RECENT EVOLUTION AND DIVERGENCE AMONG POPULATIONS OF A RARE MEXICAN ENDEMIC, CHIHUAHUA SPRUCE, FOLLOWING HOLOCENE CLIMATIC WARMING
F. Thomas Ledig
Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, 2480 Carson Road, Placerville, California, 95667
Search for more papers by this authorVirginia Jacob-Cervantes
Centro de Genetica Forestal, Universidad Autonoma Chapingo, Apartado Postal No. 37, Chapingo, México C.P., 56230 México
Search for more papers by this authorPaul D. Hodgskiss
Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, 2480 Carson Road, Placerville, California, 95667
Search for more papers by this authorTeobaldo Eguiluz-Piedra
Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, 2480 Carson Road, Placerville, California, 95667
Centro de Genetica Forestal, Universidad Autonoma Chapingo, Apartado Postal No. 37, Chapingo, México C.P., 56230 México
Search for more papers by this authorF. Thomas Ledig
Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, 2480 Carson Road, Placerville, California, 95667
Search for more papers by this authorVirginia Jacob-Cervantes
Centro de Genetica Forestal, Universidad Autonoma Chapingo, Apartado Postal No. 37, Chapingo, México C.P., 56230 México
Search for more papers by this authorPaul D. Hodgskiss
Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, 2480 Carson Road, Placerville, California, 95667
Search for more papers by this authorTeobaldo Eguiluz-Piedra
Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, 2480 Carson Road, Placerville, California, 95667
Centro de Genetica Forestal, Universidad Autonoma Chapingo, Apartado Postal No. 37, Chapingo, México C.P., 56230 México
Search for more papers by this authorAbstract
Fragmentation and reduction in population size are expected to reduce genetic diversity. However, examples from natural populations of forest trees are scarce. The range of Chihuahua spruce retreated northward and fragmented coincident with the warming climate that marked the early Holocene. The isolated populations vary from 15 to 2441 trees, which provided an opportunity to test whether census number is a good predictor of genetic diversity. Mean expected heterozygosity, He, based on 24 loci in 16 enzyme systems, was 0.093 for 10 sampled populations, which is within the range reported for conifers. However, estimates varied more than twofold among populations and He was closely related to the logarithm of the number of mature trees in the population (rHe,N = 0.93). Diversity among populations, FST, was 24.8% of the total diversity, which is higher than that observed in almost all conifer species studied. Nei's genetic distance, D, was not related to geographic distance between populations, and D̄ was 0.033, which is higher than estimates for most wide-ranging species. Most populations had excess homozygosity and the fixation index, FIS, was higher than that reported for all but one species of conifer. Nm, the number of migrants per generation, was 0.43 to 0.76, depending on estimation procedure, and is the smallest observed in conifers. The data suggest that populations of Chihuahua spruce have differentiated by drift and that they are effectively isolated. The results illustrate how a combination of paleontological observation and molecular markers can be used to illuminate recent evolutionary events. Multilocus estimates of outcrossing for two small populations were zero (complete selfing) and 0.153, respectively, which are in striking contrast to the near complete outcrossing observed in most conifers. The high fixation index and a high proportion of empty seeds (45%) suggest that inbreeding may be a serious problem for conservation of Chihuahua spruce.
Literature Cited
- Alden, J., and C. Loopstra. 1987. Genetic diversity and population structure of Picea glauca on an altitudinal gradient in interior Alaska. Can. J. For. Res. 17: 1519–1526.
- Allard, R. W., S. K. Jain, and P. L. Workman. 1968. The genetics of inbreeding populations. Adv. Genet. 14: 55–131.
- Barton, N. H., and M. Slatkin. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56: 409–415.
- Bergmann, F., and H.-R. Gregorius. 1979. Comparison of the genetic diversities of various populations of Norway spruce (Picea abies). Pp. 99–107 in D. Rudin, ed. Proceedings of the conference on biochemical genetics of forest trees, Umeå, Sweden 1978. Swedish Univ. of Agricultural Sciences, Umeå, Sweden.
