Carbon photoassimilation by sharply stratified phototrophic communities at the chemocline of Lake Arcas (Spain)
Corresponding Author
Antonio Camacho
Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain
*Corresponding author. Tel.: +34 (6) 386 4388; Fax: +34 (6) 386 4372; E-mail: [email protected]Search for more papers by this authorEduardo Vicente
Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain
Search for more papers by this authorCorresponding Author
Antonio Camacho
Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain
*Corresponding author. Tel.: +34 (6) 386 4388; Fax: +34 (6) 386 4372; E-mail: [email protected]Search for more papers by this authorEduardo Vicente
Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain
Search for more papers by this authorAbstract
Three populations of phototrophic microorganisms were found closely stratified in the chemocline of the holomictic Lake Arcas. Cryptomonas spp. reached a maximum population density in microaerobic waters above dense plates of Oscillatoria cf. ornata and Chromatium weissei, whose maxima were found in the deeper sulfide-rich waters. High photoassimilation rates were found during the stratification period at the chemocline (up to 197.63 mg C m−3 h−1), especially at depths at which maximal densities of prokaryotic phototrophs were located, whereas much lower values were observed in the mixed zone of the lake. Despite these high rates, the contribution of carbon photoassimilation at the chemocline level accounted for only 16.2–18.3% of the photosynthetic assimilation of the whole lake in the stratification period, due to the narrowness of the depth range in which these populations were active. Moreover, in situ oxygenic photosynthesis took place at sulfide concentrations of about 0.1 mM. The photosynthesis vs. irradiance curve shows that these microorganisms were light limited, but their light-harvesting complexes allowed them to utilize the wavelengths which are relatively more concentrated in the dim light reaching the chemocline.
References
- 1 Van Gemerden, H. and Mas, J. (1995) Ecology of phototrophic sulfur bacteria. In: Anoxygenic Photosynthetic Bacteria (Blankenship, R.E., Madigan, M.T. and Baver, C.E., Eds.). Kluwer Academic, Dordrecht.
- 2
Steemann-Nielsen, E. (1952) The use of radioactive carbon for measuring organic production in the sea.
J. Cons. Cons. Int. Explor. Mer.
18, 117–140.
10.1093/icesjms/18.2.117 Google Scholar
- 3 Lyalikova, N.N. (1957) A study of the assimilation of free carbon dioxide by purple sulfur bacteria in Lake Belovod. Microbiology 26, 97–103.
- 4 Biebl, H. and Pfennig, N. (1979) Anaerobic CO2 uptake by phototrophic bacteria. A review. Arch. Hydrobiol. Beih. Ergebn. Limnol. 12, 48–58.
- 5 Vicente, E., Rodrigo, M.A., Camacho, A. and Miracle, M.R. (1991) Phototrophic prokaryotes in a karstic sulphate lake. Verh. Int. Verein Limnol. 24, 998–1004.
- 6 Jørgensen, B.B., Kuenen, J.G. and Cohen, Y. (1979) Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol. Oceanogr. 24, 799–822.
- 7 Cline, J.D. (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14, 454–458.
- 8 Pfennig, N. and Trüper, H.G. (1989) Anoxygenic phototrophic bacteria. In: Bergey's Manual of Systematic Bacteriology (Staley, J.T., Bryant, M.P., Pfennig, N. and Holt, J.G., Eds.), Vol. 3, pp. 1635–1709. Williams and Wilkins, Baltimore, MD.
- 9 Geitler, L. (1932) Cyanophyceae. In: Kryptogamenflora von Deutschland, Österreich und der Schweiz (Rabenhorst, R., Ed.). Akademisches Verlag, Leipzig. Reprinted 1971, Johnson Reprint Co., New York.
- 10 Jones, J.G. (1979) A Guide to Methods for Estimating Microbial Numbers and Biomass in Freshwaters. Freshwater Biological Association, Scientific Publication No. 39, Ambleside.
- 11 Utermöhl, H. (1958) Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt. Int. Verein Theor. Angew. Limnol. 9, 38.
- 12 Rott, E. (1981) Some results from phytoplankton counting intercalibrations. Schweiz. Z. Hydrol. 43, 32–62.
- 13 Steenbergen, C.L.M. and Van Den Hoven, P. (1990) A note on the measurement of production of phototrophic bacteria in deep layers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 34, 349–355.
- 14 Overmann, J. and Tilzer, M.M. (1989) Control of primary productivity and the significance of photosynthetic bacteria in a meromictic lake, Mittlerer Buchensee, West-Germany. Aquat. Sci. 51, 261–278.
- 15 Vyverman, W. and Tyler, P. (1995) Fine layer zonation and short-term changes of microbial communities in two coastal meromictic lakes (Madang Province, Papua, New Guinea). Arch. Hydrobiol. 132, 385–406.
- 16 Tilzer, M.M. (1989) Distinction between light mediated and light-independent variations in phytoplankton production rates. Hydrobiologia 173, 135–140.
- 17 Camacho, A., Garcia-Pichel, F., Vicente, E. and Castenholz, R.W. (1996) Adaptation to sulfide and to the underwater light field in three cyanobacterial isolates from Lake Arcas (Spain). FEMS Microbiol. Ecol. 21, 293–301.
- 18 Takahashi, M. and Ichimura, K.S. (1968) Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol. Oceanogr. 13, 644–655.
