni P, Simmons C, Fowler R, Hormaeche CE & Dougan G (2000a) Igh-6(−/−) (B-cell-deficient) mice fail to mount solid acquired resistance to oral challenge with virulent Salmonella enterica serovar typhimurium and show impaired Th1 T-cell responses to Salmonella antigens. Infect Immun 68: 46–53.
- Mastroeni P, Vazquez-Torres A, Fang FC, Xu Y, Khan S, Hormaeche CE & Dougan G (2000b) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192: 237–248.
- Mastroeni P, Ugrinovic S, Chandra A, MacLennan C, Doffinger R & Kumararatne D (2003) Resistance and susceptibility to Salmonella infections: lessons from mice and patients with immunodeficiencies. Rev Med Microbiol 14: 53–62.
- McGhie EJ, Brawn LC, Hume PJ, Humphreys D & Koronakis V (2009) Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 12: 117–124.
- McLaughlin LM, Govoni GR, Gerke C et al. (2009) The Salmonella SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration. PLoS Pathog 5: e1000671.
- Mecsas J, Bilis I & Falkow S (2001) Identification of attenuated Yersinia pseudotuberculosis strains and characterization of an orogastric infection in BALB/c mice on day 5 postinfection by signature-tagged mutagenesis. Infect Immun 69: 2779–2787.
- Mellemgaard A & Gaarslev K (1988) Risk of hepatobiliary cancer in carriers of Salmonella typhi. J Natl Cancer Inst 80: 288.
- Merselis JG Jr, Kaye D, Connolly CS & Hook EW (1964) Quantitative bacteriology of the typhoid carrier state. Am J Trop Med Hyg 13: 425–429.
- Meynell GG & Stocker BA (1957) Some hypotheses on the aetiology of fatal infections in partially resistant hosts and their application to mice challenged with Salmonella paratyphi-B or Salmonella typhimurium by intraperitoneal injection. J Gen Microbiol 16: 38–58.
- Mizuno Y, Takada H, Nomura A et al. (2003) Th1 and Th1-inducing cytokines in Salmonella infection. Clin Exp Immunol 131: 111–117.
- Monack DM, Hersh D, Ghori N, Bouley D, Zychlinsky A & Falkow S (2000) Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. J Exp Med 192: 249–258.
- Monack DM, Bouley DM & Falkow S (2004a) Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med 199: 231–241.
- Monack DM, Mueller A & Falkow S (2004b) Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2: 747–765.
10.1038/nrmicro955 Google Scholar
- Mortimer PP (1999) Mr N the milker, and Dr Koch's concept of the healthy carrier. Lancet 353: 1354–1356.
- Muniz-Junqueira MI, Tosta CE & Prata A (2009) [Schistosoma-associated chronic septicemic salmonellosis: evolution of knowledge and immunopathogenic mechanisms]. Rev Soc Bras Med Trop 42: 436–445.
- Nath G, Gulati AK & Shukla VK (2010) Role of bacteria in carcinogenesis, with special reference to carcinoma of the gallbladder. World J Gastroenterol 16: 5395–5404.
- Netea MG, Radstake T, Joosten LA, van der Meer JW, Barrera P & Kullberg BJ (2003) Salmonella septicemia in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: association with decreased interferon-gamma production and Toll-like receptor 4 expression. Arthritis Rheum 48: 1853–1857.
- Nix RN, Altschuler SE, Henson PM & Detweiler CS (2007) Hemophagocytic macrophages harbor Salmonella enterica during persistent infection. PLoS Pathog 3: e193.
- Njunda AL & Oyerinde JP (1996) Salmonella typhi infection in Schistosoma mansoni infected mice. West Afr J Med 15: 24–30.
- Ochman H, Soncini FC, Solomon F & Groisman EA (1996) Identification of a pathogenicity island required for Salmonella survival in host cells. P Natl Acad Sci USA 93: 7800–7804.
- Papp-Wallace KM, Nartea M, Kehres DG et al. (2008) The CorA Mg2+ channel is required for the virulence of Salmonella enterica serovar typhimurium. J Bacteriol 190: 6517–6523.
- Raffatellu M, Santos RL, Verhoeven DE et al. (2008) Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med 14: 421–428.
