Application of phylogenetic microarrays to interrogation of human microbiota
Corresponding Author
Oleg Paliy
Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
Correspondence: Oleg Paliy, 260 Diggs, Department of Biochemistry and Molecular Biology, Wright State University, 3640 Col. Glenn Hwy, Dayton, OH 45435, USA. Tel.: +1 937 775 3714; fax: +1 937 775 3730; e-mail: [email protected]Search for more papers by this authorRichard Agans
Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
Search for more papers by this authorCorresponding Author
Oleg Paliy
Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
Correspondence: Oleg Paliy, 260 Diggs, Department of Biochemistry and Molecular Biology, Wright State University, 3640 Col. Glenn Hwy, Dayton, OH 45435, USA. Tel.: +1 937 775 3714; fax: +1 937 775 3730; e-mail: [email protected]Search for more papers by this authorRichard Agans
Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
Search for more papers by this authorAbstract
Human-associated microbiota is recognized to play vital roles in maintaining host health, and it is implicated in many disease states. While the initial surge in the profiling of these microbial communities was achieved with Sanger and next-generation sequencing, many oligonucleotide microarrays have also been developed recently for this purpose. Containing probes complementary to small ribosomal subunit RNA gene sequences of community members, such phylogenetic arrays provide direct quantitative comparisons of microbiota composition among samples and between sample groups. Some of the developed microarrays including PhyloChip, Microbiota Array, and HITChip can simultaneously measure the presence and abundance of hundreds and thousands of phylotypes in a single sample. This review describes the currently available phylogenetic microarrays that can be used to analyze human microbiota, delineates the approaches for the optimization of microarray use, and provides examples of recent findings based on microarray interrogation of human-associated microbial communities.
References
- Agans R, Rigsbee L, Kenche H, Michail S, Khamis HJ & Paliy O (2011) Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol 77: 404–412.
- Arumugam M, Raes J, Pelletier E et al. (2011) Enterotypes of the human gut microbiome. Nature 473: 174–180.
- Avarre JC, de Lajudie P & Bena G (2007) Hybridization of genomic DNA to microarrays: a challenge for the analysis of environmental samples. J Microbiol Methods 69: 242–248.
- Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE & Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72: 3593–3599.
- Biagi E, Nylund L, Candela M et al. (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5: e10667.
- Booijink CC, Boekhorst J, Zoetendal EG, Smidt H, Kleerebezem M & de Vos WM (2010a) Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed. Appl Environ Microbiol 76: 5533–5540.
- Booijink CC, El-Aidy S, Rajilic-Stojanovic M et al. (2010b) High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 12: 3213–3227.
- Brodie EL, Desantis TZ, Joyner DC et al. (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72: 6288–6298.
- Candela M, Consolandi C, Severgnini M et al. (2010) High taxonomic level fingerprint of the human intestinal microbiota by ligase detection reaction–universal array approach. BMC Microbiol 10: 116.
- Claesson MJ, O'Sullivan O, Wang Q et al. (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE 4: e6669.
- Claesson MJ, Cusack S, O'Sullivan O et al. (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. P Natl Acad Sci USA 108 (Suppl 1): 4586–4591.
- Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI & Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326: 1694–1697.
- Cox MJ, Huang YJ, Fujimura KE et al. (2010a) Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome. PLoS ONE 5: e8745.
- Cox MJ, Allgaier M, Taylor B et al. (2010b) Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS ONE 5: e11044.
- Crielaard W, Zaura E, Schuller AA, Huse SM, Montijn RC & Keijser BJ (2011) Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genomics 4: 22.
- de Graaf AA, Maathuis A, de Waard P, Deutz NE, Dijkema C, de Vos WM & Venema K (2009) Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR. NMR Biomed 23: 2–12.
- De Vuyst L & Leroy F (2011) Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int J Food Microbiol 149: 73–80.
- Deangelis KM, Allgaier M, Chavarria Y et al. (2011) Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS ONE 6: e19306.
- Dols JA, Smit PW, Kort R et al. (2011) Microarray-based identification of clinically relevant vaginal bacteria in relation to bacterial vaginosis. Am J Obstet Gynecol 204: 305.e1–7.
- Duncan SH, Louis P & Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70: 5810–5817.
- Flint HJ, Bayer EA, Rincon MT, Lamed R & White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6: 121–131.
- Gao Z, Tseng CH, Pei Z & Blaser MJ (2007) Molecular analysis of human forearm superficial skin bacterial biota. P Natl Acad Sci USA 104: 2927–2932.
