Mutation rate is reduced by increased dosage of mutL gene in Escherichia coli K-12
Juan-Carlos Galán
Servicio de Microbiología, Hospital Universitario Ramón y Cajal (Unidad Asociada al CSIC ‘Resistencia a Antibióticos y Virulencia Bacteriana’) and CIBER-ESP, Madrid, Spain
Search for more papers by this authorMaría-Carmen Turrientes
Servicio de Microbiología, Hospital Universitario Ramón y Cajal (Unidad Asociada al CSIC ‘Resistencia a Antibióticos y Virulencia Bacteriana’) and CIBER-ESP, Madrid, Spain
Search for more papers by this authorMaría-Rosario Baquero
Universidad Alfonso X El Sabio, Madrid, Spain
Search for more papers by this authorManuel Rodríguez-Alcayna
Servicio de Microbiología, Hospital Universitario Ramón y Cajal (Unidad Asociada al CSIC ‘Resistencia a Antibióticos y Virulencia Bacteriana’) and CIBER-ESP, Madrid, Spain
Search for more papers by this authorJorge Martínez-Amado
Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Madrid, Spain
Search for more papers by this authorJosé-Luis Martínez
Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Madrid, Spain
Search for more papers by this authorFernando Baquero
Servicio de Microbiología, Hospital Universitario Ramón y Cajal (Unidad Asociada al CSIC ‘Resistencia a Antibióticos y Virulencia Bacteriana’) and CIBER-ESP, Madrid, Spain
Search for more papers by this authorJuan-Carlos Galán
Servicio de Microbiología, Hospital Universitario Ramón y Cajal (Unidad Asociada al CSIC ‘Resistencia a Antibióticos y Virulencia Bacteriana’) and CIBER-ESP, Madrid, Spain
Search for more papers by this authorMaría-Carmen Turrientes
Servicio de Microbiología, Hospital Universitario Ramón y Cajal (Unidad Asociada al CSIC ‘Resistencia a Antibióticos y Virulencia Bacteriana’) and CIBER-ESP, Madrid, Spain
Search for more papers by this authorMaría-Rosario Baquero
Universidad Alfonso X El Sabio, Madrid, Spain
Search for more papers by this authorManuel Rodríguez-Alcayna
Servicio de Microbiología, Hospital Universitario Ramón y Cajal (Unidad Asociada al CSIC ‘Resistencia a Antibióticos y Virulencia Bacteriana’) and CIBER-ESP, Madrid, Spain
Search for more papers by this authorJorge Martínez-Amado
Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Madrid, Spain
Search for more papers by this authorJosé-Luis Martínez
Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Madrid, Spain
Search for more papers by this authorFernando Baquero
Servicio de Microbiología, Hospital Universitario Ramón y Cajal (Unidad Asociada al CSIC ‘Resistencia a Antibióticos y Virulencia Bacteriana’) and CIBER-ESP, Madrid, Spain
Search for more papers by this authorEditor: Ross Fitzgerald
Abstract
A variable but substantial proportion of wild Escherichia coli isolates present consistently lower mutation frequencies than that found in the ensemble of strains. The genetic mechanisms responsible for the hypo-mutation phenotype are much less known than those involved in hyper-mutation. Changes in E. coli mutation frequencies derived from the gene-copy effect of mutS, mutL, mutH, uvrD, mutT, mutY, mutM, mutA, dnaE, dnaQ, and rpoS are explored. When present in a very high copy number (∼300 copies cell−1), mutL, mutH, and mutA gene copies yielded ≥twofold decrease in mutation rates determined by Luria–Delbrück fluctuation tests. Nevertheless, when the copy number was not such high (∼15 copies cell−1), only mutL results in a consistent twofold decrease in the mutation rate. This reduction seems to be independent from the RecA background, phase of growth, or from the presence of proficient MutS. An increase in mutL gene copies was also able to partially compensate the hypermutator phenotype of a mutS-defective E. coli derivative.
References
- Al Mamun AA, Rahman MS & Humayun MZ (1999) Escherichia coli cells bearing mutA, a mutant glyV tRNA gene, express a recA-dependent error-prone DNA replication activity. Mol Microbiol 33: 732–740.
- Baquero MR, Nilsson AI, Turrientes MC, Sandvang D, Galán JC, Martínez JL, Frimodt-Møller N, Baquero F & Andersson DI (2004) Polymorphic mutation frequencies in Escherichia coli: emergence of weak mutators in clinical isolates. J Bacteriol 186: 5538–5542.
- Baquero MR, Galán JC, Turrientes MC, Cantón R, Coque TM, Martínez JL & Baquero F (2005) Increased mutation frequencies in Escherichia coli isolates harboring extended-spectrum β-lactamases. Antimicrob Agents Chemother 49: 4754–4756.
- Bhagwat AS & Lieb M (2002) Cooperation and competition in mismatch repair: very short-patch repair and methyl-directed mismatch repair in Escherichia coli. Mol Microbiol 44: 1421–1428.
- Casadaban MJ (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104: 541–555.
- Chang AC & Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134: 1141–1156.
- Cirz RT, Chin JK, Andes DR, De Crecy-Lagard V, Craig WA & Romesberg FE (2005) Inhibition of mutation and combating the evolution of antibiotic resistance. PloS Biol 3: e176.
- Drake JW (1993) General antimutators are improbable. J Mol Biol 229: 8–13.