- 19 Gasol, J.M., Garcı́a-Cantizano, J., Massana, R., Guerrero, R. and Pedrós-Alió, C. (1993) Physiological ecology of a metalimnetic Cryptomonas population: relationships to light, sulfide and nutrients. J. Plankton Res. 15, 255–275.
- 20 Oren, A., Padan, E. and Avron, M. (1977) Quantum yields for oxygenic and anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Proc. Natl. Acad. Sci. USA 74, 2152–2156.
- 21
De Wit, R. and Van Gemerden, H. (1987) Oxidation of sulfide to thiosulfate by Microcoleus chthonoplastes.
FEMS Microbiol. Ecol.
45, 7–13.
10.1111/j.1574-6968.1987.tb02332.x Google Scholar
- 22 Cohen, Y., Jørgensen, B.B., Revsbech, N.P. and Poplawski, R. (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl. Environ. Microbiol. 51, 398–407.
- 23 Guhl, B.E., Finlay, B.J. and Schink B. (1996). Comparison of ciliate communities in the anoxic hypolimnia of three lakes: general features and the influence of lake characteristics. J. Plankton Res. 18, 335–353.
- 24 Talling, J.F. (1984) Past and contemporary trends and attitudes in work on primary productivity. J. Plankton Res. 6, 203–218.
- 25 Prézelin, B.B. (1992) Diel periodicity in phytoplankton productivity. Hydrobiologia 238, 1–35.
- 26 Van Gemerden, H., Montesinos, E., Mas, J. and Guerrero, R. (1985) Diel cycle of metabolism of phototrophic purple sulfur bacteria in lake Cisó (Spain). Limnol. Oceanogr. 30, 932–943.
- 27
Czeczuga, B. (1968) An attempt to determine the primary production of the green sulphur bacteria, Chlorobium limicola Nads (Chlorobacteriaceae).
Hydrobiologia
31, 317–333.
10.1007/BF00731555 Google Scholar
- 28 Gorlenko, V.M., Dubinina, G.A. and Kuznetsov, S.I. (1983) The Ecology of Aquatic Microorganisms. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele U. Obermiller), Stuttgart.
- 29 Steenbergen, C.L.M. and Korthals, H.J. (1982). Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands). Pigment analysis and role in primary production. Limnol. Oceanogr. 27, 883–895.
- 30 Lindholm, T. and Weppling, K. (1987) Blooms of phototrophic bacteria and phytoplankton in a small brackish lake on Aland, SW Finland. Acta Acad. Aboensis 47, 45–53.
- 31 Gasol, J.M., Mas, J., Pedrós-Alió, C. and Guerrero, R. (1990) Ecologı́a microbiana y limnologı́a en la laguna Cisó: 1976–1989. Sci. Gerundensis 16, 155–178.
- 32 Culver, D.A. and Brunskill, G.J. (1969) Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake. Limnol. Oceanogr. 14, 862–873.
- 33 Parkin, T.B. and Brock, T.D. (1981) Photosynthetic bacterial production and carbon mineralization in a meromictic lake. Arch. Hydrobiol. 91, 366–382.
- 34 Parkin, T.B. and Brock, T.D. (1980) Photosynthetic bacterial production in lakes: the effect of light intensity. Limnol. Oceanogr. 25, 711–718.
- 35 Cloern, J.E., Cole, B.E. and Oremland, R.S. (1983) Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnol. Oceanogr. 28, 1049–1061.
- 36 Folt, C.L., Wevers, M.J., Yoder-Williams, M.P. and Howmiller, R.P. (1989) Field study comparing growth and viability of a population of phototrophic bacteria. Appl. Environ. Microbiol. 55, 78–85.
- 37 Lawrence, J.R., Haynes, R.C. and Hammer, U.T. (1978) Contribution of photosynthetic green sulphur bacteria to total primary production in a meromictic saline lake. Verh. Int. Verein Limnol. 20, 201–207.
- 38 Hall, K.J. and Northcote, T.G. (1990) Production and decomposition processes in a saline meromictic lake. Hydrobiologia 197, 115–128.
- 39 Cohen, Y., Krumbein, W.E. and Shilo, M. (1977) Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22, 609–620.
- 40 Butow, B. and Bergstein-Ben Dan, T. (1992) Occurrence of Rhodopseudomonas palustris and Chlorobium phaeobacteroides blooms in lake Kinneret. Hydrobiologia 232, 193–200.
- 41 Vila, X., Dokulil, M., Garcı́a-Gil, L.J., Abellà, C.A., Borrego, C.M. and Bañeras, L. (1996) Composition and distribution of phototrophic bacterioplankton in the deep communities of several Central European lakes: The role of light quality. Arch. Hydrobiol. Spec. Iss. Adv. Limnol. 48, 183–196.
- 42 Abellà, C., Montesinos, E. and Guerrero, R. (1980) Field studies on the competition between purple and green sulfur bacteria for available light (Lake Cisó, Spain). Dev. Hydrobiol. 3, 173–181.
- 43 Sagert, S. and Schubert, H. (1995) Acclimation of the photosynthetic apparatus of Palmaria palmata (Rhodophyta) to light qualities that preferentially excite photosystem I or photosystem II. J. Phycol. 31, 547–554.
- 44 Guerrero, R., Montesinos, E., Pedrós-Alió, C., Esteve, I., Mas, J., Van Gemerden, H., Hofman, P.A. and Baker, J.F. (1985) Phototrophic sulfur bacteria in two spanish lakes: vertical distribution and limiting factors. Limnol. Oceanogr. 30, 919–931.