HETEROCHRONY AND DEVELOPMENTAL INNOVATION: EVOLUTION OF FEMALE GAMETOPHYTE ONTOGENY IN GNETUM, A HIGHLY APOMORPHIC SEED PLANT
William E. Friedman
Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder, Colorado, 80309
Search for more papers by this authorJeffrey S. Carmichael
Department of Biology, University of North Dakota, Grand Forks, North Dakota, 58202
Search for more papers by this authorWilliam E. Friedman
Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder, Colorado, 80309
Search for more papers by this authorJeffrey S. Carmichael
Department of Biology, University of North Dakota, Grand Forks, North Dakota, 58202
Search for more papers by this authorAbstract
Seed plant female gametophytes are focal points for the evolutionary modification of development. From a structural perspective, the most divergent female gametophytes among all seed plants are found in Gnetum, a clade within Gnetales. Coenocytic organization at sexual maturity, absence of defined egg cells (free nuclei are fertilized), lack of centripetal cellularization, and postfertilization development of embryo-nourishing tissues are features of the female gametophytes of Gnetum unparalleled among seed plants. Although the female gametophyte of Gnetum retains the three basic phases of somatic development common to female gametophytes of plesiomorphic seed plants (free nuclear development, cellularization, cellular growth), the timing of fertilization has been accelerated relative to the rate of somatic development. As a consequence, the female gametophyte of Gnetum matures sexually (is fertilized) at a juvenile (compared with the ancestral somatic ontogeny) and free nuclear stage of somatic development, thereby precluding differentiation of egg cells. Unlike progenetic animals, where truncation of somatic ontogeny evolves in tandem with acceleration in the timing of sexual maturation, the female gametophyte of Gnetum completes the entire ancestral somatic ontogeny after precocious sexual maturation. This results in the evolution of postfertilization development of embryo-nourishing female gametophyte tissues, a phenomenon unique among seed plants. Nonheterochronic developmental innovations have also played important roles in the evolution of the female gametophyte of Gnetum. Centripetal cellularization, which is always associated with the phase change from coenocytic to cellular organization among plesiomorphic seed plant female gametophytes, is lacking in Gnetum. Instead, during early phases of development, apomorphic free nuclear organization is coupled with a highly anomalous pattern of cellularization. Stage-specific innovations during early development in the female gametophyte of Gnetum do not affect plesiomorphic aspects of later phases of development. Thus, a complex array of heterochronic and nonheterochronic developmental innovations have played critical roles in the ontogenetic evolution of the highly apomorphic female gametophyte of Gnetum.
Literature Cited
- Alberch, P. 1985. Problems with the interpretation of developmental sequences. Syst. Zool. 34: 46–58.
- Alberch, P., and M. J. Blanco. 1996. Evolutionary patterns in ontogenetic transformation: from laws to regularities. Int. J. Dev. Biol. 40: 845–858.
- Alberch, P., S. J. Gould, G. F. Oster, and D. B. Wake. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5: 296–317.
- Baird, A. M. 1939. A contribution to the life history of Macrozamia reidlei. J. Proc. R. Soc. W. Aust. 25: 153–175.
- Brough, M. A., and M. H. Taylor. 1940. An investigation of the life cycle of Macrozamia spiralis Miq. Proc. Linn. Soc. N. S. W. 65: 494–523.
- Carmichael, J. C., and W. E. Friedman. 1995. Double fertilization in Gnetum gnemon: the relationship between the cell cycle and sexual reproduction. Plant Cell 7: 1975–1988.
- Carmichael, J. C., and W. E. Friedman. 1996. Double fertilization in Gnetum gnemon (Gnetaceae): its bearing on the evolution of sexual reproduction within the anthophyte clade. Am. J. Bot. 83: 776–780.
- Chamberlain, C. J. 1906. The ovule and female gametophyte of Dioon. Bot. Gaz. 42: 321–358.
