Impact of the small RNA RyhB on growth, physiology and heterologous protein expression in Escherichia coli
Christian J. T. Bollinger
Institute of Microbiology, ETH Zürich, Zürich, Switzerland
Search for more papers by this authorPauli T. Kallio
Institute of Microbiology, ETH Zürich, Zürich, Switzerland
Search for more papers by this authorChristian J. T. Bollinger
Institute of Microbiology, ETH Zürich, Zürich, Switzerland
Search for more papers by this authorPauli T. Kallio
Institute of Microbiology, ETH Zürich, Zürich, Switzerland
Search for more papers by this authorEditor: Diethard Mattanovich
Abstract
The small noncoding RNA RyhB is a regulator of iron homeostasis in Escherichia coli. During iron limitation, it downregulates the expression of a number of iron-containing proteins, including enzymes of the tricarboxylic acid cycle and the respiratory chain. Because this infers a potential for RyhB to limit energy metabolism and biosynthetic capacity, the effect of knocking out ryhB on the physiology and heterologous protein productivity of E. coli has been analyzed. During iron limitation, induced either through insufficient extracellular supply or through overexpression of an iron-containing protein, ryhB mutants showed unaltered growth and substrate consumption. They did, however, exhibit significantly lowered acetate production rates. Plasmid-based expression of green fluorescent protein and the heterologous Vitreoscilla hemoglobin VHb was negatively affected by the ryhB knock-out.
References
- Andrews SC, Robinson AK & Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27: 215–237.
- Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H & Altuvia S (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 11: 941–950.
- Barnes HJ (1996) Maximizing expression of eukaryotic cytochrome P450s in Escherichia coli. Methods Enzymol 272: 3–14.
- Bollinger CJ, Bailey JE & Kallio PT (2001) Novel hemoglobins to enhance microaerobic growth and substrate utilization in Escherichia coli. Biotechnol Prog 17: 798–808.
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.
- Bullock WO, Fernandez JM & Short JM (1987) XL1-Blue – A high-efficiency plasmid transforming recAEscherichia coli strain with beta-galactosidase selection. BioTechniques 5: 376–379.
- Chung CT, Niemela SL & Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86: 2172–2175.
- Crameri A, Whitehorn EA, Tate E & Stemmer WP (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14: 315–319.
- Eiteman MA & Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24: 530–536.
- Frey AD & Kallio PT (2003) Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol Rev 27: 525–545.
- Frey AD, Fiaux J, Szyperski T, Wüthrich K, Bailey JE & Kallio PT (2001) Dissection of central carbon metabolism of hemoglobin-expressing Escherichia coli by 13C nuclear magnetic resonance flux distribution analysis in microaerobic bioprocesses. Appl Environ Microbiol 67: 680–687.
- Fuhrer T, Fischer E & Sauer U (2005) Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 187: 1581–1590.
- Hart DJ & Tarendeau F (2006) Combinatorial library approaches for improving soluble protein expression in Escherichia coli. Acta Crystallogr D Biol Crystallogr 62: 19–26.
- Hart RA, Kallio PT & Bailey JE (1994) Effect of biosynthetic manipulation of heme on insolubility of Vitreoscilla hemoglobin in Escherichia coli. Appl Environ Microbiol 60: 2431–2437.
- Jacques J-F, Jang S, Prévost K, Desnoyers G, Desmarais M, Imlay J & Massé E (2006) RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. Mol Microbiol 62: 1181–1190.
- Kallio PT, Tsai PS & Bailey JE (1996) Expression of Vitreoscilla hemoglobin is superior to horse heart myoglobin or yeast flavohemoglobin expression for enhancing Escherichia coli growth in a microaerobic bioreactor. Biotechnol Prog 12: 751–757.
- Kallio PT, Heidrich J, Koskenkorva T, Bollinger CJT, Farrès J & Frey AD (2007) Analysis of novel hemoglobins during microaerobic growth of HMP-negative Escherichia coli. Enzyme Microb Technol 40: 329–336.
- Massé E & Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99: 4620–4625.
- Massé E, Escorcia FE & Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17: 2374–2383.
- Massé E, Vanderpool CK & Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187: 6962–6971.
- Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Neidhardt FC, Bloch PL & Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119: 736–747.
- Olsen M, Iverson B & Georgiou G (2000) High-throughput screening of enzyme libraries. Curr Opin Biotechnol 11: 331–337.
- Poole RK, Anjum MF, Membrillo-Hernández J, Kim SO, Hughes MN & Stewart V (1996) Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J Bacteriol 178: 5487–5492.
- Sambrook J & Russell DW (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wüthrich K & Bailey JE (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 181: 6679–6688.
- Strauch MA, Spiegelman GB, Perego M, Johnson WC, Burbulys D & Hoch JA (1989) The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J 8: 1615–1621.
-
Tsai PS,
Hatzimanikatis V &
Bailey JE (1996) Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism.
Biotechnol Bioeng
49: 139–150.
10.1002/(SICI)1097-0290(19960120)49:2<139::AID-BIT3>3.0.CO;2-R CAS PubMed Web of Science® Google Scholar
- Vemuri GN, Eiteman MA & Altman E (2006) Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein. Biotechnol Bioeng 94: 538–542.
- Wäborg JTF (2002) Characterization of small RNAs with the use of over-expression in Escherichia coli. Diploma Thesis, Lunds Tekniska Högskola, Lund.
- Walsh G (2006) Biopharmaceutical benchmarks 2006. Nat Biotechnol 24: 769–776.
- Wassarman KM, Repoila F, Rosenow C, Storz G & Gottesman S (2001) Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15: 1637–1651.
- Webster DA & Liu CY (1974) Reduced nicotinamide adenine dinucleotide cytochrome o reductase associated with cytochrome o purified from Vitreoscilla. Evidence for an intermediate oxygenated form of cytochrome o. J Biol Chem 249: 4257–4260.
- Wilkinson B & Bachmann BO (2006) Biocatalysis in pharmaceutical preparation and alteration. Curr Opin Chem Biol 10: 169–176.
- Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69: 12–50.