- Gao Z, Tseng CH, Strober BE, Pei Z & Blaser MJ (2008) Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE 3: e2719.
- Gill SR, Pop M, Deboy RT et al. (2006) Metagenomic analysis of the human distal gut microbiome. Science 312: 1355–1359.
- Grice EA & Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9: 244–253.
- Guschin DY, Mobarry BK, Proudnikov D, Stahl DA, Rittmann BE & Mirzabekov AD (1997) Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl Environ Microbiol 63: 2397–2402.
- Hamady M, Lozupone C & Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4: 17–27.
- Hashsham SA, Wick LM, Rouillard JM, Gulari E & Tiedje JM (2004) Potential of DNA microarrays for developing parallel detection tools (PDTs) for microorganisms relevant to biodefense and related research needs. Biosens Bioelectron 20: 668–683.
- Hazen TC, Dubinsky EA, DeSantis TZ et al. (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330: 204–208.
- He Z, Gentry TJ, Schadt CW et al. (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1: 67–77.
- Holmes S, Alekseyenko A, Timme A, Nelson T, Pasricha PJ & Spormann A (2011) Visualization and statistical comparisons of microbial communities using R packages on phylochip data. Pac Symp Biocomput 142–153.
- Huang YJ, Kim E, Cox MJ, Brodie EL, Brown R, Wiener-Kronish JP & Lynch SV (2010) A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations. Omics 14: 9–59.
- Hultman J, Ritari J, Romantschuk M, Paulin L & Auvinen P (2008) Universal ligation-detection-reaction microarray applied for compost microbes. BMC Microbiol 8: 237.
- Jalanka-Tuovinen J, Salonen A, Nikkila J et al. (2011) Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS ONE 6: e23035.
- Kajander K, Myllyluoma E, Rajilic-Stojanovic M et al. (2008) Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharmacol Ther 27: 48–57.
- Kang S, Denman SE, Morrison M, Yu Z, Dore J, Leclerc M & McSweeney CS (2010) Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm Bowel Dis 16: 2034–2042.
- Kent AD & Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56: 211–236.
- Klaassens ES, de Vos WM & Vaughan EE (2007) Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microbiol 73: 1388–1392.
- Larsen B & Monif GR (2001) Understanding the bacterial flora of the female genital tract. Clin Infect Dis 32: e69–e77.
- Lee ZM, Bussema C III & Schmidt TM (2009) rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res 37: D489–D493.
- Lemon KP, Klepac-Ceraj V, Schiffer HK, Brodie EL, Lynch SV & Kolter R (2010) Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. MBio 1: e00129–10.
- Letowski J, Brousseau R & Masson L (2004) Designing better probes: effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays. J Microbiol Methods 57: 269–278.
- Louis P & Flint HJ (2007) Development of a semiquantitative degenerate real-time pcr-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples. Appl Environ Microbiol 73: 2009–2012.
- Loy A & Bodrossy L (2006) Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin Chim Acta 363: 106–119.
- Manges AR, Labbe A, Loo VG et al. (2010) Comparative metagenomic study of alterations to the intestinal microbiota and risk of nosocomial Clostridum difficile-associated disease. J Infect Dis 202: 1877–1884.
- Marchesi JR, Holmes E, Khan F et al. (2007) Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6: 546–551.
- Martin FP, Sprenger N, Montoliu I, Rezzi S, Kochhar S & Nicholson JK (2010) Dietary modulation of gut functional ecology studied by fecal metabonomics. J Proteome Res 9: 5284–5295.
- McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN & Sogin ML (2009) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12: 378–392.
- Mendes R, Kruijt M, de Bruijn I et al. (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332: 1097–1100.
- Mitterer G, Huber M, Leidinger E, Kirisits C, Lubitz W, Mueller MW & Schmidt WM (2004) Microarray-based identification of bacteria in clinical samples by solid-phase PCR amplification of 23S ribosomal DNA sequences. J Clin Microbiol 42: 1048–1057.
- Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136: 65–80.
- Olson JB & Kellogg CA (2010) Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiol Ecol 73: 17–30.
- Olson JC, Cuff CF, Lukomski S et al. (2011) Use of 16S ribosomal RNA gene analyses to characterize the bacterial signature associated with poor oral health in West Virginia. BMC Oral Health 11: 7.