10.1086/329037 Google Scholar
- Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, R. A. Price, H. G. Hills, Y. L. Qui, K. A. Kron, H. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedren, B. S. Gaut, R. K. Jansen, K. J. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q. Y. Xiang, G. M. Plunkett, P. S. Soltis, S. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H. Learn, S. W. Graham, S. C. H. Barrett, S. Dayanand, and V. A. Albert. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Mo. Bot. Gard. 80: 528–580.
- Chaw, S. M., H. M. Sung, H. Long, A. Zharkikh, and W. H. Li. 1995. The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia inferred from 18S ribosomal-RNA sequences. J. Mol. Evol. 41: 224–230.
- Choi, J. S., and W. E. Friedman. 1991. Development of the pollen tube in Zamia furfuracea and its evolutionary implications. Am. J. Bot. 78: 544–560.
- Coleman, A. W., M. J. Maguire, and J. R. Coleman. 1981. Mithramycin and 4'-6-diamidino-2-phenylindole (DAPI)-DNA staining for fluorescence microspectrophotometric measurement of DNA in nuclei, plastids, and virus particles. J. Histochem. Cytochem. 29: 959–968.
- Coulter, J. M. 1909. The embryo sac and embryo of Gnetum gnemon. Bot. Gaz. 46: 43–49.
10.1086/329612 Google Scholar
- Coulter, J. M. 1914. The evolution of sex in plants. Univ. of Chicago Press, Chicago.
- Crane, P. R. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann. Mo. Bot. Gard. 72: 716–793.
- de Sloover, J. L. 1963. Nucelle, gamétophyte femelle et embryon chez Encephalartos poggei Asch. Cellule 64: 149–200.
- Diggle, P. K. 1992. Development and the evolution of plant reproductive characters. Pp. 326–355 in R. E. Wyatt, ed. Ecology and evolution of plant reproduction. Chapman and Hall, New York.
- Donoghue, M. J. 1989. Phylogenies and the analysis of evolutionary sequences with examples from seed plants. Evolution 43: 1137–1156.
- Donoghue, M. J., and S. M. Scheiner. 1992. The evolution of endosperm: a phylogenetic account. Pp. 356–389 in R. E. Wyatt, ed. Ecology and evolution of plant reproduction. Chapman and Hall, New York.
- Doyle, J. A. 1996. Seed plant phylogeny and the relationships of Gnetales. Int. J. Plant Sci. 157: S3–S39.
- Doyle, J. A. 1998. Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. Mol. Phylogenet. Evol. In press.
- Doyle, J. A., and M. J. Donoghue. 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot. Rev. 52: 321–431.
- Doyle, J. A., and M. J. Donoghue. 1992. Fossils and seed plant phylogeny reanalyzed. Brittonia 44: 89–106.
- Doyle, J. A., M. J. Donoghue, and E. A. Zimmer. 1994. Integration of morphological and ribosomal RNA data on the origin of angiosperms. Ann Mo. Bot. Gard. 81: 419–450.
- Eames, A. J. 1961. Morphology of the angiosperms. McGraw-Hill, New York.
10.5962/bhl.title.5986 Google Scholar
- Emberger, L. 1949. Les préphanérogames. Ann. Sci. Nat. Bot. 10 (11e série): 131–144.
- Favre-Duchartre, M. 1956. Contribution a l'étude de la reproduction chez le Ginkgo biloba. Rev. Cytol. Biol. Vég. 17: 1–218.
- Favre-Duchartre, M. 1958. Ginkgo, an oviparous plant. Phytomorphology 8: 377–390.
- Favre-Duchartre, M. 1965. A propos des gametophytes femelles et des archégones des plantes ovulées. Ann. Sci. Nat. Bot. (12e series) 6: 157–182.
- Favre-Duchartre, M. 1978. Les gemétophytes femelles parasitant les micelles des plantes ovulées. Soc. Bot. France, Actual. Bot. 1'2: 215–218.
- Favre-Duchartre, M. 1979. Time relations and sexual reproduction in Cichorium and other angiosperms as compared with archegoniates. Phytomorphology 20: 166–178.
- Favre-Duchartre, M. 1984. Homologies and phylogenies. Pp. 697–734 in B. M. Johri, ed. The embryology of angiosperms. Springer-Verlag, Berlin.
