WHY ARE CLUTCH SIZES MORE VARIABLE IN SOME SPECIES THAN IN OTHERS?
Richard Shine
Zoology Department, The University of Sydney, N.S.W., 2006 AUSTRALIA
Search for more papers by this authorAllen E. Greer
Australian Museum, 6–8 College Street, Sydney, N.S.W., 2000 AUSTRALIA
Search for more papers by this authorRichard Shine
Zoology Department, The University of Sydney, N.S.W., 2006 AUSTRALIA
Search for more papers by this authorAllen E. Greer
Australian Museum, 6–8 College Street, Sydney, N.S.W., 2000 AUSTRALIA
Search for more papers by this authorAbstract
Animal species differ in the variability of their clutch sizes, as well as in mean clutch sizes. This phenomenon is particularly obvious in lizards, where virtually invariant clutch sizes have evolved independently in at least 23 lineages in seven families. Reduced variance in clutch size may arise either as an adaptation (because females with less variable clutch sizes have higher fitness) or as an indirect by-product of selection on other life-history characteristics. Comparative data on Australian scincid lizards indicate that variance in clutch sizes is lowest among species with low mean clutch sizes, small body sizes and a low variance in body sizes of adult females. Phylogenetic analysis shows that evolutionary decreases in the variance of clutch size have accompanied decreases in mean clutch sizes and decreases in the variance of adult female body sizes. Tropical lizards may also exhibit lower variance in clutch size. Most of these characteristics are correlated in occurrence, and may be allometrically tied to small body size. Hence, low variance in clutch size may be a consequence of allometric effects on a correlated suite of life-history characteristics. Exceptions to the general patterns noted above—especially, lizard species with invariant clutch sizes but large body sizes—may be due to loss of genetic variance for clutch sizes in lineages that have passed through a “bottleneck” of small body sizes and hence, low variance in clutch sizes.
Literature Cited
- Anan'eva, N. B., and S. M. Shammakov. 1985. Ecologic strategies and relative clutch mass in some species of lizard fauna in the USSR. Sov. J. Ecol. (English translation) 16: 241–247.
- Andrews, R. 1982. Patterns of growth in reptiles, pp. 273–320. In C. Gans and F. H. Pough (eds.), Biology of the Reptilia, Volume 13. Academic Press, N.Y.
- Andrews, R., and A. S. Rand. 1974. Reproductive effort in anoline lizards. Ecology 55: 1317–1327.
- Arnold, E. N., and M. D. Gallagher. 1977. Reptiles and amphibians from the mountains of northern Oman with special reference to the Jebel Akhdar region. J. Oman Studies, Spec. Rept. 1975: 59–80.
- Barbault, R. 1975. Observations écologiques sur la reproduction des lézards tropicaux: Les strategies de ponte en foret et en savane. Bull. Soc. Zool. France 100: 153–167.
- Branch, B. 1988. Field Guide to the Snakes and Other Reptiles of Southern Africa. Struik, Cape Town, South Africa.
- Breder, C. M., Jr., and D. E. Rosen. 1966. Modes of Reproduction in Fishes. TFH Publications, Neptune City, NJ.
- Case, T. J. 1978. On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q. Rev. Biol. 53: 243–282.
- Cogger, H. G., R. Sadlier, and E. Cameron. 1983. The terrestrial reptiles of Australia's island territories. Special Publication, Australian National Parks and Wildlife Service, Canberra, A.C.T., Australia.
- Dell, J., and A. Chapman. 1977. Reptiles and frogs of Cockleshell Gully Reserve. Rec. W. A. Museum, Suppl. 4: 75–86.
- Duellman, W. E., and L. Trueb. 1986. Biology of Amphibians. McGraw-Hill, N.Y.
- Dunham, A. E., D. B. Miles, and D. N. Reznick. 1988. Life history patterns in squamate reptiles, pp. 441–522. In C. Gans and R. B. Huey (eds.), Biology of the Reptilia, Volume 16. Alan R. Liss Inc., N.Y.
- Etheridge, R., and K. De Queiroz. 1988. A phylogeny for the Iguanidae, pp. 283–367. In R. Estes and G. Pregill (eds.), Phylogenetic Relationships of the Lizard Families. Stanford Univ. Press, Stanford, CA.
- Fitch, H. S. 1970. Reproductive cycles in lizards and snakes. Univ. Kansas Mus. Nat. Hist., Misc. Publ. 52: 1–247.
- Fitch, H. S. 1985. Variation in clutch and litter size in New World reptiles. Univ. Kansas Mus. Nat. Hist., Misc. Publ. No. 76: 1–76.
- Frank, S. A., and M. Slatkin. 1990. Evolution in a variable environment. Am. Nat. 136: 244–260.
- Frost, D. R., and R. Etheridge. 1989. A phylogenetic analysis and taxonomy of iguanian lizards (Reptilia: Squamata). Univ. Kansas Sci. Publ., Misc. Publ. No. 81: 1–65.
- Gillespie, J. H. 1977. Natural selection for variance in offspring numbers: A new evolutionary principle. Am. Nat. 111: 1010–1014.
- Greer, A. E. 1968. Clutch size in the scincid genus Emoia. Copeia 1968: 417–418.
10.2307/1441777 Google Scholar
- Greer, A. E. 1974. The generic relationships of the scincid lizard genus Leiolopisma and its relatives. Aust. J. Zool. Suppl. Ser. 31: 1–69.
10.1071/AJZS031 Google Scholar
- Greer, A. E. 1977. On the adaptive significance of the loss of an oviduct in reptiles. Proc. Linn. Soc. N.S.W. 101: 242–249.
