Characteristics of the biofilm matrix and its role as a possible target for the detection and eradication of Staphylococcus epidermidis associated with medical implant infections
Said Jabbouri
Laboratoire de Recherches sur les Biomatériaux et Biotechnologies, Université du Littoral-Côte d'Opale, Boulogne-sur-mer, France
Institut de Recherche pour le Developpement, UMR 180, Laboratoire de Microbiologie et Biotechnologie des Environnements Chauds, Marseille, France
Search for more papers by this authorIrina Sadovskaya
Laboratoire de Recherches sur les Biomatériaux et Biotechnologies, Université du Littoral-Côte d'Opale, Boulogne-sur-mer, France
Search for more papers by this authorSaid Jabbouri
Laboratoire de Recherches sur les Biomatériaux et Biotechnologies, Université du Littoral-Côte d'Opale, Boulogne-sur-mer, France
Institut de Recherche pour le Developpement, UMR 180, Laboratoire de Microbiologie et Biotechnologie des Environnements Chauds, Marseille, France
Search for more papers by this authorIrina Sadovskaya
Laboratoire de Recherches sur les Biomatériaux et Biotechnologies, Université du Littoral-Côte d'Opale, Boulogne-sur-mer, France
Search for more papers by this authorEditor: Roger Bayston
Abstract
The virulence of Staphylococcus epidermidis is related to its capacity to form biofilms. Such biofilm-related infections are extremely difficult to treat and to detect in early stages by the traditional microbiological analyses. The determination of the chemical composition of the extracellular polymeric substances (EPS) of the biofilm matrix, as well as the elucidation of the sensitivity of biofilms to enzymatic degradation should facilitate the development of new therapies against biofilm-related infections. The chemical analyses of EPS had shown qualitative and quantitative variations of their nature, depending on the strains and culture conditions. The poly-N-acetylglucosamine (PNAG) is considered the main component of staphylococcal biofilms. However, certain strains form biofilms without PNAG. In addition to PNAG and proteins, extracellular teichoic acid was identified as a new component of the staphylococcal biofilms. The sensitivity of staphylococcal biofilms to enzymatic treatments depended on their relative chemical composition, and a PNAG-degrading enzyme, in conjunction with proteases, could be an efficient solution to eliminate the staphylococcal biofilms. A detection of specific ‘antibiofilm’ antibodies in the blood serum of patients could serve as a convenient noninvasive and inexpensive diagnostic tool for the detection of foreign body-associated staphylococcal infections. Used as a coating antigen in the enzyme-linked immunosorbent assay test, PNAG did not sufficiently discriminate healthy individuals from the infected patients.
References
- Akiyama H, Kanzaki H, Tada J & Arata J (1996) Staphylococcus aureus infection on cut wounds in the mouse skin: experimental staphylococcal botryomycosis. J Dermatol Sci 11: 234–238.
- Archibald AR, Baddiley J & Shaukat GA (1968) The glycerol teichoic acid from walls of Staphylococcus epidermidis I2. Biochem J 110: 583–588.
- Baddiley J, Buchanan JG, Hardy FE, Martin RO, Rajbhandary UL & Sanderson AR (1961) The structure of the ribitol teichoic acid of Staphylococcus aureus H. Biochim Biophys Acta 52: 406–407.
- Baddiley J, Buchanan JG, Martin RO & Rajbhandary UL (1962a) Teichoic acid from the walls of Staphylococcus aureus H. 2. Location of phosphate and alanine residues. Biochem J 85: 49–56.
- Baddiley J, Buchanan JG, Rajbhandary UL & Sanderson AR (1962b) Teichoic acid from the walls of Staphylococcus aureus H. Structure of the N-acetylglucosaminyl-ribitol residues. Biochem J 82: 439–448.
- Buxton TB, Horner J, Hinton A & Rissing JP (1987) In vivo glycocalyx expression by Staphylococcus aureus phage type 52/52A/80 in S. aureus osteomyelitis. J Infect Dis 156: 942–946.
