Brucella melitensis 16M produces a mannan and other extracellular matrix components typical of a biofilm
Marie Godefroid
Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorMona V. Svensson
Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
Search for more papers by this authorPierre Cambier
Unité de Recherche en Biologie Végétale, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorSophie Uzureau
Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorAurélie Mirabella
Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorXavier De Bolle
Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorPierre Van Cutsem
Unité de Recherche en Biologie Végétale, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorGöran Widmalm
Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
Search for more papers by this authorJean-Jacques Letesson
Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorMarie Godefroid
Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorMona V. Svensson
Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
Search for more papers by this authorPierre Cambier
Unité de Recherche en Biologie Végétale, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorSophie Uzureau
Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorAurélie Mirabella
Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorXavier De Bolle
Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorPierre Van Cutsem
Unité de Recherche en Biologie Végétale, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorGöran Widmalm
Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
Search for more papers by this authorJean-Jacques Letesson
Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
Search for more papers by this authorEditor: Gianfranco Donelli
Abstract
Mutations in the Brucella melitensis quorum-sensing (QS) system are involved in the formation of clumps containing an exopolysaccharide. Here, we show that the overexpression of a gene called aiiD in B. melitensis gives rise to a similar clumping phenotype. The AiiD enzyme degrades AHL molecules and leads therefore to a QS-deficient strain. We demonstrated the presence of exopolysaccharide and DNA, two classical components of extracellular matrices, in clumps produced by this strain. We also observed that the production of outer membrane vesicles is strongly increased in the aiiD-overexpressing strain. Moreover, this strain allowed us to purify the exopolysaccharide and to obtain its composition and the first structural information on the complex exopolysaccharide produced by B. melitensis 16M, which was found to have a molecular weight of about 16 kDa and to be composed of glucosamine, glucose and mostly mannose. In addition, we found the presence of 2- and/or 6-substituted mannosyl residues, which provide the first insights into the linkages involved in this polymer. We used a classical biofilm attachment assay and an HeLa cell infection model to demonstrate that the clumping strain is more adherent to polystyrene plates and to HeLa cell surfaces than the wild-type one. Taken together, these data reinforce the evidence that B. melitensis could form biofilms in its lifecycle.
References
- Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M & Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59: 1114–1128.
- Aragón V, Díaz R, Moreno E & Moriyón I (1996) Characterization of Brucella abortus and Brucella melitensis native haptens as outer membrane O-type polysaccharides independent from the smooth lipopolysaccharide. J Bacteriol 178: 1070–1079.
- Ausubel FM, Brent R, Kingston RE, Moore DE, Seidman JG, Smith JA & Struhl K (1991) Current Protocols in Molecular Biology. Green Publishing Associates, New York, NY.
- Boigegrain RA, Salhi I, Alvarez-Martinez MT, Machold J, Fedon Y, Arpagaus M, Weise C, Rittig M & Rouot B (2004) Release of periplasmic proteins of Brucella suis upon acidic shock involves the outer membrane protein Omp25. Infect Immun 72: 5693–5703.
- Boschiroli ML, Foulongne V & O'Callaghan D (2001) Brucellosis: a worldwide zoonosis. Curr Opin Microbiol 4: 58–64.
- Branda SS, Vik S, Friedman L & Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13: 20–26.
- Briken V, Porcelli SA, Besra GS & Kremer L (2004) Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol 53: 391–403.
- Castaňeda-Roldán EI, Avelino-Flores F, Dall'Agnol M, Freer E, Cedillo L, Dornand J & Girón A (2004) Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues. Cell Microbiol 6: 435–445.
- Cloeckaert A, De Wergifosse P, Dubray G & Limet JN (1990) Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay. Infect Immun 58: 3980–3987.
- Costerton JW, Lewandowski Z, Caldwell DE, Korber DR & Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49: 711–745.
- Costerton JW, Stewart PS & Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–1322.
- Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW & Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295–298.
- Delrue RM, Martinez-Lorenzo M, Lestrate P, Danese I, Bielarz V, Mertens P, De Bolle X, Tibor A, Gorvel JP & Letesson JJ (2001) Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol 3: 487–497.
- Delrue RM, Deschamps C, Leonard S et al. (2005) A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. Cell Microbiol 7: 1151–1161.