- Paliy O & Foy B (2011) Mathematical modeling of 16S ribosomal DNA amplification reveals optimal conditions for the interrogation of complex microbial communities with phylogenetic microarrays. Bioinformatics 27: 2134–2140.
- Paliy O, Kenche H, Abernathy F & Michail S (2009) High-throughput quantitative analysis of the human intestinal microbiota with a phylogenetic microarray. Appl Environ Microbiol 75: 3572–3579.
- Palmer C, Bik EM, Digiulio DB, Relman DA & Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5: e177.
- Peplies J, Glockner FO & Amann R (2003) Optimization strategies for DNA microarray-based detection of bacteria with 16S rRNA-targeting oligonucleotide probes. Appl Environ Microbiol 69: 1397–1407.
- Peterson J, Garges S, Giovanni M et al. (2009) The NIH Human Microbiome Project. Genome Res 19: 2317–2323.
- Preza D, Olsen I, Willumsen T, Grinde B & Paster BJ (2009a) Diversity and site-specificity of the oral microflora in the elderly. Eur J Clin Microbiol Infect Dis 28: 1033–1040.
- Preza D, Olsen I, Willumsen T, Boches SK, Cotton SL, Grinde B & Paster BJ (2009b) Microarray analysis of the microflora of root caries in elderly. Eur J Clin Microbiol Infect Dis 28: 509–517.
- Qin J, Li R, Raes J et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.
- Rajilic-Stojanovic M, Heilig HG, Molenaar D, Kajander K, Surakka A, Smidt H & de Vos WM (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11: 1736–1751.
- Rigsbee L, Agans R, Foy BD & Paliy O (2011) Optimizing the analysis of human intestinal microbiota with phylogenetic microarray. FEMS Microbiol Ecol 75: 332–342.
- Salonen A, Nikkila J, Jalanka-Tuovinen J et al. (2010) Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods 81: 127–134.
- Sartor RB (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134: 577–594.
- Schatz MC, Phillippy AM, Gajer P, DeSantis TZ, Andersen GL & Ravel J (2010) Integrated microbial survey analysis of prokaryotic communities for the PhyloChip microarray. Appl Environ Microbiol 76: 5636–5638.
- Schena M, Shalon D, Davis RW & Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.
- Sekirov I, Russell SL, Antunes LC & Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90: 859–904.
- Suau A (2003) Molecular tools to investigate intestinal bacterial communities. J Pediatr Gastroenterol Nutr 37: 222–224.
- Van den Abbeele P, Grootaert C, Marzorati M et al. (2010) Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 76: 5237–5246.
- van den Bogert B, de Vos WM, Zoetendal EG & Kleerebezem M (2011) Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Appl Environ Microbiol 77: 2071–2080.
- Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D & DeRisi JL (2002) Microarray-based detection and genotyping of viral pathogens. P Natl Acad Sci USA 99: 15687–15692.
- Wang RF, Beggs ML, Erickson BD & Cerniglia CE (2004) DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol Cell Probes 18: 223–234.
- Wu L, Thompson DK, Li G, Hurt RA, Tiedje JM & Zhou J (2001) Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Environ Microbiol 67: 5780–5790.
- Wu L, Thompson DK, Liu X, Fields MW, Bagwell CE, Tiedje JM & Zhou J (2004) Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ Sci Technol 38: 6775–6782.
- Wu CH, Sercu B, Van de Werfhorst LC et al. (2010) Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators. PLoS ONE 5: e11285.
- Xu W, Seok J, Mindrinos MN et al. (2011) Human transcriptome array for high-throughput clinical studies. P Natl Acad Sci USA 108: 3707–3712.
- Yoo SM, Lee SY, Chang KH et al. (2009) High-throughput identification of clinically important bacterial pathogens using DNA microarray. Mol Cell Probes 23: 171–177.
- Zabarovsky ER, Petrenko L, Protopopov A et al. (2003) Restriction site tagged (RST) microarrays: a novel technique to study the species composition of complex microbial systems. Nucleic Acids Res 31: e95.
- Zhou J (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6: 288–294.
- Zhou J, He Z, Van Nostrand J, Wu L & Deng Y (2010) Applying GeoChip analysis to disparate microbial communities. Microbe 5: 60–65.
- Zhou JZ, He ZL, Van Nostrand JD & Deng Y (2011) Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. Front Environ Sci Eng China 5: 1–20.
- Zoetendal EG, Akkermans AD & De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64: 3854–3859.