- Bergmann, F., and W. Ruetz. 1991. Isozyme genetic variation and heterozygosity in random tree samples and selected orchard clones from the same Norway spruce populations. For. Ecol. Manag. 46: 39–47.
- Billington, H. L. 1991. Effect of population size on genetic variability in a dioecious conifer. Conserv. Biol. 5: 115–119.
- Bobrov, E. 1970. History and systematics of the genus Picea A. Dietr. Novosti Sistematiki Vysshikh Rastenii 7: 5–40 (in Russian).
- Boyle, T., C. Liengsiri, and C. Piewluang. 1990. Genetic structure of black spruce on two contrasting sites. Heredity 65: 393–399.
- Chaisurisri, K., J. B. Mitton, and Y. A. El-Kassaby. 1994. Variation in the mating system of Sitka spruce (Picea sitchensis): evidence for partial assortative mating. Am. J. Bot. 81: 1410–1415.
- Chakraborty, R., P. A. Fuerst, and M. Nei. 1980. Statistical studies on protein polymorphism in natural populations. III. Distribution of allele frequencies and the number of alleles per locus. Genetics 94: 1039–1063.
- Cheliak, W. M., J. A. Pitel, and G. Murray. 1985. Population structure and mating system of white spruce. Can. J. For. Res. 15: 301–308.
- Clisby, K. H., and P. B. Sears. 1955. Palynology in southern North America. Part III: Microfossil profiles under Mexico City correlated with the sedimentary profiles. Bull. Geol. Soc. Am. 66: 511–520.
- Conkle, M. T. 1981. Isozyme variation and linkage in six conifer species. Pp. 11–17 in M. T. Conkle, tech. coord. Proceedings of the symposium on isozymes of North American forest trees and forest insects, July 27, 1979, Berkeley, California. U.S. Forest Service General Technical Report PSW-49.
- Conkle, M. T., P. D. Hodgskiss, L. B. Nunnally, and S. C. Hunter. 1982. Starch gel electrophoresis of pine seed: a laboratory manual. U.S. Forest Service General Technical Report PSW-64.
- Crow, J. F., and M. Kimura. 1970. An introduction to population genetics theory. Harper and Row, New York.
10.1006/tpbi.1995.1025 Google Scholar
- Dallimore, W., and A. B. Jackson. 1923. A handbook of Coniferae including Ginkgoaceae. Edward Arnold and Company, London.
- Desponts, M., and J.-P. Simon. 1987. Structure et variabilité génétique de populations d'épinette noire (Picea mariana (Mill.) B.S.P.) dans la zone hémiarctique du Nouveau-Québec. Can. J. For. Res. 17: 1006–1012.
- El-Kassaby, Y. A. 1991. Genetic variation within and among conifer populations: review and evaluation of methods. Pp. 61–76 in S. Fineschi, M. E. Malvolti, F. Cannata, and H. H. Hattemer, eds. Biochemical markers in the population genetics of forest trees. SPB Academic Publishing, The Hague, The Netherlands.
- El-Kassaby, Y. A., and A. D. Yanchuk. 1994. Genetic diversity, differentiation, and inbreeding in Pacific yew from British Columbia. J. Hered. 85: 112–117.
10.1093/oxfordjournals.jhered.a111407 Google Scholar
- El-Kassaby, Y. A., A. M. K. Fashler, and O. Sziklai. 1984. Reproductive phenology and its impact on genetically improved seed production in a Douglas-fir seed orchard. Silvae Genet. 33: 120–125.
- Eriksson, G., A. Jonsson, and D. Lindgren. 1973. Flowering in a clone trial of Picea abies Karst. Stud. For. Suec. 110: 1–45.