- Detilleux PG, Deyoe BL & Cheville NF (1990) Penetration and intracellular growth of Brucella abortus in nonphagocytic cells in vitro. Infect Immun 58: 2320–2328.
- Dillard JP & Seifert HS (2001) A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 41: 263–277.
- Dinadayala P, Kaur D, Berg S, Amin AG, Vissa VD, Chatterjee D, Brennan PJ & Crick DC (2006) Genetic basis for the synthesis of the immunomodulatory mannose caps of lipoarabinomannan in Mycobacterium tuberculosis. J Biol Chem 281: 20027–20035.
- Dricot A, Rual JF, Lamesch P et al. (2004) Generation of the Brucella melitensis ORFeome version 1.1. Genome Res 14: 2201–2206.
- Eklund R, Lycknert K, Söderman P & Widmalm G (2005) A conformational dynamics study of α-l-Rhap-(1→2)[α-l-Rhap-(1→3)]-α-l-Rhap-OMe in solution by NMR experiments and molecular simulations. J Phys Chem B 109: 19936–19945.
- Fraysse N, Couderc F & Poinsot V (2003) Surface polysaccharide involvement in establishing the Rhizobium–legume symbiosis. Eur J Biochem 270: 1365–1380.
- Gamazo C & Moriyon I (1987) Release of outer membrane fragments by exponentially growing Brucella melitensis cells. Infect Immun 55: 609–615.
- Gilleron M, Garton NJ, Nigou J, Brando T, Puzo G & Sutcliffe IC (2005) Characterization of a truncated lipoarabinomannan from the Actinomycete Turicella otitidis. J Bacteriol 187: 854–861.
- Glazebrook J & Walker GC (1989) A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56: 661–672.
- Greiner LL, Edwards JL, Shao J, Rabinak C, Entz D & Apicella MA (2005) Biofilm formation by Neisseria gonorrhoeae. Infect Immun 73: 1964–1970.
- Hallez R, Letesson JJ, Vandenhaute J & De Bolle X (2007) Gateway-based destination vectors for functional analyses of bacterial ORFeomes: application to the Min system in Brucella abortus. Appl Environ Microb 73: 1375–1379.
- Hall-Stoodley L, Costerton JW & Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2: 95–108.
- Hammer BK & Bassler BL (2003) Quorum Sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50: 101–114.
- Ip WK, Takahashi K, Ezekowitz RA & Stuart LM (2009) Mannose-binding lectin and innate immunity. Immunol Rev 230: 9–21.
- Jacobs C, Domian IJ, Maddock JR & Shapiro L (1999) Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97: 111–120.
- Jansson PE, Kenne L & Kolare I (1994) NMR studies of some (1→6)-linked disaccharide methyl glycosides. Carbohyd Res 257: 163–174.
- Jansson PE, Stenutz R & Widmalm G (2006) Sequence determination of oligosaccharides and regular polysaccharides using NMR spectroscopy and a novel web-based version of the computer program Casper. Carbohyd Res 341: 1003–1010.
- Joshua GW, Guthrie-Irons C, Karlyshev AV & Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152: 387–396.
- Kovach ME, Phillips RW, Elzer PH, Roop RM II & Peterson KM (1994) pBBR1MCS: a broad-host-range cloning vector. BioTechniques 16: 800–802.
- Lee REB, Li W, Chatterjee D & Lee RE (2005) Rapid structural characterization of the arabinogalactan and lipoarabinomannan in live mycobacterial cells using 2D and 3D HR-MAS NMR: structural changes in the arabinan due to ethambutol treatment and gene mutation are observed. Glycobiology 15: 139–151.
- Leigh JA, Signer ER & Walker GC (1985) Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. P Natl Acad Sci USA 82: 6231–6235.
- Letesson JJ & De Bolle X (2004) Brucella-Molecular and Cellular Biology. Horizon Bioscience, Norfolk, UK.
- Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR & Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47: 849–860.
- Marques MB, Kasper DL, Pangburn MK & Wessels MR (1992) Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci. Infect Immun 60: 3986–3993.
- Mashburn LM & Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437: 422–425.
- Morris DL (1948) Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science 107: 254–255.
- Naismith JH & Field RA (1996) Structural basis of trimannoside recognition by concanavalin A. J Biol Chem 271: 972–976.