10.1007/978-3-642-69302-1_15 Google Scholar
- Fink, W. L. 1982. The conceptual relationship between ontogeny and phylogeny. Paleobiology 8: 254–264.
- Florijn, R. J., J. Slats, H. J. Tanke, and A. J. Raap. 1995. Analysis of antifading reagents for fluorescence microscopy. Cytometry 19: 177–182.
- Friedman, W. E. 1987a. Growth and development of the male gametophyte of Ginkgo biloba within the ovule (in vivo). Am. J. Bot. 74: 1797–1815.
- Friedman, W. E. 1987b. Morphogenesis and experimental aspects of growth and development of the male gametophyte of Ginkgo biloba in vitro. Am. J. Bot. 74: 1816–1830.
- Friedman, W. E. 1991. Double fertilization in Ephedra trifurca, a non-flowering seed plant: the relationship between fertilization events and the cell cycle. Protoplasma 165: 106–120.
- Friedman, W. E. 1993. The evolutionary history of the seed plant male gametophyte. Trends Ecol. Evol. 8: 15–21.
- Friedman, W. E. 1998. The evolution of double fertilization and endosperm: an “historical” perspective. Sex. Plant Reprod. 11: 6–16.
- Friedman, W. E., and J. S. Carmichael. 1996. Evolution of fertilization patterns in Gnetales: implications for understanding reproductive diversification among anthophytes. Int. J. Plant Sci. 157: S77–S94.
- Friedman, W. E., and E. M. Gifford. 1997. Development of the male gametophyte of Ginkgo biloba: a window into the reproductive biology of early seed plants. Pp. 29–49 in T. Hori, ed. Ginkgo biloba—a global treasure. Springer Verlag, Tokyo.
10.1007/978-4-431-68416-9_3 Google Scholar
- Gifford, E. M., and A. S. Foster. 1989. Comparative morphology of vascular plants. W. H. Freeman, San Francisco, CA.
- Goremykin, V., V. Bobrava, J. Pahnke, A. Troitsky, A. Antonov, and W. Martin. 1996. Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. Mol. Biol. Evol. 13: 383–396.
- Gould, S. J. 1977. Ontogeny and phylogeny. Harvard Univ. Press, Cambridge, MA.
- Guerrant, E. O. 1988. Heterochrony in plants: the intersection of evolution ecology and ontogeny. Pp. 111–134 in M. L. McKinney, ed. Heterochrony in evolution. Plenum Press, New York.
10.1007/978-1-4899-0795-0_7 Google Scholar
- Haig, D., and M. Westoby. 1989. Selective forces in the emergence of the seed habit. Biol. J. Linn. Soc. 38: 215–238.
- Hall, B. K. 1992. Evolutionary developmental biology. Chapman and Hall, London.
10.1007/978-94-015-7926-1 Google Scholar
- Hall, B. K., and T. Miyake. 1995. How do embryos measure time? Pp. 3–20 in K. J. McNamara, ed. Evolutionary change and heterochrony. Wiley, New York.
- Hamby, R. K., and E. A. Zimmer. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. Pp. 50–91 in P. S. Soltis, D. E. Soltis, J. J. Koyle, eds. Molecular systematics of plants. Chapman and Hall, New York.
10.1007/978-1-4615-3276-7_4 Google Scholar
- Hanken, J. H., and D. B. Wake. 1993. Miniaturization of body size: organismal consequences and evolutionary significance. Ann. Rev. Ecol. Syst. 24: 501–519.
- Hasebe, M., M. Ito, R. Kofuji, K. Iwatsuki, and K. Ueda. 1992. Phylogenetic relationships in Gnetophyta deduced from rbcL gene sequences. Bot. Mag. Tokyo 105: 385–391.
- Hufford, L. 1995. Patterns of ontogenetic evolution in perianth diversification of Besseya (Scrophulariaceae). Am. J. Bot. 82: 655–680.