- Everett, T. H. 1981. The New York Botanical Garden illustrated encyclopedia of horticulture. Vol. 9. Par-Py. Garland Publishing, New York.
- Flint, R.F. 1947. Glacial geology and the Pleistocene epoch. Wiley, New York.
- Franklin, E.C. 1970. Survey of mutant forms and inbreeding depression in species of the family Pinaceae. USDA Forest Service Research Paper SE-61.
- Giannini, R., M. Morgante, and G. G. Vendramin. 1991. Allozyme variation in Italian populations of Picea abies (L.) Karst. Silvae Genet. 40: 160–166.
- Goncharenko, G. G., and V. V. Potenko. 1991. The parameters of differentiation in Norway spruce (Picea abies (L.) Karst.) and Siberian spruce (Picea obovata Ledeb.) populations. Genetika 27: 79–92 (in Russian, English summary).
- Goncharenko, G. G., and V. V. Potenko. 1992. Genetic structure, variation, and differentiation of Sakhalin spruce (P. glehnii Mast.) on Sakhalin. Dokl. Akad. Nauk USSR 321: 606–611. Translated from Russian by Plenum Publishing, New York.
- Goncharenko, G. G., V. V. Potenko, N. Abdyganyev, and V. G. Krivko. 1991. The parameters of genetic diversity in natural populations of Tien-Shan spruce Picea schrenkiana Fisch. et Mey. Dokl. Akad. Nauk USSR 35: 740–744 (in Russian, English summary).
- Goncharenko, G. G., V. V. Potenko, and N. Abdyganyev. 1992. Variation and differentiation in natural populations of Tien-Shan spruce (Picea schrenkiana Fisch. et Mey.) Genetika 28: 83–96 (in Russian, English summary).
- Gordon, A. G. 1968. Ecology of Picea chihuahuana Martinez. Ecology 49: 880–896.
- Graham, A. 1993. Historical factors and biodiversity in Mexico. Pp. 109–127 in T. P. Ramamoorthy, R. Bye, A. Lot, and J. Fa, eds. Biological diversity of Mexico: origins and distribution. Oxford Univ. Press, New York.
- Griffin, A. R. 1984. Clonal variation in radiata pine seed orchards. II. Flowering phenology. Aust. For. Res. 12: 295–302.
- Guries, R. P., and F. T. Ledig. 1982. Genetic diversity and population structure in pitch pine (Pinus rigida Mill.). Evolution 36: 387–402.
- Hamrick, J. L., and M. J. W. Godt. 1996. Conservation genetics of endemic plant species. Pp. 281–304 in J. C. Avise and J. L. Hamrick, eds. Conservation genetics: case histories from nature. Chapman and Hall, New York.
10.1007/978-1-4757-2504-9_9 Google Scholar
- Heine, K., and D. Ohngemach. 1976. Die Pleistozän/Holozän-Grenze in Mexiko. Münstersche Forschungen zur Geologie und Paläontologie 38/39: 229–251.
- Innes, D. J., and G. G. Ringius. 1990. Mating system and genetic structure of two populations of white spruce (Picea glauca) in eastern Newfoundland. Can. J. Bot. 68: 1661–1666.
- Jackson, S. T. 1994. Pollen and spores in Quaternary lake sediments as sensors of vegetation composition: theoretical models and empirical evidence. Pp. 253–286 in A. Traverse, ed. Sedimentation of organic particles. Cambridge Univ. Press, Cambridge.
10.1017/CBO9780511524875.015 Google Scholar
- Jackson, S. T., and S. J. Smith. 1994. Pollen dispersal and representation on an isolated, forested plateau. New Phytol. 128: 181–193.
- King, J. N., B. P. Dancik, and N. K. Dhir. 1984. Genetic structure and mating system of white spruce (Picea glauca) in a seed production area. Can. J. For. Res. 14: 639–643.