- Baldassarri L, Donnelli G, Gelosia A, Voglino MC, Simpson AW & Christensen GD (1996) Purification and characterization of the staphylococcal slime-associated antigen and its occurrence among Staphylococcus epidermis clinical isolates. Infect Immun 64: 3410–3415.
- Cafiso V, Bertuccio T, Santagati M, Campanile F, Amicosante G, Perilli MG, Selan L, Artini M, Nicoletti G & Stefani S (2004) Presence of the ica operon in clinical isolates of Staphylococcus epidermidis and its role in biofilm production. Clin Microbiol Infect 10: 1081–1088.
- Campoccia D, Montanaro L & Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27: 2331–2339.
- Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB & Jabbouri S (2007) Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biot 75: 125–132.
- Chokr A, Watier D, Eleaume H, Pangon B, Ghnassia JC, Mack D & Jabbouri S (2006) Correlation between biofilm formation and production of polysaccharide intercellular adhesin in clinical isolates of coagulase-negative staphylococci. Int J Med Microbiol 296: 381–388.
- Chokr A, Leterme D, Watier D & Jabbouri S (2007) Neither the presence of ica locus, nor in vitro-biofilm formation ability is a crucial parameter for some Staphylococcus epidermidis strains to maintain an infection in a guinea pig tissue cage model. Microb Pathogenesis 42: 94–97.
- Christensen GD, Barker LP, Mawhinney TP, Baddour LM & Simpson WA (1990) Identification of an antigenic marker of slime production for Staphylococcus epidermidis. Infect Immun 58: 2906–2911.
- Conlon KM, Humphreys H & O'Gara JP (2002) icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 184: 4400–4408.
- Cramton SE, Gerke C, Schnell NF, Nichols WW & Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67: 5427–5433.
- De Boer W, Kruyssen FJ & Wouters JT (1981) Cell wall metabolism in Bacillus subtilis subsp. niger: accumulation of wall polymers in the supernatant of chemostat cultures. J Bacteriol 146: 877–884.
- Dobinsky S, Kiel K, Rohde H, Bartscht K, Knobloch JK, Horstkotte MA & Mack D (2003) Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J Bacteriol 185: 2879–2886.
- Duckworth M, Archibald AR & Baddiley J (1975) Lipoteichoic acid and lipoteichoic acid carrier in Staphylococcus aureus H. FEBS Lett 53: 176–179.
- Elliott TS, Tebbs SE, Moss HA, Worthington T, Spare MK, Faroqui MH & Lambert PA (2000) A novel serological test for the diagnosis of central venous catheter-associated sepsis. J Infection 40: 262–266.
- Endl J, Seidl HP, Fiedler F & Schleifer KH (1983) Chemical composition and structure of cell wall teichoic acids of staphylococci. Arch Microbiol 135: 215–223.
- Fitzpatrick F, Humphreys H & O'Gara JP (2005) Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol 43: 1973–1976.
- Fluckiger U, Ulrich M, Steinhuber A, Doring G, Mack D, Landmann R, Goerke C & Wolz C (2005) Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect Immun 73: 1811–1819.
- Francois P, Tu Quoc PH, Bisognano C, Kelley WL, Lew DP, Schrenzel J, Cramton SE, Gotz F & Vaudaux P (2003) Lack of biofilm contribution to bacterial colonisation in an experimental model of foreign body infection by Staphylococcus aureus and Staphylococcus epidermidis. FEMS Immunol Med Microbiol 35: 135–140.
- Galdbart JO, Allignet J, Tung HS, Ryden C & El Solh N (2000) Screening for Staphylococcus epidermidis markers discriminating between skin-flora strains and those responsible for infections of joint prostheses. J Infect Dis 182: 351–355.
- Georgakopoulos CD, Exarchou A, Koliopoulos JX, Gartaganis SP, Anastassiou ED, Kolonitsiou F, Lamari F, Karamanos NK & Dimitracopoulos G (2002) Levels of specific antibodies towards the major antigenic determinant of slime-producing Staphylococcus epidermidis determined by an enzyme immunoassay and their protective effect in experimental keratitis. J Pharmaceut Biomed 29: 255–262.
