THE MAINTENANCE OF A CLINE IN THE MARINE SNAIL LITTORINA SAXATILIS: THE ROLE OF HOME SITE ADVANTAGE AND HYBRID FITNESS
Emilio Rolán-Alvarez
Departamento de Biología Fundamental, Universidad de Vigo, 36200, Vigo, Spain
Search for more papers by this authorKerstin Johannesson
Tjärnö Marine Biological Laboratory, S-452 96, Strömstad, Sweden
Search for more papers by this authorJohan Erlandsson
Tjärnö Marine Biological Laboratory, S-452 96, Strömstad, Sweden
Search for more papers by this authorEmilio Rolán-Alvarez
Departamento de Biología Fundamental, Universidad de Vigo, 36200, Vigo, Spain
Search for more papers by this authorKerstin Johannesson
Tjärnö Marine Biological Laboratory, S-452 96, Strömstad, Sweden
Search for more papers by this authorJohan Erlandsson
Tjärnö Marine Biological Laboratory, S-452 96, Strömstad, Sweden
Search for more papers by this authorAbstract
Steep clinal transitions in one or several inherited characters between genetically distinct populations are usually referred to as hybrid zones. Essentially two different mechanisms may maintain steep genetic clines. Either selection acts against hybrids that are unfit over the entire zone due to their mixed genetic origin (endogenous selection), or hybrids and parental types attain different fitness values in different parts of the cline (exogenous selection). Survival rate estimates of hybrids and parental forms in different regions of the cline may be used to distinguish between these models to assess how the cline is maintained. We used reciprocal transplants to test the relative survival rates of two parental ecotypes and their hybrids over microscale hybrid zones in the direct-developing marine snail Littorina saxatilis (Olivi) on the rocky shores of Galicia, Spain. One of the parental forms occupies upper and the other lower shores, and the hybrids are found at various proportions (1–38%) along with both parental forms in a midshore zone a few meters wide. The survival rate over one month was 39-52% of the native ecotype on upper shores, but only 2-8% for the lower-shore ecotype. In contrast, only 4-8% of the upper-shore ecotype but 53% of large (> 6 mm) and 8% of small (3-6 mm) native lower-shore ecotype survived in the lower shores. In the midshores, both the two parental ecotypes and the hybrids survived about equally well. Thus there is a considerable advantage for the native ecotypes in the upper and lower shores, while in the hybrid zone none of the morphs, hybrids included, are favored. This indicates that the dimorphism of L. saxatilis is maintained by steep cross-shore selection gradients, thus supporting the selection-gradient model of hybrid zones. We performed field and laboratory experiments that suggest physical factors and predation as important selective agents. Earlier studies indicate assortative mating between the two ecotypes in the midshore. This is unexpected in a hybrid zone maintained by selection gradients, and it seems as if the reproductive barrier compresses the hybrid zone considerably.
Literature Cited
- Antonovics, J. 1971. The effects of a heterogeneous environment on the genetics of natural populations. Am. Sci. 59: 593–599.
- Appleton, R. D., and A. R. Palmer. 1988. Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proc. Nat. Acad. Sci. USA 85: 4387–4391.
- Arnold, M. L. 1992. Natural hybridization as an evolutionary process. Ann. Rev. Ecol. Syst. 23: 237–261.
- Arnold, M. L., and S. A. Hodges. 1995. Are natural hybrids fit or unfit relative to their parents? Trends Ecol. Evol. 10: 67–71.
- Barton, N. H., and G. M. Hewitt. 1985. Analysis of hybrid zones. Ann. Rev. Ecol. Syst. 16: 113–148.
- Barton, N. H., and G. M. Hewitt. 1989. Adaptation, speciation and hybrid zones. Nature 341: 497–503.
- Bert, T. M., and W. S. Arnold. 1995. An empirical test of predictions of two competing models for the maintenance and fate of hybrid zones: both models are supported in a hard-clam hybrid zone. Evolution 49: 276–289.