- Ravindran R, Foley J, Stoklasek T, Glimcher LH & McSorley SJ (2005) Expression of T-bet by CD4 T cells is essential for resistance to Salmonella infection. J Immunol 175: 4603–4610.
- Reeves P (1993) Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. Trends Genet 9: 17–22.
- Rhen M, Eriksson S, Clements M, Bergstrom S & Normark SJ (2003) The basis of persistent bacterial infections. Trends Microbiol 11: 80–86.
- Richter-Dahlfors A, Buchan AM & Finlay BB (1997) Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 186: 569–580.
- Rocha H, Kirk JW & Hearey CD Jr (1971) Prolonged Salmonella bacteremia in patients with Schistosoma mansoni infection. Arch Intern Med 128: 254–257.
- Rydstrom A & Wick MJ (2007) Monocyte recruitment, activation, and function in the gut-associated lymphoid tissue during oral Salmonella infection. J Immunol 178: 5789–5801.
- Sacco R, Hagen M, Sandor M, Weinstock JV & Lynch RG (2002) Established T(H1) granulomatous responses induced by active Mycobacterium avium infection switch to T(H2) following challenge with Schistosoma mansoni. Clin Immunol 104: 274–281.
- Salazar-Gonzalez RM, Srinivasan A, Griffin A et al. (2007) Salmonella flagellin induces bystander activation of splenic dendritic cells and hinders bacterial replication in vivo. J Immunol 179: 6169–6175.
- Salcedo SP, Noursadeghi M, Cohen J & Holden DW (2001) Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol 3: 587–597.
- Sashinami H, Yamamoto T & Nakane A (2006) The cytokine balance in the maintenance of a persistent infection with Salmonella enterica serovar Typhimurium in mice. Cytokine 33: 212–218.
- Saunders JR (1990) Genetic mechanisms for modulating virulence determinants on the bacterial surface. Sci Prog 74: 279–290.
- Schramm G & Haas H (2010) Th2 immune response against Schistosoma mansoni infection. Microbes Infect 12: 881–888.
- Schulz SM, Kohler G, Holscher C, Iwakura Y & Alber G (2008) IL-17A is produced by Th17, gammadelta T cells and other CD4- lymphocytes during infection with Salmonella enterica serovar Enteritidis and has a mild effect in bacterial clearance. Int Immunol 20: 1129–1138.
- Sekirov I, Tam NM, Jogova M, Robertson ML, Li Y, Lupp C & Finlay BB (2008) Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun 76: 4726–4736.
- Sheppard M, Webb C, Heath F, Mallows V, Emilianus R, Maskell D & Mastroeni P (2003) Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell Microbiol 5: 593–600.
- Silva-Herzog E & Detweiler CS (2010) Salmonella enterica replication in hemophagocytic macrophages requires two type three secretion systems. Infect Immun 78: 3369–3377.
- Sinnott CR & Teall AJ (1987) Persistent gallbladder carriage of Salmonella typhi. Lancet 1: 976.
- Sloan RS, Wilson HD & Wright HA (1960) The detection of a carrier of multiple phage-types of Salmonella paratyphi B. J Hyg (Lond) 58: 193–200.
- Song J, Willinger T, Rongvaux A et al. (2010) A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe 8: 369–376.
- Songhet P, Barthel M, Rohn TA et al. (2010) IL-17A/F-signaling does not contribute to the initial phase of mucosal inflammation triggered by S. Typhimurium. PLoS ONE 5: e13804.
- Srinivasan A, Salazar-Gonzalez RM, Jarcho M, Sandau MM, Lefrancois L & McSorley SJ (2007) Innate immune activation of CD4 T cells in Salmonella-infected mice is dependent on IL-18. J Immunol 178: 6342–6349.
- Stecher B, Macpherson AJ, Hapfelmeier S, Kremer M, Stallmach T & Hardt WD (2005) Comparison of Salmonella enterica serovar Typhimurium colitis in germfree mice and mice pretreated with streptomycin. Infect Immun 73: 3228–3241.
- Stokes A & Clarke C (1912) A search for typhoid carriers among 800 convalescents. Lancet 1: 566–569.
- Stoycheva M & Murdjeva M (2005) Serum levels of interferon-gamma, interleukin-12, tumour necrosis factor-alpha, and interleukin-10, and bacterial clearance in patients with gastroenteric Salmonella infection. Scand J Infect Dis 37: 11–14.
