SPECIATIONAL HISTORY IN A DIVERSE CLADE OF HABITAT-SPECIALIZED SPIDERS (ARANEAE: NESTICIDAE: NESTICUS): INFERENCES FROM GEOGRAPHIC-BASED SAMPLING
Marshal C. Hedin
Department of Biology, Washington University, Saint Louis, Missouri, 63130-4899
Present address: Department of Ecology and Evolutionary Biology, University of Arizona, Biological Sciences West, Room 310, Tucson, Arizona 85721; E-mail: [email protected].Search for more papers by this authorMarshal C. Hedin
Department of Biology, Washington University, Saint Louis, Missouri, 63130-4899
Present address: Department of Ecology and Evolutionary Biology, University of Arizona, Biological Sciences West, Room 310, Tucson, Arizona 85721; E-mail: [email protected].Search for more papers by this authorAbstract
This paper summarizes the results of an initial effort to reconstruct the speciational history of cave spiders (Nesticus) from the southern Appalachian Mountains of eastern North America. The Appalachian Nesticus fauna includes a large series of about 30 species distributed across islandlike cave and montane habitats. Many of the species are geographically restricted; all of the species are found in allopatry. Observed patterns of morphological variation and biogeographic evidence suggest that species diversification in this lineage may have occurred recently, perhaps in response to Pleistocene climatic fluctuations. To address questions about the spatial and temporal dynamics of Nesticus speciation, while accounting for potential phylogenetic difficulties, I have gathered nuclear and mitochondrial DNA sequences for a sample of individuals from 81 populations representing 28 Nesticus species. Analyses of these data indicate that considerable genetic divergence exists within and among currently recognized morphological species. Consistent with relatively deep species divergences, most of which likely predate the Pleistocene, is a prevailing pattern of phylogenetic concordance between taxonomic species and monophyletic gene tree lineages. The few deviations from monophyly detected can be tentatively attributed to a peripatric mode of speciation. Although species limits as inferred by the molecular data are generally concordant with patterns of morphological continuity and discontinuity in genitalia, there is evidence to suggest that cryptic phylogenetic lineages exist within some morphologically continuous units. This observation, in combination with the general depth of species lineages, makes any argument about rapid evolution in Nesticus genitalic characteristics unnecessary.
Literature Cited
- Avise, J. 1994. Molecular markers, natural history and evolution. Chapman and Hall, New York.
- Avise, J. C., J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb and N. C. Saunders. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18: 489–522.
10.1146/annurev.es.18.110187.002421 Google Scholar
- Barr, T. C., Jr. 1985. Pattern and process in speciation of trechine beetles in eastern North America (Coleoptera: Carabidae: Trechinae). Pp. 350–407 in G. E. Ball, ed. Taxonomy, phylogeny and zoogeography of beetles and ants. Dr. W. Junk Publishers, Dordrecht, The Netherlands.
- Boyce, T. M., M. E. Zwick, and C. F. Aquadro. 1994. Mitochondrial DNA in bark weevils: Phylogeny and evolution in the Pissodes strobi species group (Coleoptera: Curculionidae). Mol. Biol. Evol. 11: 183–194.
- Brower, A. V. Z. 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Nat. Acad. Sci. USA 91: 6491–6495.
- Brown, J. M., O. Pellmyr, J. N. Thompson, and R. G. Harrison. 1994. Phylogeny of Greya (Lepidoptera: Prodoxidae), based on nucleotide sequence variation in mitochondrial cytochrome oxidase I and II. Congruence with morphological data. Mol. Biol. Evol. 11: 128–141.
- Brown, J. M., W. G. Abrahamson, and P. A. Way. 1996. Mitochondrial DNA phylogeography of host races of the Goldenrod ball gallmaker, Eurosta solidaginis (Diptera: Tephritidae). Evolution 50: 777–786.
- Coddington, J. A., and H. W. Levi. 1991. Systematics and evolution of spiders (Araneae). Annu. Rev. Ecol. Syst. 22: 565–592.
- Coyle, F. A., and A. C. McGarity. 1992. Two new species of Nesticus spiders from the southern Appalachians (Araneae, Nesticidae). J. Arachnol. 19: 161–168.
- Crandall, K. A. 1994. Intraspecific cladogram estimation: accuracy at higher levels of divergence. Syst. Biol. 43: 222–235.
- Crandall, K. A., and J. F. Fitzpatrick Jr. 1996. Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Syst. Biol. 45: 1–26.
- Crandall, K. A., and A. R. Templeton. 1993. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134: 959–969.