- Boulding, E. G. 1990. Are the opposing selection pressures on exposed and protected shores sufficient to maintain genetic differentiation between gastropod populations with high intermigration rates: Hydrobiologia 193: 41–52.
- Boulding, E. G., and K. L. Van Alstyne. 1993. Mechanisms of differential survival and growth of two species of Littorina on wave-exposed and on protected shores. J. Exp. Mar. Biol. Ecol. 169: 139–166.
- Butlin, R. K. 1987. Speciation by reinforcement. Trends Ecol. Evol. 2: 8–13.
- Butlin, R. K. 1989. Reinforcement of premating isolation. Pp. 158–179 in D. Otte and J. A. Endler, eds. Speciation and its consequences. Sinauer, Sunderland, MA.
- Butlin, R. K. 1995. Reinforcement: an idea evolving. Trends Ecol. Evol. 10: 432–434.
- Cook, L. M. 1971. Coefficients of natural selection. Hutchinson Univ. Library, London.
- Day, T., and D. Schulter. 1995. The fitness of hybrids. Trends Ecol. Evol. 10: 288.
- Denny, M. W. 1988. Biology and the mechanics of the wave-swept environment. Princeton Univ. Press, Princeton, NJ.
10.1515/9781400852888 Google Scholar
- Denny, M. W., T. L. Daniel, and M. A. R. Koehl. 1985. Mechanical limits to size in wave-swept organizisms. Ecol. Monogr. 55: 69–102.
- De Wolf, H., R. Medeiros, T. Backeljau, and R. Verhagen. In press. Microgeographical shell variation in Littorina striata, a planktonic developing periwinkle. Mar. Biol.
- Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia, PA.
10.1137/1.9781611970319 Google Scholar
- Elner, R. W., and D. G. Raffaelli. 1983. Interactions between two marine snails, Littorina rudis Maton and Littorina nigrolineata Grey, a predator, Carcinus maenas (L.) and a parasite, Microphallus similis Jägerskiold. J. Exp. Mar. Biol. Ecol. 43: 151–160.
- Endler, J. A. 1977. Geographic variation, speciation, and clines. Princeton Univ. Press, Princeton, NJ.
- Erlandsson, J., E. Rolán-Alvarez, and K. Johannesson. In press. Migratory differences between ecotypes of the snail Littorina saxatilis on Galician rocky shores. Evol. Ecol.
- Etter, R. J. 1989. Life history variation in the intertidal snail Nucella lapillus across a wave-exposure gradient. Ecology 70: 1857–1876.
- Fretter, V., and A. Graham. 1962. British prosobranch molluscs: their functional anatomy and ecology. Ray Society, London.
- García-Dorado, A. 1986. The effect of niche preference on polymorphism protection in a heterogeneous environment. Evolution 40: 936–945.
- Gibbs, P. E. 1993. Phenotypic changes in the progeny of Nucella lapillus (Gastropoda) transplanted from an exposed shore to sheltered inlets. J. Moll. Stud. 59: 187–194.
- Gurriarán, G., and M. G. Méndez. 1985. Crustáceos decápodos das costas de Galicia. I. Brachyura. Cuadernas da area de Ciencieas Biolóxicas 2. Publicación do Seminario de Estudios Galegos, La Coruña.
- Harrison, R. G. 1990. Hybrid zones: windows on evolutionary processes. Oxf. Surv. Evol. Biol. 7: 69–128.
- Harrison, R. G. 1993. Hybrids and hybrid zones: historical perspective. Pp. 3–12 in R. G. Harrison, ed. Hybrid zones and the evolutionary process. Oxford Univ. Press, Oxford.
10.1093/oso/9780195069174.003.0001 Google Scholar
- Hedrick, P. W. 1986. Genetic polymorphism in heterogeneous environments: a decade later. Ann. Rev. Ecol. Syst. 17: 535–566.
- Hedrick, P. W., M. E. Ginevan, and E. P. Ewing. 1976. Genetic polymorphism in heterogeneous environments. Ann. Rev. Ecol. Syst. 7: 1–32.