- Omarsdottir S, Petersen BO, Paulsen BS, Togola A, Duus JØ & Olafsdottir ES (2006) Structural characterisation of novel lichen heteroglycans by NMR spectroscopy and methylation analysis. Carbohyd Res 341: 2449–2455.
- O'Toole G, Kaplan HB & Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54: 49–79.
- O'Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB & Kolter R (1999) Genetic approaches to study of biofilms. Method Enzymol 310: 91–109.
- Perry MB & Bundle DR (1990) Antigenic relationships of the lipopolysaccharides of Escherichia hermannii strains with those of Escherichia coli O157:H7, Brucella melitensis, and Brucella abortus. Infect Immun 58: 1391–1395.
- Pizarro-Cerda J, Moreno E, Sanguedolce V, Mege JL & Gorvel JP (1998) Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect Immun 66: 2387–2392.
- Prieto A, Leal JA, Giménez-Abián MI, Canales A, Jiménez-Barbero J & Bernabé M (2007) Isolation and structural determination of a unique polysaccharide containing mannofuranose from the cell wall of the Fungus acrospermum compressum. Glycoconjugate J 24: 421–428.
- Quintero EJ & Weiner RM (1995) Evidence for the adhesive function of the exopolysaccharide of Hyphomonas strain MHS-3 in its attachment to surfaces. Appl Environ Microb 61: 1897–1903.
- Renelli M, Matias V, Lo RY & Beveridge TJ (2004) DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150: 2161–2169.
- Rice SA, Koh KS, Queck SY, Labbate M, Lam KW & Kjelleberg S (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by Quorum Sensing and nutrient cues. J Bact 187: 3477–3485.
- Sangari F & Aguero J (1991) Mutagenesis of Brucella abortus: comparative efficiency of three transposon delivery systems. Microb Pathogenesis 11: 443–446.
- Schooling SR & Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188: 5945–5957.
- Simon R, Priefer U & Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering transposon mutagenesis in gram negative bacteria. Bio/Technology 1: 783–791.
- Smith LD & Ficht TA (1990) Pathogenesis of Brucella. Crit Rev Microbiol 17: 209–230.
- Spink WW (1956) The Nature of Brucellosis. The University of Minnesota Press, Minneapolis, MN.
- Starr T, Ng TW, Wehrly TD, Knodler LA & Celli J (2008) Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 9: 678–694.
- Steinberger RE & Holden PA (2005) Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microb 71: 5404–5410.
- Stredansky M & Conti E (1999) Succinoglycan production by solid-state fermentation with Agrobacterium tumefaciens. Appl Microbiol Biot 52: 332–337.
- Sutherland IW (2001) The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 9: 222–227.
- Tamaru Y, Takani Y, Yoshida T & Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microb 71: 7327–7333.
- Taminiau B, Daykin M, Swift S, Boschiroli ML, Tibor A, Lestrate P, De Bolle X, O'Callaghan D, Williams P & Letesson JJ (2002) Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect Immun 70: 3004–3011.
- Tsuneda S, Aikawa H, Hayashi H, Yuasa A & Hirata A (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surfaces. FEMS Microbiol Lett 223: 287–292.
- Uzureau S, Godefroid M, Deschamps C, Lemaire J, De Bolle X & Letesson JJ (2007) Mutations of the Quorum Sensing–dependent regulator VjbR lead to drastic surface modifications in Brucella melitensis. J Bacteriol 189: 6035–6047.
- Velasco J, Bengoechea JA, Brandenburg K, Lindner B, Seydel U, González D, Zähringer U, Moreno E & Moriyón I (2000) Brucella abortus and its closest phylogenetic relative, Ochrobactrum spp., differ in outer membrane permeability and cationic peptide resistance. Infect Immun 68: 3210–3218.
- Viel S, Capitani D, Mannina L & Segre A (2003) Diffusion-ordered NMR spectroscopy: a versatile tool for the molecular weight determination of uncharged polysaccharides. Biomacromolecules 4: 1843–1847.
- Vilain S, Pretorius JM, Theron J & Brözel VS (2009) DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microb 75: 2861–2868.
- Whitchurch CB, Tolker-Nielsen T, Ragas PC & Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295: 1487.