- Drake JW, Allen EF, Forsberg SA, Preparata RM & Greening EO (1969) Genetic control of mutation rates in bacteriophage T4. Nature 221: 1128–1132.
- Falush D, Torpdahl M, Didelot X, Conrad DF, Wilson DJ & Achtman M (2006) Mismatch induced speciation in Salmonella: model and data. Philos Trans R Soc Lond B Biol Sci 361: 2045–2053.
- Feng G, Tsui HC & Winkler ME (1996) Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol 178: 2388–2396.
- Foster PL (2006) Methods for determining spontaneous mutation rates. Methods Enzymol 409: 195–213.
- Galán JC, Morosini MI, Baquero MR, Reig M & Baquero F (2003) Haemophilus influenzaeblaROB-1 mutations in hypermutagenic ΔampCEscherichia coli conferring resistance to cefotaxime and β-lactamase inhibitors and increased susceptibility to cefaclor. Antimicrob Agent Chemother 47: 2551–2557.
- Geiger JR & Speyer JF (1977) A conditional antimutator in E. coli. Mol Gen Genet 153: 87–97.
- Genilloud O, Garrido MC & Moreno F (1984) The transposon Tn5 carries a bleomycin-resistance determinant. Gene 32: 225–233.
- Giraud A, Matic I, Radman M, Fons M & Taddei F (2002) Mutator bacteria as a risk factor in treatment of infectious diseases. Antimicrob Agents Chemother 46: 863–865.
- Guarné A, Ramon-Maiques S, Wolff EM, Ghirlando R, Hu X, Miller JH & Yang W (2004) Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO J 23: 4134–4145.
- Harrison F & Bucking A (2007) High relatedness selects against hypermutability in bacterial metapopulations. Proc R Soc B 274: 1341–1347.
- Harris RS, Feng G, Ross KJ, Sidhu R, Thulin C, Longerich S, Szigety SK, Winkler ME & Rosenberg SM (1997) Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev 11: 2426–2437.
- Horst JP, Wu TH & Marinus MG (1999) Escherichia coli mutator genes. Trends Microbiol 7: 29–36.
- LeClerc JE, Li B, Payne WL & Cebula TA (1996) High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274: 1208–1211.
- Lieb M & Bhagwat AS (1996) Very short patch repair: reducing the cost of cytosine methylation. Mol Microbiol 20: 467–473.
- Luria SE & Delbruck M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491–511.
- Maciá MD, Blanquer D, Togores B, Sauleda J, Pérez JL & Oliver A (2005) Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 49: 3382–3386.
- Mao EF, Lane L, Lee J & Miller JH (1997) Proliferation of mutators in a cell population. J Bacteriol 179: 417–422.
- Martinez JL & Baquero F (2000) Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother 44: 1771–1777.
- Matic I, Radman M, Taddei F, Picard B, Doit C, Bingen E, Denamur E & Elion J (1997) Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277: 1833–1834.
- Oliver A, Cantón R, Campo P, Baquero F & Blázquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251–1254.
- Oliver A, Baquero F & Blázquez J (2002) The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 43: 1641–1650.
- Prunier AL & Leclercq R (2005) Role of mutS and mutL genes in hypermutability and recombination in Staphylococcus aureus. J Bacteriol 187: 3455–3464.
- Quiñones A & Piechocki R (1985) Isolation and characterization of Escherichia coli antimutators. A new strategy to study the nature and origin of spontaneous mutations. Mol Gen Genet 201: 315–322.
- Richardson AR & Stojiljkovic I (2001) Mismatch repair and the regulation of phase variation in Neisseria meningitidis. Mol Microbiol 40: 645–655.
-
Sambrook J,
Fritsch EF &
Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY.
10.1111/j.1095-8312.1996.tb01434.x Google Scholar
- Sarkar S, Ma WT & Sandri GH (1992) On fluctuation analysis: a new, simple and efficient method for computing the expected number of mutants. Genetica 85: 173–179.
- Schaaper RM & Dunn RL (2001) The antimutator phenotype of E. coli mud is only apparent and results from delayed appearance of mutants. Mutat Res 480–481: 71–75.
- Schaaper RM & Radman M (1989) The extreme mutator effect of Escherichia colimutD5 results from saturation of mismatch repair by excessive DNA replication errors. EMBO J 8: 3511–3516.
- Stewart FM (1994) Fluctuation tests: how reliable are the estimates of mutation rates? Genetics 137: 1139–1146.
- Tanaka MM, Bergstrom CT & Levin BR (2003) The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Genetics 164: 843–854.
- Tenaillon O, Toupance B, Le Nagard H, Taddei F & Godelle B (1999) Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics 152: 485–493.
- Tsui HC & Winkler ME (1994) Transcriptional patterns of the mutL–miaA superoperon of Escherichia coli K-12 suggest a model for posttranscriptional regulation. Biochimie 76: 1168–1177.
- Tsui HC, Feng G & Winkler ME (1996) Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Eσ32-specific promoters during heat shock. J Bacteriol 178: 5719–5731.
- Walker GC, Smith BT & Sutton MD (2000) The SOS response to DNA damage. Bacterial Stress Response ( G Storz & R Hengge-Aronis, eds), pp. 131–144. ASM Press, Washington, DC.
- Yang H, Wolff E, Kim M, Diep A & Miller JH (2004) Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Mol Microbiol 53: 283–295.