- Howard, D. J. 1993. Reinforcement: origin, dynamics, and fate of an evolutionary hypothesis. Pp. 46–69 in R. G. Harrison, ed. Hybrid zones and the evolutionary process. Oxford Univ. Press, Oxford.
- Janson, K. 1982. Genetic and environmental effects on the growth rate of Littorina saxatilis. Mar. Biol. 69: 73–78.
- Janson, K. 1983. Selection and migration in two distinct phynotypes of Littorina saxatilis in Sweden. Oecologia 59: 58–61.
- Janson, K., and P. Sundberg. 1983. Multivatiate morphometric analysis of two varieties of Littorina saxatilis from the Swedish west coast. Mar. Biol. 74: 49–53.
- Janson, K., and R. D. Ward. 1985. The taxonomic status of Littorina tenebrosa Montagu as assessed by morphological and genetic analyses. J. Conch. 32: 9–15.
- Johannesson, B. 1986. Shell morphology of Littorina saxatilis Olivi: the relative importance of physical factors and predation. J. Exp. Mar. Biol. Ecol. 102: 183–195.
- Johannesson, B., and K. Johannesson. 1990. Littorina neglecta Bean, a morphological form within the variable species Littorina saxatilis (Olivi)? Hydrobiologia 193: 71–87.
- Johannesson, B., and K. Johannesson. 1996. Population differences in behaviour and morphology in the snail Littorina saxatilis: phenotypic plasticity or genetic differentiation: J. Zool. Lond. 240: 475–493.
- Johannesson, K., B. Johannesson, and E. Rolán-Alvarez. 1993. Morphological differentiation and genetic cohesiveness over a microenvironmental gradient in the marine snail Littorina saxatilis. Evolution 47: 1770–1787.
- Johannesson, K., R. Rolán-Alvarez, and A. Ekendahl. 1995. Incipient reproductive isolation between two sympatric morphs of the intertidal snail Littorina saxatilis. Evolution 49: 1180–1190.
- Johannesson, K., E. Rolán-Alvarez, and J. Erlandsson. 1997. Growth rate differences between upper and lower shore ecotypes of the marine snail Littorina saxatilis (Olivi) (Gastropoda). Biol. J. Linn. Soc. 61: 267–279.
- Kitching, J. A., L. Muntz, and F. J. Ebling. 1966. The ecology of Lough Ine. XV. The ecological significance of shell and body forms in Nucella. J. Anim. Ecol. 35: 113–126.
- Knoppien, P. 1985. Rare male mating advantage: a review. Biol. Rev. 60: 81–117.
- Kostylev, V., J. Erlandsson, and K. Johannesson. In press. Microdistribution of the polymorphic snail Littorina saxatilis (Olivi) in a patchy rocky shore habitat. Ophelia.
- McNeilly, T., and J. Antonovics. 1968. Evolution in closely adjacent plant populations. IV. Barriers to gene flow. Heredity 23: 205–218.
- Moore, W. S. 1977. An evaluation of narrow hybrid zones in vertebrates. Q. Rev. Biol. 52: 263–277.
- Moore, W. S., and D. B. Buchannan. 1985. Stability of the northern flicker hybrid zone. Evolution 39: 135–151.
- Moore, W. S., and J. T. Price. 1993. Nature of selection in the northern flicker hybrid zone and its implication for speciation theory. Pp. 196–225 in R. G. Harrison, ed. Hybrid zones and the evolutionary process. Oxford Univ. Press, Oxford.
- Otero-Schmitt, J., R. Cruz, C. García, and E. Rolán-Alvarez. 1997. Feeding strategy and habitat choice in Littorina saxatilis (Gastropoda: Prosobranchia) and their role in the origin and maintenance of a sympatric polymorphism. Ophelia 46: 205–216.
10.1080/00785326.1997.10432879 Google Scholar
- Palmer, A. R. 1990. Effect of crab effluent and scent of damaged conspecifics on feeding, growth, and shell morphology of the Atlantic dogwhelk Nucella lapillus (L.) Hydrobiologia 193: 155–182.