- Knowles, P. 1985. Comparison of isozyme variation among natural stands and plantations: jack pine and black spruce. Can. J. For. Res. 15: 902–908.
- Konnert, M., and A. Franke. 1991. Die Fichte (Picea abies (L.) Karst.) im Schwarzwald: Genetische Differenzierung von Beständen. Allg. Forst Jagdztg. 162: 100–106.
- Krutovskii, K. V., and F. Bergmann. 1995. Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci. Heredity 74: 464–480.
- Kuittinen, H., and O. Savolainen. 1992. Picea omorika is a self-fertile but outcrossing conifer. Heredity 68: 183–187.
- Kuittinen, H., O. Muona, K. Kärkkäinen, and Ž Borzan. 1991. Serbian spruce, a narrow endemic, contains much genetic variation. Can. J. For. Res. 21: 363–367.
- Lagercrantz, U. and N. Ryman. 1990. Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution 44: 38–53.
- Lande, R. 1995. Mutation and conservation. Conserv. Biol. 9: 782–791.
- Ledig, F. T. 1986. Heterozygosity, heterosis, and fitness in outcrossing plants. Pp. 77–104 in M. E. Soulé, ed. Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, MA.
- Ledig, F. T. In press. Genetic variation in Pinus. In D. M. Richardson, ed. Ecology and biogeography of Pinus. Oxford Univ. Press, Oxford.
- Ledig, F. T., and M. T. Conkle. 1983. Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana Parry ex Carr). Evolution 37: 79–85.
- Lesica, P., and F. W. Allendorf. 1992. Are small populations of plants worth preserving? Conserv. Biol. 6: 135–139.
- Lesica, P., and F. W. Allendorf. 1995. When are peripheral populations valuable for conservation? Conserv. Biol. 9: 753–760.
- Levin, D. A. 1988. Consequences of stochastic elements in plant migration. Am. Nat. 132: 643–651.
- Lozano-García, M. S., B. Ortega-Guerrero, M. Caballero-Miranda, and J. Urrutia-Fucugauchi. 1993. Late Pleistocene and Holocene paleoenvironments of Chalco Lake, central Mexico. Quat. Res. 40: 332–342.
- Lundkvist, K., and D. Rudin. 1977. Genetic variation in eleven populations of Picea abies as determined by isozyme analysis. Hereditas 85: 67–74.
- Martínez, M. 1953. Las Pinaceas Mexicanas. Subsecretaría de Recursos Forestales y de Caza, Secretaría de Agricultura y Ganadería, México.
- McDonald, J. A. 1993. Phytogeography and history of the alpinesubalpine flora of northeastern Mexico. Pp. 681–703 in T. P. Ramamoorthy, R. Bye, A. Lot, and J. Fa, eds. Biological diversity of Mexico: origins and distribution. Oxford Univ. Press, New York.
- Morgante, M., and G. G. Vendramin. 1991. Genetic variation in Italian populations of Picea abies (L.) Karst. and Pinus leucodermis Ant. Pp. 205–227 in G. Müller-Starck and M. Ziehe, eds. Genetic variation in European populations of forest trees. J. D. Sauerländer's Verlag, Frankfurt, Germany.
- Müller-Starck, G. 1995. Genetic variation in high elevated populations of Norway spruce (Picea abies (L.) Karst.) in Switzerland. Silvae Genet. 44: 356–362.
- Muona, O., L. Paule, A. E. Szmidt, and K. Kärkkäinen. 1990. Mating system analysis in a central and northern European population of Picea abies. Scand. J. For. Res. 5: 97–102.
- Narváez F. R., J. C. Sánchez, and A. M. Olivas 1983. Distribución y población de Picea chihuahuana. Secretaría de Agricultura y Recursos Hidráulicos (SARH), Instituto Nacional de Investigaciones Forestales y Agropecuarias (INIFAP), Centro de Investigaciones Forestales Norte, Nota Técnica no. 6.