- Thompson LJ, Dunstan SJ, Dolecek C et al. (2009) Transcriptional response in the peripheral blood of patients infected with Salmonella enterica serovar Typhi. P Natl Acad Sci USA 106: 22433–22438.
- Tierrez A & García-del Portillo F (2005) New concepts in Salmonella virulence: the importance of reducing the intracellular growth rate in the host. Cell Microbiol 7: 901–909.
10.1111/j.1462-5822.2005.00540.x Google Scholar
- Trinchieri G (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13: 251–276.
- Uematsu S & Akira S (2009) Immune responses of TLR5(+) lamina propria dendritic cells in enterobacterial infection. J Gastroenterol 44: 803–811.
- Valdez Y, Ferreira RB & Finlay BB (2009) Molecular mechanisms of Salmonella virulence and host resistance. Curr Top Microbiol Immunol 337: 93–127.
- Vazquez-Torres A & Fang FC (2000) Cellular routes of invasion by enteropathogens. Curr Opin Microbiol 3: 54–59.
- Vazquez-Torres A & Fang FC (2001) Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol 9: 29–33.
- Vazquez-Torres A, Jones-Carson J, Baumler AJ et al. (1999) Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401: 804–808.
- Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H & Fang FC (2000a) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192: 227–236.
- Vazquez-Torres A, Xu Y, Jones-Carson J et al. (2000b) Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287: 1655–1658.
- Vidal SM, Malo D, Vogan K, Skamene E & Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73: 469–485.
- Voedisch S, Koenecke C, David S, Herbrand H, Forster R, Rhen M & Pabst O (2009) Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar Typhimurium and limit systemic disease in mice. Infect Immun 77: 3170–3180.
- Vogelsang TM & Boe J (1948) Temporary and chronic carriers of Salmonella typhi and Salmonella paratyphi B. J Hyg (Lond) 46: 252–261.
- Wain J, Hien TT, Connerton P et al. (1999) Molecular typing of multiple-antibiotic-resistant Salmonella enterica serovar Typhi from Vietnam: application to acute and relapse cases of typhoid fever. J Clin Microbiol 37: 2466–2472.
- Wain J, House D, Pickard D, Dougan G & Frankel G (2001) Acquisition of virulence-associated factors by the enteric pathogens Escherichia coli and Salmonella enterica. Philos Trans R Soc Lond B Biol Sci 356: 1027–1034.
- Weening EH, Barker JD, Laarakker MC, Humphries AD, Tsolis RM & Baumler AJ (2005) The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun 73: 3358–3366.
- Welton JC, Marr JS & Friedman SM (1979) Association between hepatobiliary cancer and typhoid carrier state. Lancet 1: 791–794.
- Worley MJ, Nieman GS, Geddes K & Heffron F (2006) Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells. P Natl Acad Sci USA 103: 17915–17920.
- Wynn TA, Thompson RW, Cheever AW & Mentink-Kane MM (2004) Immunopathogenesis of schistosomiasis. Immunol Rev 201: 156–167.
- Yamamoto T, Sashinami H, Takaya A et al. (2001) Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha. Infect Immun 69: 3164–3174.
- Young D, Hussell T & Dougan G (2002) Chronic bacterial infections: living with unwanted guests. Nat Immunol 3: 1026–1032.
- Yrlid U, Svensson M, Hakansson A, Chambers BJ, Ljunggren HG & Wick MJ (2001) In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection. Infect Immun 69: 5726–5735.
- Zaharik ML, Cullen VL, Fung AM et al. (2004) The Salmonella enterica serovar typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an Nramp1G169 murine typhoid model. Infect Immun 72: 5522–5525.
- el-Zayadi A, Ghoneim M, Kabil SM, el Tawil A, Sherif A & Selim O (1991) Bile duct carcinoma in Egypt: possible etiological factors. Hepatogastroenterology 38: 337–340.
- Zenk SF, Jantsch J & Hensel M (2009) Role of Salmonella enterica lipopolysaccharide in activation of dendritic cell functions and bacterial containment. J Immunol 183: 2697–2707.
- Zhao C, Wood MW, Galyov EE et al. (2006) Salmonella typhimurium infection triggers dendritic cells and macrophages to adopt distinct migration patterns in vivo. Eur J Immunol 36: 2939–2950.