- Partridge, L. 1988. The rare-male effect: what is its evolutionary significance? Philos. Trans. R. Soc. Lond. B Biol. Sci. 319: 525–539.
- Raffaelli, D. 1982. Recent ecological research on some European species of Littorina. J. Moll. Stud. 48: 342–354.
- Raffaelli, D. G., and R. N. Hughes. 1978. The effects of crevice size and availability on populations of Littorina rudis and Littorina neritoides. J. Anim. Ecol. 47: 71–83.
- Reid, D. G. 1989. The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Philos. Trans. R. Soc. Lond. B Biol. Sci. 324: 1–110.
- Reid, D. G. 1996. Systematics and evolution of Littorina. Ray Society, London.
- Reimchen, T. E. 1981. Microgeographical variation in Littorina mariae Sacchi & Rastelli and a taxonomic consideration. J. Conch. 30: 341–350.
- Reimchen, T. E. 1982. Shell size divergence in Littorina mariae and L. obtusata and predation by crabs. Can. J. Zool. 60: 687–695.
- Rice, E. R. 1989. Analysing tables of statistical tests. Evolution 43: 223–225.
- Rolán-Alvarez, E., K. Johannesson, and A. Ekendahl. 1995. Frequency- and density-dependent sexual selection in natural populations of Galician Littorina saxatilis Olivi. Hydrobiologia 309: 167–172.
- Rolán-Alvarez, E., C. Zapata, and G. Alvarez. 1995. Multilocus heterozygosity and sexual selection in a natural population of the marine snail Littorina mariae (Gastropoda: Prosobranchia). Heredity 75: 17–25.
- Rolán-Alvarez, E., E. Rolan, and K. Johannesson. 1996. Diffferentiation in radular and embryonic characters, and further comments on gene flow, between two sympatric morphs of Littorina saxatilis (Olivi). Ophelia 45: 1–15.
10.1080/00785326.1996.10432459 Google Scholar
- Schulter, D., and L. M. Nagel. 1995. Parallel speciation by natural selection. Am. Nat. 146: 292–301.
- Shaw, D. D., A. D. Marchant, N. Contreras, M. L. Arnold, F. Groeters, and B. C. Kohlmann. 1993. Genomic and environmental determinants of a narrow hybrid zone: cause or coincidence. Pp. 165–195 in R. G. Harrison, ed. Hybrid zones and the evolutionary process. Oxford Univ. Press, Oxford.
- Slatkin, NM. 1973. Gene flow and selection in a cline. Genetics 75: 733–756.
- Spieth, H. T., and J. M. Ringo. 1983. Mating behavior and sexual isolation in Drosophila. Pp. 224–284 in M. Ashburner, H. L. Carson, and J. N. Thompson, eds. The genetics and biology of Drosophila. Academic Press, London.
- Struhsaker, J. W. 1968. Selection mechanisms associated with intraspecific shell variation in Littorina picta (Prosobranchia: Mesogastropoda). Evolution 22: 459–480.
- Trussell, G. C., A. S. Johnson, S. G. Rudolph, and E. S. Gilfillan. 1993. Resistance to dislodgement: habitat and size-specific differences in morphology and tenacity in an intertidal snail. Mar. Ecol. Prog. Ser. 100: 135–144.
- Vermeij, G. J. 1972. Intraspecific shore-level size gradients in intertidal molluscs. Ecology 53: 693–700.
- Vermeij, G. J. 1982. Gastropod shell form, breakage, and repair in relation to predation by the crab Calappa. Malacologia 23: 1–12.
- Ward, R. D. 1990. Biochemical genetic variation in the genus Littorina (Prosobranchia: Mollusca). Hydrobiologia 193: 53–69.
- Zaykin, D. V., and A. I. Pudovkin. 1993. Two programs to estimate significance of χ2 values using pseudo-probability tests. J. Hered. 84: 152.