- Nei, M. 1972. Genetic distance between populations. Am. Nat. 106: 283–292.
- Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. 70: 3321–3323.
- O'Reilly, G. J., W. M. Parker, and W. M. Cheliak. 1985. Isozyme differentiation of upland and lowland Picea mariana stands in northern Ontario. Silvae Genet. 34: 214–221.
- Patterson, T. F. 1988. A new species of Picea (Pinaceae) from Nuevo Leon, Mexico. SIDA 13: 131–135.
- Paule, L., and D. Gömöry. 1993. Genetic structure of Norway spruce (Picea abies Karst.) populations from mountainous areas in Slovakia. Lesnictvi-Forestry 39: 10–13.
- Ritland, K. 1989. Correlated matings in the partial selfer Mimulus guttatus. Evolution 43: 848–859.
- Sánchez, C.J., and R. F. Narváez 1983. Picea chihuahuana Mrtz. Una conifera en peligro de extinctión. Secretaría de Agricultura y Recursos Hidráulicos (SARH), Instituto Nacional de Investigaciones Forestales y Agropecuarias (INIFAP), Centro de Investigaciones Forestales Norte, Nota Técnica no. 5.
- Schemske, D. W., and R. Lande. 1985. The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. Evolution 39: 41–52.
- Sears, P. B., and K. H. Clisby. 1955. Palynology in southern North America. Part IV: Pleistocene climate in Mexico. Bull. Geol. Soc. Am. 66: 521–530.
- Shea, K. L. 1987. Effects of population structure and cone production on outcrossing rates in Engelmann spruce and subalpine fir. Evolution 41: 124–136.
- Shea, K. L. 1990. Genetic variation between and within populations of Engelmann spruce and subalpine fir. Genome 33: 1–8.
- Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53–65.
- Slatkin, M., and N. H. Barton. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43: 1349–1368.
- Sproule, A. T., and B. P. Dancik. 1996. The mating system of black spruce in north-central Alberta, Canada. Silvae Genet. 45: 159–164.
- Swofford, D. L., and R. B. Selander. 1981. BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283.
- Szmidt, A. E. 1982. Genetic variation in isolated populations of stone pine (Pinus cembra L.). Silva Fenn. 16: 196–200.
- Taylor, R. J., and T. F. Patterson. 1980. Biosystematics of Mexican spruce species and populations. Taxon 29: 421–469.
- Vera, G. 1990. Algunas especies arboreas raras o amenazadas en México. Secretaría de Agricultura y Recursos Hidráulicos (SARH), Instituto Nacional de Investigaciones Forestales y Agropecuarias (INIFAP), México.
- Whalen, M. 1995. Winter: woman looking from the window at a spruce tree. Wilderness 59(212): 3.
- Wright, J. W. 1955. Species crossability in spruce in relation to distribution and taxonomy. For. Sci. 1: 319–349.
- Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.
- Wright, S. 1951. The genetical structure of populations. Ann. Eugen. 15: 323–354.
- Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395–420.
- Wright, S. 1969. Evolution and genetics of populations. Vol. 2. The theory of gene frequencies. Univ. of Chicago Press, Chicago.
- Yeh, F. C., and J. T. Arnott. 1986. Electrophoretic and morphological differentiation of Picea sitchensis, Picea glauca, and their hybrids. Can. J. For. Res. 16: 791–798.
- Yeh, EC. and Y.A. El-Kassaby. 1980. Enzyme variation in natural populations of Sitka spruce (Picea sitchensis). I. Genetic variation patterns among trees from 10 IUFRO provenances. Can. J. For. Res. 10: 415–422.
- Yeh, F. C., M. A. K. Khalil, Y. A. El-Kassaby, and D. C. Trust. 1986. Allozyme variation in Picea mariana from Newfoundland: genetic diversity, population structure, and analysis of differentiation. Can. J. For. Res. 16: 713–720.