- Gerke C, Kraft A, Sussmuth R, Schweitzer O & Gotz F (1998) Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 273: 18586–18593.
- Götz F (2002) Staphylococcus and biofilms. Mol Microbiol 43: 1367–1378.
- Gross M, Cramton SE, Götz F & Peschel A (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69: 3423–3426.
- Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D & Gotz F (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20: 1083–1091.
- Hennig S, Nyunt Wai S & Ziebuhr W (2007) Spontaneous switch to PIA-independent biofilm formation in an ica-positive Staphylococcus epidermidis isolate. Int J Med Microbiol 297: 117–122.
- Hussain M, Hastings JG & White PJ (1991) Isolation and composition of the extracellular slime made by coagulase-negative staphylococci in a chemically defined medium. J Infect Dis 163: 534–541.
- Hussain M, Hastings JG & White PJ (1992) Comparison of cell-wall teichoic acid with high-molecular-weight extracellular slime material from Staphylococcus epidermidis. J Med Microbiol 37: 368–375.
- Hussain M, Wilcox MH & White PJ (1993) The slime of coagulase-negative staphylococci: biochemistry and relation to adherence. FEMS Microbiol Rev 10: 191–207.
- Hussain M, Heilmann C, Peters G & Herrmann M (2001) Teichoic acid enhances adhesion of Staphylococcus epidermidis to immobilized fibronectin. Microb Pathogenesis 31: 261–270.
- Izano EA, Sadovskaya I, Vinogradov E et al. (2007) Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microb Pathogenesis 43: 1–9.
- Izano EA, Sadovskaya I, Wang H, Vinogradov E, Ragunath C, Ramasubbu N, Jabbouri S, Perry MB & Kaplan JB (2008) Poly-N-acetylglucosamine mediates biofilm formation and detergent resistance in Aggregatibacter actinomycetemcomitans. Microb Pathogenesis 44: 52–60.
- Jacques NA, Hardy L, Knox KW & Wicken AJ (1979) Effect of growth conditions on the formation of extracellular lipoteichoic acid by Streptococcus mutans BHT. Infect Immun 25: 75–84.
- Joyce JG, Abeygunawardana C, Xu Q et al. (2003) Isolation, structural characterization, and immunological evaluation of a high-molecular-weight exopolysaccharide from Staphylococcus aureus. Carbohyd Res 338: 903–922.
- Kaplan JB, Ragunath C, Ramasubbu N & Fine DH (2003) Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J Bacteriol 185: 4693–4698.
- Kaplan JB, Velliyagounder K, Ragunath C, Rohde H, Mack D, Knobloch JK & Ramasubbu N (2004) Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol 186: 8213–8220.
- Karamanos NK, Syrokou A, Panagiotopoulou HS, Anastassiou ED & Dimitracopoulos G (1997) The major 20-kDa polysaccharide of Staphylococcus epidermidis extracellular slime and its antibodies as powerful agents for detecting antibodies in blood serum and differentiating among slime-positive and -negative S. epidermidis and other staphylococci species. Arch Biochem Biophys 342: 389–395.
- Knobloch JK, Horstkotte MA, Rohde H, Kaulfers PM & Mack D (2002) Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis. J Antimicrob Chemoth 49: 683–687.
- Kogan G, Sadovskaya I, Chaignon P, Chokr A & Jabbouri S (2006) Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesin. FEMS Microbiol Lett 255: 11–16.
- Kozitskaya S, Olson ME, Fey PD, Witte W, Ohlsen K & Ziebuhr W (2005) Clonal analysis of Staphylococcus epidermidis isolates carrying or lacking biofilm-mediating genes by multilocus sequence typing. J Clin Microbiol 43: 4751–4757.
- Lamari FN, Anastassiou ED, Kolonitsiou F, Dimitracopoulos G & Karamanos NK (2004) Potential use of solid phase immunoassays in the diagnosis of coagulase-negative staphylococcal infections. J Pharmaceut Biomed 34: 803–810.