- Hufford, L. 1996. Ontogenetic evolution, clade diversification, and homoplasy. Pp. 271–301 in M. J. Sanderson and L. Hufford, eds. Homoplasy: the recurrence of similarity in evolution. Academic Press, San Diego, CA.
10.1016/B978-012618030-5/50013-7 Google Scholar
- Kluge, A. G. 1988. The characteristics of ontogeny. Pp. 57–82 in C. J. Humphries, ed. Ontogeny and systematics. Columbia Univ. Press, New York.
- Land, W. J. G. 1904. Spermatogenesis and oogenesis in Ephedra trifurca. Bot. Gaz. 38: 1–18.
10.1086/328518 Google Scholar
- Land, W. J. G. 1907. Fertilization and embryogeny in Ephedra trifurca. Bot. Gaz. 44: 273–292.
10.1086/329348 Google Scholar
- Langille, R. M., and B. K. Hall. 1989. Developmental processes, developmental sequences and early vertebrate phylogeny. Biol. Rev. Camb. Philos. Soc. 64: 73–91.
- Lehmann-Baerts, M. 1967. Étude sur les Gnétales. XII. Ovule, gamétophyte femelle et embryogenèse chez Ephedra distachya L. Cellule 67: 53–87.
- Lotsy, J. 1899. Contributions to the life history of the genus Gnetum. I. The grosser morphology of production of Gnetum gnemon L. Ann. Jard. Bot. Buitenzorg 16: 46–114.
- Mabee, P. M. 1993. Phylogenetic interpretation of ontogenetic change: sorting out the actual and artefactual in an empirical case study of centrarchid fishes. Zool. J. Linn. Soc. 107: 175–291.
- Maheshwari, P., and H. Singh. 1967. The female gametophyte of gymnosperms. Biol. Rev. 42: 88–130.
- Martens, P. 1971. Les Gnétophytes. Gebrueder Borntraeger, Berlin.
- Martens, P., and L. Waterkeyn. 1973. Évolution ovulaire et embryogenèse de Welwitschia. Cellule 70: 165–258.
- Matten, L. C., W. S. Lacey, and R. C. Lucas. 1980. Cupulate seeds of Hydrasperma Long from Berwickshire and East Lothian in Scotland and County Kerry in Ireland. Bot. J. Linn. Soc. 81: 249–273.
- Matten, L. C., T. I. Fine, W. R. Tanner, and W. S. Lacey. 1984. The megagametophyte of Hydrasperma tenuis Long from the upper Devonian of Ireland. Am. J. Bot. 71: 1461–1464.
- McKinney, M. L. 1988. Classifying heterochrony: allometry, size, and time. Pp. 17–34 in M. L. McKinney, ed. Heterochrony in evolution. Plenum Press, New York.
10.1007/978-1-4899-0795-0_2 Google Scholar
- McNamara, K. J. 1986. A guide to the nomenclature of heterochrony. J. Paleontol. 60: 4–13.
- McNamara, K. J. 1974. Etude histologique, cytochimique et ultrastructurale des reserves du gametophyte femelle de l'Ephedra distachya L. au cours de l'oogenese et de la proembryogenese. Rev. Gen. Bot. 81: 315–334.
- McNamara, K. J. 1980. L'alvéolisation du prothalle cénocytique femelle chez l'Ephedra distachya L. Etude ultrastructurale. Rev. Cytol. Biol. Veg. Bot. 3: 301–308.
- McNamara, K. J. 1983. Données temporelles concernant les diverses phases du cycle de reproduction sexuée chez l'Ephedra distachya L. Rev. Cytol. Biol. Veg. Bot. 6: 103–109.
- Norstog, K. 1972. Role of archegonial neck cells of Zamia and other cycads. Phytomorphology 22: 125–130.
- O'Brien, T. P., and M. E. McCully. 1981. The study of plant structure. Termarcarphi, Australia.
- O'Grady, R. T. 1985. Ontogenetic sequences and the phylogenetics of parasitic flatworm life cycles. Cladistics 1: 159–170.
10.1111/j.1096-0031.1985.tb00419.x Google Scholar
- Price, R. A. 1996. Systematics of the Gnetales: a review of morphological and molecular evidence. Int. J. Plant Sci. 157: S40–S49.
