Association of highly and weakly mycorrhizal seedlings can promote the extra- and intraradical development of a common mycorrhizal network
Corresponding Author
Damien Derelle
UPMC Paris 6, CNRS UMR 7618, Paris Cedex 05, France
Correspondence: Damien Derelle, UPMC Paris 6 – CNRS UMR 7618, 46 rue d'Ulm, F-75230 Paris Cedex 05, France. Tel.: +33 1 44 32 38 78; fax: +33 1 44 32 38 85; e-mail: [email protected]Search for more papers by this authorStéphane Declerck
Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
Search for more papers by this authorPatricia Genet
UPMC Paris 6, CNRS UMR 7618, Paris Cedex 05, France
Université Paris Diderot – Paris 7, Paris Cedex 13, France
Search for more papers by this authorIsabelle Dajoz
UPMC Paris 6, CNRS UMR 7618, Paris Cedex 05, France
Université Paris Diderot – Paris 7, Paris Cedex 13, France
Search for more papers by this authorIngrid M. van Aarle
Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
Unit of Bioengineering, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
Search for more papers by this authorCorresponding Author
Damien Derelle
UPMC Paris 6, CNRS UMR 7618, Paris Cedex 05, France
Correspondence: Damien Derelle, UPMC Paris 6 – CNRS UMR 7618, 46 rue d'Ulm, F-75230 Paris Cedex 05, France. Tel.: +33 1 44 32 38 78; fax: +33 1 44 32 38 85; e-mail: [email protected]Search for more papers by this authorStéphane Declerck
Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
Search for more papers by this authorPatricia Genet
UPMC Paris 6, CNRS UMR 7618, Paris Cedex 05, France
Université Paris Diderot – Paris 7, Paris Cedex 13, France
Search for more papers by this authorIsabelle Dajoz
UPMC Paris 6, CNRS UMR 7618, Paris Cedex 05, France
Université Paris Diderot – Paris 7, Paris Cedex 13, France
Search for more papers by this authorIngrid M. van Aarle
Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
Unit of Bioengineering, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
Search for more papers by this authorAbstract
Arbuscular mycorrhizal fungi (AMF) are key determinants of plant interactions in ecosystems. Through their effects on competition, they are regulators of the structure of communities. Conversely, the composition of plant assemblages may also influence the AMF colonization dynamics of plant species. Here, we tested under in vitro culture conditions the effects of Medicago truncatula, a highly mycorrhizal plant species, and Silene vulgaris, a weakly mycorrhizal plant species, grown single (monospecies treatments) or in combination (bispecies treatment) on the colonization dynamics of the AMF Rhizophagus irregularis MUCL 43194. The seedlings were placed in a pre-established hyphal network developing from a mature M. truncatula mycorrhizal donor plant. Extraradical mycelium (ERM) and root colonization parameters as well as root morphology were measured over a period of 12 days. An increased ERM length, total root colonization and proportion of arbuscules were noted in the bispecies treatment. Conversely, the bispecies treatment seemed to have no effect on root growth. This study also demonstrated the suitability of the in vitro culture system for studying the interactions between AMF and host plants grown as mono- and bispecies combinations.
References
- Akiyama K, Matsuzaki K & Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827.
- Bever JD (1999) Dynamics within mutualism and the maintenance of diversity: interference from a model of interguild frequency dependence. Ecol Lett 2: 52–62.
- Bever JD (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25: 468–478.
- Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79: 473–495.
- Callaway RM (1995) Positive interactions among plants. Bot Rev 61: 306–349.
- Casper BB, Schenk HJ & Jackson RB (2003) Defining a plant's belowground zone of influence. Ecology 84: 2313–2321.
- de Jaeger N, de la Providencia IE, Dupré de Boulois H & Declerck S (2011) Trichoderma harzianum might impact phosphorus transport by arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 77: 558–567.
- Declerck S, Strullu DG & Plenchette C (1998) Monoxenic culture of the intraradical forms of Rhizophagus irregularis isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90: 579–585.
- Dickson S (2004) The Arum-Paris continuum of mycorrhizal symbioses. New Phytol 163: 187–200.
- Doner LW & Becard G (1991) Solubilization of gellan gels by chelation of cations. Biotechnol Tech 5: 25–28.