- Mack D, Nedelmann M, Krokotsch A, Schwarzkopf A, Heesemann J & Laufs R (1994) Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. Infect Immun 62: 3244–3253.
- Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H & Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178: 175–183.
- Maira-Litran T, Kropec A, Goldmann D & Pier GB (2004) Biologic properties and vaccine potential of the staphylococcal poly-N-acetyl glucosamine surface polysaccharide. Vaccine 22: 872–879.
- McKenney D, Hubner J, Muller E, Wang Y, Goldmann DA & Pier GB (1998) The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun 66: 4711–4720.
- McKenney D, Pouliot KL, Wang Y, Murthy V, Ulrich M, Doring G, Lee JC, Goldmann DA & Pier GB (1999) Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 284: 1523–1527.
- McKenney D, Pouliot K, Wang Y, Murthy V, Ulrich M, Doring G, Lee JC, Goldmann DA & Pier GB (2000) Vaccine potential of poly-(1-6)-β-d-N-succinylglucosamine, an immunoprotective surface polysaccharide of Staphylococcus aureus and Staphylococcus epidermidis. J Biotechnol 83: 37–44.
- Neuhaus FC & Baddiley J (2003) A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol R 67: 686–723.
- Otto M (2009) Staphylococcus epidermidis, the ‘accidental’ pathogen. Nat Rev Microbiol 7: 555–567.
- Peschel A, Otto M, Jack RW, Kalbacher H, Jung G & Gotz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274: 8405–8410.
- Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch JK, Heilmann C, Herrmann M & Mack D (2005) Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55: 1883–1895.
- Sadovskaya I, Vinogradov E, Li J & Jabbouri S (2004) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohyd Res 339: 1467–1473.
- Sadovskaya I, Vinogradov E, Flahaut S, Kogan G & Jabbouri S (2005) Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun 73: 3007–3017.
- Sadovskaya I, Chaignon P, Kogan G, Chokr A, Vinogradov E & Jabbouri S (2006) Carbohydrate-containing components of biofilms produced in vitro by some staphylococcal strains related to orthopaedic prosthesis infections. FEMS Immunol Med Mic 47: 75–82.
- Sadovskaya I, Faure S, Watier D, Leterme D, Chokr A, Girard J, Migaud H & Jabbouri S (2007) Potential use of poly-N-acetyl-β-(1,6)-glucosamine as an antigen for diagnosis of staphylococcal orthopedic-prosthesis-related infections. Clin Vaccine Immunol 14: 1609–1615.
- Selan L, Passariello C, Rizzo L, Varesi P, Speziale F, Renzini G, Thaller MC, Fiorani P & Rossolini GM (2002) Diagnosis of vascular graft infections with antibodies against staphylococcal slime antigens. Lancet 359: 2166–2168.
- Tojo M, Yamashita N, Goldmann DA & Pier GB (1988) Isolation and characterization of a capsular polysaccharide adhesin from Staphylococcus epidermidis. J Infect Dis 157: 713–722.
- Toledo-Arana A, Merino N, Vergara-Irigaray M, Debarbouille M, Penades JR & Lasa I (2005) Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system. J Bacteriol 187: 5318–5329.
- Trampuz A & Zimmerli W (2005) New strategies for the treatment of infections associated with prosthetic joints. Curr Opin Investig D 6: 185–190.
- Vinogradov E, Sadovskaya I, Li J & Jabbouri S (2006) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus aureus MN8m, a biofilm forming strain. Carbohyd Res 341: 738–743.
- Von Eiff C, Heilmann C & Peters G (1999) New aspects in the molecular basis of polymer-associated infections due to staphylococci. Eur J Clin Microbiol 18: 843–846.
- Wang X, Preston JF III & Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186: 2724–2734.
- Weidenmaier C & Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6: 276–287.
- Ziebuhr W, Krimmer V, Rachid S, Lossner I, Gotz F & Hacker J (1999) A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 32: 345–356.
- Ziebuhr W, Hennig S, Eckart M, Kranzler H, Batzilla C & Kozitskaya S (2006) Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int J Antimicrob Ag 28 (suppl 1): S14–S20.