- Raff, R. A. 1992. Direct-developing sea urchins and the evolutionary reorganization of early development. Bioessays 14: 211–218.
- Raff, R. A. 1996. The shape of life. Univ. of Chicago Press, Chicago.
10.7208/chicago/9780226256573.001.0001 Google Scholar
- Raff, R. A., and G. A. Wray. 1989. Heterochrony: developmental mechanisms and evolutionary results. J. Evol. Biol. 2: 409–434.
- Raff, R. A., G. A. Wray, and J. J. Henry. 1991. Implications of radical evolutionary changes in early development for concepts of developmental constraint. Pp. 189–207 in L. Warren and H. Koprowski, eds. New perspectives on evolution. Wiley-Liss, New York.
- Reilly, S. M., E. O. Wiley, and D. J. Meinhardt. 1997. An integrative approach to heterochrony: the distinction between interspecific and intraspecific phenomena. Biol. J. Linn. Soc. 60: 119–143.
- Reynolds, L. G. 1924. The female gametophyte of Microcycas. Bot. Gaz. 77: 391–403.
10.1086/333340 Google Scholar
- Roth, G., and D. B. Wake. 1985. Trends in the functional morphology and sensorimotor control of feeding behavior in salamanders: an example of the role of internal dynamics in evolution. Acta Biotheor. 34: 175–192.
- Rothwell, G. S., and S. E. Scheckler. 1988. Biology of ancestral gymnosperms. Pp. 85–134 in C. B. Beck, ed. Origin and evolution of gymnosperms. Columbia Univ. Press, New York.
- Rothwell, G. W., and R. Serbet. 1994. Lignophyte phylogeny and the evolution of spermatophytes: a numerical cladistic analysis. Syst. Bot. 19: 443–482.
- Sanderson, M. J., and M. J. Donoghue. 1996. Shifts in diversification rate with the origin of angiosperms. Science 264: 1590–1593.
- Singh, H. 1978. Embryology of gymnosperms. Gebruder-Borntraeger, Berlin.
- Smith, F. G. 1910. Development of the ovulate strobilus and young ovule of Zamia floridana. Bot. Gaz. 50: 128–141.
- Stebbins, G. L. 1974. Flowering plants: evolution above the species level. Harvard Univ. Press, Cambridge, MA.
10.4159/harvard.9780674864856 Google Scholar
- Stebbins, G. L. 1976. Seeds, seedlings, and the origin of angiosperms. Pp. 300–311 in C. B. Beck, ed. Origin and early evolution of angiosperms. Columbia Univ. Press, New York.
- Stewart, W. N. 1951. A new Pachytesta from the Berryville locality of Southeastern Illinois. Am. Mid. Nat. 46: 717–742.
- Takhtadzhian, A. 1991. Evolutionary trends in flowering plants. Columbia Univ. Press, New York.
- Takhtajan, A. 1972. Patterns of ontogenetic alterations in the evolution of higher plants. Phytomorphology 22: 164–171.
- Takhtajan, A. 1976. Neoteny and the origin of flowering plants. Pp. 207–219 in C. B. Beck, ed. Origin and early evolution of angiosperms. Columbia Univ. Press, New York.
- Tiffney, B. H. 1981. Diversity and major events in the evolution of land plants. Pp. 193–230 in K. J. Niklas, ed. Paleobotany, paleoecology, and evolution. Praeger, New York.
- Webber, H. J. 1901. Spermatogenesis and fecundation of Zamia. Bull. US Dep. Agric. Bur. Plant Industry 2: 1–92.
- Zelditch, M. L., and W. L. Fink. 1996. Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiology 22: 241–254.
- Zimmer, E. A., R. K. Hamby, M. L. Arnold, D. A. LeBlanc, and E. C. Theriot. 1989. Ribosomal RNA phylogenies and flowering plant evolution. Pp. 205–214 in B. Fernholm, K. Bremer and H. Jornvall, eds. The hierarchy of life. Elsevier, Amsterdam.