- DeSalle, R., T. Freedman, E. M. Prager, and A. C. Wilson. 1987. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J. Mol. Evol. 26: 157–164.
- Eberhard, W. G. 1983. Why are genitalia good species characters? Pp. 53–59 in W. G. Eberhard, Y. D. Lubin, and B. C. Robinson eds. Proceedings of the ninth international congress of arachnology, Panama. Smithsonian Institution Press, Washington DC.
- Eberhard, W. G. 1985. Sexual selection and animal genitalia. Harvard Univ. Press, Cambridge, MA.
10.4159/harvard.9780674330702 Google Scholar
- Eberhard, W. G. 1996. Female control: sexual selection by cryptic female choice. Princeton Univ. Press, Princeton, NJ.
10.1515/9780691207209 Google Scholar
- Endler, J. A. 1977. Geographic variation, speciation, and clines. Princeton Univ. Press, Princeton, NJ.
- Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.
- Funk, D. J., D. J. Futuyma, G. Ortí, and A. Meyer. 1995a. A history of host associations and evolutionary diversification for Ophraella (Coleoptera: Chrysomelidae): new evidence from mitochondrial DNA. Evolution 49: 1008–1017.
- Funk, D. J., D. J. Futuyma, G. Ortí, and A. Meyer. 1995b. Mitochondrial DNA sequences and multiple data sets: a phylogenetic study of phytophagous beetles (Chrysomelidae: Ophraella). Mol. Biol. Evol. 12: 627–640.
- Gertsch, W. J. 1984. The spider family Nesticidae (Araneae) in North America, Central America, and the West Indies. Tex. Mem. Mus. Bull. 31: 1–91.
- Gillespie, R. G., H. B. Croom, and S. R. Palumbi. 1994. Multiple origins of a spider radiation in Hawaii. Proc. Nat. Acad. Sci. USA 91: 2290–2294.
- Harrison, R. G. 1991. Molecular changes at speciation. Annu. Rev. Ecol. Syst. 22: 281–308.
- Hedin, M. C. 1997. Molecular phylogenetics at the population/species interface in cave spiders of the southern Appalachians (Araneae: Nesticidae: Nesticus). Mol. Biol. Evol. 14: 309–324.
- Hein, J. 1989. A new method that simultaneously aligns and reconstructs ancestral sequences for any number of homologous sequences, when the phylogeny is given. Mol. Biol. Evol. 6: 649–668.
- Hey, J., and R. M. Kliman. 1993. Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol. Biol. Evol. 10: 804–822.
- Higgins, D. G., and P. M. Sharp. 1988. Clustal: A package for performing multiple sequence alignment on a microcomputer. Gene 73: 237–244.
- Higgins, D. G., and P. M. Sharp. 1989. Fast and sensitive multiple sequence alignments on a microcomputer. Cabios 5: 151–153.
- Highton, R. 1995. Speciation in eastern North American salamanders of the genus Plethodon. Annu. Rev. Ecol. Syst. 26: 579–600.
- Hoelzer, G. A., M. A. Hoelzer, and D. J. Melnick. 1992. The evolutionary history of the sinica-group of Macaque monkeys as revealed by mtDNA restriction site analysis. Mol. Phylogenet. Evol. 1: 215–222.
- Holsinger, J. R. 1988. Troglobites: the evolution of cave-dwelling organisms. Am. Sci. 76: 147–153.
- Holsinger, J. R., and D. C. Culver. 1985. The invertebrate cave fauna of Virginia and a part of eastern Tennessee: zoogeography and ecology. Brimleyana 13: 1–162.
- Huber, B. A. 1993. Genital mechanics and sexual selection in the spider Nesticus cellanus (Araneae: Nesticidae). Can. J. Zool. 71: 2437–2447.
- Kane, T. C., T. C. Barr Jr., and G. E. Stratton. 1990. Genetic patterns and population structure in Appalachian Trechus of the vandykei group (Coleoptera: Carabidae). Brimleyana 16: 133–150.
- Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.
- Knox, E. B., and J. D. Palmer. 1995. Chloroplast DNA variation and the recent radiation of the giant senecios (Asteraceae) on the tall mountains of eastern Africa. Proc. Nat. Acad. Sci. USA 92: 10349–10353.
- Kumar, S., K. Tamura, and M. Nei. 1993. MEGA: molecular evolutionary genetics analysis. Vers. 1.0. Pennsylvania State Univ., University Park.