- Fitter AH (2006) What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172: 3–6.
- Fontenla S, Garcia-Romera I & Ocampo JA (1999) Negative influence of non-host plants on the colonization of Pisum sativum by the arbuscular mycorrhizal fungus Glomus mosseae. Soil Biol Biochem 31: 1591–1597.
- Francis R & Read DJ (1994) The contributions of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159: 11–25.
- Gruntman M & Novoplansky A (2004) Physiologically mediated self/non-self discrimination in roots. P Natl Acad Sci USA 101: 3863–3867.
- Gutjahr C, Casieri L & Paszkowski U (2009) Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytol 182: 829–837.
- Hart MM, Reader RJ & Klironomos JN (2003) Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol 18: 418–423.
- Hausmann NT & Hawkes CV (2009) Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytol 183: 1188–1200.
- Jakobsen I, Abbott LK & Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120: 371–380.
- Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young PW & Read DJ (2003) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161: 503–515.
- Johnson NC, Hoeksema JD, Bever JD et al. (2006) From Lilliput to Brobdingnag: extending models of mycorrhizal function across scales. Bioscience 56: 889–900.
- Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292–2301.
- Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L & Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82: 1016–1045.
- Lekberg Y, Hammer EC & Olsson PA (2010) Plants as resource islands and storage units – adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol Ecol 74: 336–345.
- McGonigle TP, Miller MH, Evans DG, Fairchild GL & Swan JA (1990) A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115: 495–501.
- Mommer L, van Ruijven J, de Caluwe H, Smit-Tiekstra AE, Wagemaker CAM, Ouborg NJ, Bogemann GM, van der Weerden GM, Berendse F & de Kroon H (2010) Unveiling below-ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species. J Ecol 98: 1117–1127.
- Moora M & Zobel M (1998) Can arbuscular mycorrhiza change the effect of root competition between conspecific plants of different ages? Can J Bot 76: 613–619.
- Newman EI (1966) A method of estimating total length of root in a sample. J Appl Ecol 3: 139–142.
- Ocampo JA (1986) Vesicular arbuscular mycorrhizal infection of host and nonhost plants – effect on the growth-responses of the plants and competition between them. Soil Biol Biochem 18: 607–610.
- Phillips JM & Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55: 158–162.
- Rose RJ (2008) Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. Funct Plant Biol 35: 253–264.
- Sanders IR (2003) Preference, specificity and cheating in the arbuscular mycorrhizal symbiosis. Trends Plant Sci 8: 143–145.
- Scheublin TR, van Logtestijn RSP & van der Heijden MGA (2007) Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol 95: 631–638.
- Schüßler A & Walker C (2010) The Glomeromycota. A species list with new families and new genera. Published in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University.
- Smith SE & Read DJ (2008) Mycorrhizal Symbiosis. Academic Press, Cambridge, UK.
- van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. Mycorrhizal Ecology ( MGA van der Heijden & IR Sanders, eds), pp. 243–265. Springer-Verlag, Berlin.
10.1007/978-3-540-38364-2_10 Google Scholar
- van der Heijden MGA (2004) Arbuscular mycorrhizal fungi as support systems for seedlings establishment in grassland. Ecol Lett 7: 293–303.
- van der Heijden MGA & Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97: 1139–1150.
- van der Heijden MGA & Scheublin TR (2007) Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytol 174: 244–250.
10.1111/j.1469-8137.2007.02041.x Google Scholar
- van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A & Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72.
- Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH & Young PW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12: 3085–3095.
10.1046/j.1365-294X.2003.01967.x Google Scholar
- Voets L, Dupré de Boulois H, Renard L, Strullu DG & Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett 248: 111–118.
- Voets L, de la Providencia IE, Fernandez K, Ijdo M, Cranenbrouck S & Declerck S (2009) Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19: 347–356.
- West HM (1996) Influence of arbuscular mycorrhizal infection on competition between Holcus lanatus and Dactylis glomerata. J Ecol 84: 429–438.
- Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H & Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from fabaceae plants. New Phytol 179: 484–494.
- Zhang Q, Yang R, Tang J, Yang H, Hu S & Chen X (2010) Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS ONE 5: e12380.