- Larson, A. 1984. Neontological inferences of evolutionary pattern and process in the salamander family Plethodontidae. Pp. 119–217 in M. K. Hecht, B. Wallace, and G. T. Prance, eds. Evolutionary biology. Plenum Press, New York.
10.1007/978-1-4615-6974-9_4 Google Scholar
- Lynch, M. 1990. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Nat. 136: 727–741.
- Maddison, W. P., and D. R. Maddison. 1992. MacClade: analysis of phylogeny and character evolution. Vers. 3.0. Sinauer, Sunderland, MA.
- Mayr, E. 1942. Systematics and the origin of species. Columbia Univ. Press, New York.
- Melnick, D. J., G. A. Hoelzer, R. Absher and M. V. Ashley. 1993. mtDNA diversity in Rhesus monkeys reveals overestimates of divergence time and paraphyly with neighboring species. Mol. Biol. Evol. 10: 282–295.
- Neigel, J. E., and J. C. Avise. 1986. Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. Pp. 515–534 in S. Karlin and E. Nevo, eds. Evolutionary processes and theory. Academic Press, New York.
10.1016/B978-0-12-398760-0.50026-2 Google Scholar
- Page, R. D. M. 1993. Genes, organisms, and areas: the problem of multiple lineages. Syst. Biol. 42: 77–84.
- Pamilo, P., and M. Nei. 1988. Relationships between gene trees and species trees. Mol. Biol. Evol. 5: 568–583.
- Pashley, D. P., and L. D. Ke. 1992. Sequence evolution in mitochondrial ribosomal and ND-1 genes in Lepidoptera: implications for phylogenetic analyses. Mol. Biol. Evol. 9: 1061–1075.
- Patton, J. L., and M. F. Smith. 1994. Paraphyly, polyphyly, and the nature of species boundaries in pocket gophers (genus Thomomys). Syst. Biol. 43: 11–26.
- Peck, S. B. 1981. The geological, geographical, and environmental setting of cave faunal evolution. Pp. 501–502 in Proceedings eighth international congress speleology, Bowling Green, KY.
- Riddle, B. R. 1996. The molecular phylogeographic bridge between deep and shallow history in continental biotas. Trends Ecol. Evol. 11: 207–211.
- Shaw, K. L. 1996. Sequential radiation and patterns of speciation in the Hawaiian cricket genus Laupala inferred from DNA sequences. Evolution 50: 237–255.
- Sperling, F. A. H., and D. A. Hickey. 1994. Mitochondrial DNA sequence variation in the spruce budworm species complex (Choristoneura: Lepidoptera). Mol. Biol. Evol. 11: 656–665.
- Swofford, D. 1993. PAUP: Phylogenetic analysis using parsimony. Vers. 3.1. Illinois Natural History Survey, Champaign.
- Takahata, N. 1989. Gene genealogy in three related populations: consistency probability between gene and population trees. Genetics 122: 957–966.
- Templeton, A. R. 1987. Genetic systems and evolutionary rates. Pp. 218–234 in S. W. Campbell and M. F. Day, eds. Rates of evolution. Allen and Unwin, London.
- Templeton, A. R. 1993. The “Eve” hypothesis: a genetic critique and reanalysis. Am. Anthropol. 95: 51–72.
- Templeton, A. R. 1994. The role of molecular genetics in speciation studies. Pp. 455–477 in B. Schierwater, B. Streit, G. P. Wagner, and R. DeSalle, eds. Molecular ecology and evolution: approaches and applications. Birkhauser Verlag, Basel, Switzerland.
10.1007/978-3-0348-7527-1_26 Google Scholar
- Templeton, A. R., K. A. Crandall, and C. F. Sing. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619–633.
- Vogler, A. P., R. DeSalle, T. Assmann, C. B. Knisley, and T. D. Schultz. 1993. Molecular population genetics of the endangered tiger beetle Cicindela dorsalis (Coleptera: Cicindelidae). Ann. Entomol. Soc. Am. 86: 142–152.
- Vrba, E. S. 1995. Species as habitat-specific, complex systems. Pp. 3–44 in D. M. Lambert and H. G. Spencer, eds. Speciation and the recognition concept. John Hopkins Univ. Press, Baltimore, MD.
- Wang, R.-L., and J. Hey. 1996. The speciation history of Drosophila pseudoobscura and close relatives: inferences from DNA sequence variation at the Period locus. Genetics 144: 1113–1126.
- White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315–322 in M. Innis, D. Gelfand, J. Swinsky, and T. White, eds. PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA.
- Wolfram, S. 1991. Mathematica. Vers. 2.2. Addison-Wesley, Redwood City, CA.