- Greer, A. E. 1982. A new species of Geomyersia (Scincidae) from the Admiralty Islands, with a summary of the genus. J. Herpetol. 16: 61–66.
- Greer, A. E. 1985. The relationships of the lizard genera Anelytropis and Dibamus. J. Herpetol. 19: 116–156.
- Greer, A. E. 1990. The Biology and Evolution of Australian Lizards. Surrey Beatty and Sons, Chipping Norton, N. S. W., Australia.
- Greer, A. E. 1991. Lankascincus, a new genus of scincid lizards from Sri Lanka, with descriptions of three new species. J. Herpetol. 25: 59–64.
- Greer, A. E., and B. Mys. 1987. Resurrection of Lipinia rouxi (Hediger, 1934) (Reptilia: Lacertilia: Scincidae), another skink to have lost the left oviduct. Amphibia-Reptilia 8: 417–418.
10.1163/156853887X00180 Google Scholar
- Huey, R. B., E. R. Pianka, M. E. Egan, and L. W. Coons. 1974. Ecological shifts in sympatry: Kalahari fossorial lizards (Typhlosaurus). Ecology 55: 304–316.
- James, C., and R. Shine. 1988. Life-history strategies of Australian lizards: A comparison between the tropics and the temperate zone. Oecologia 75: 307–316.
- Kaplan, R. H., and W. S. Cooper. 1984. The evolution of developmental plasticity in reproductive characteristics: An application of the “adaptive coin-flipping” principle. Am. Nat. 123: 393–410.
- Kluge, A. G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool., Univ. Michigan 173: 1–54.
- Kushlan, J. A. 1981. Egg cache of a Galapagos gecko. J. Herpetol. 15: 121–122.
- McFarland, W. N., F. H. Pough, T. J. Cade, and J. B. Heiser. 1985. Vertebrate Life. Edition. Collier Macmillan, N.Y.
- Minton, S. A. 1959. Observations on amphibians and reptiles of the Big Bend region of Texas. Southwest Nat. 3: 28–54.
10.2307/3669036 Google Scholar
- Murphy, G. 1968. Patterns in life history and the environment. Am. Nat. 102: 391–404.
- Nettman, H. K., and S. Rykena. 1985. Verhaltens- und fortpflanzungsbiologische Notizen uber kanarische und nordafrikanische Tarentola-Arten. Bonner Zool. Beitr. 36: 287–305.
- Noble, G. K., and G. C. Klingel. 1932. The reptiles of Great Inagua Island, British West Indies. Amer. Mus. Novit. No. 549: 1–25.
- Pagel, M. D., and P. H. Harvey. 1989. Comparative methods for examining adaptation depend on evolutionary models. Folia Primatol. 53: 203–220.
- Patchell, F. C., and R. Shine. 1986. Food habits and reproductive biology of the Australian legless lizards (Pygopodidae). Copeia 1986: 30–39.
- Pough, F. H. 1980. The advantages of ectothermy for tetrapods. Am. Nat. 115: 92–112.
- Rand, A. S. 1982. Clutch and egg size in Brazilian iguanid lizards. Herpetologica 38: 171–178.
- Salthe, S. N., and J. S. Mecham. 1974. Reproductive and courtship patterns, pp. 309–521. In B. Lofts (ed.), Physiology of the Amphibia, Vol. 2. Academic Press, N.Y.
10.1016/B978-0-12-455402-3.50010-3 Google Scholar
- Schwaner, T. D. 1980. Reproductive biology of lizards on the American Samoan islands. Occ. Paps. Univ. Kansas Mus. Nat. Hist. 86: 1–53.
- Sherbrooke, W. C. 1975. Reproductive cycle of a tropical teiid lizard, Neusticurus ecleopus Cope, in Peru. Biotropica 7: 194–207.
10.2307/2989623 Google Scholar
- Shine, R. 1978. Growth rates and sexual maturation in six species of Australian elapid snakes. Herpetologica 34: 73–79.
- Shine, R. 1991. Relative clutch mass and body volume in lizards and snakes: Is reproductive investment constrained or optimised? Evolution, In review.
- Smith, H., G. Sinelnick, J. D. Fawcett, and R. E. Jones. 1973. A survey of the chronology of ovulation in anoline lizard genera. Trans. Kansas Acad. Sci. 75: 107–120.
10.2307/3627160 Google Scholar
- Snedecor, G. W., and W. G. Cochran. 1980. Statistical Methods. 7th Edition. Iowa State Univ. Press, Ames.
- Stearns, S. C. 1976. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51: 3–47.
- Stearns, S. C., and J. C. Koella. 1986. The evolution of phenotypic plasticity in life-history traits: Predictions of reaction norms for age and size at maturity. Evolution 40: 893–914.
- Stebbins, R. C. 1954. Amphibians and Reptiles of Western North America. McGraw-Hill Book Co., Inc., N.Y., USA.
- Uzzell, T. M., Jr. 1966. Teiid lizards of the genus Neusticurus (Reptilia, Sauria). Bull. Am. Mus. Nat. Hist. 132: 277–328.
- Vitt, L. J. 1981. Lizard reproduction: Habitat specificity and constraints on relative clutch mass. Am. Nat. 117: 506–514.
- Vitt, L. J. 1982. Sexual dimorphism and reproduction in the microteiid lizard, Gymnopthalmus multiscutatus. J. Herpetol. 16: 325–329.
- Vitt, L. J. 1986. Reproductive tactics of sympatric gekkonid lizards with a comment on the evolutionary and ecological consequences of invariant clutch size. Copeia 1986: 773–786.
- Vitt, L. J., and H. J. Price. 1982. Ecological and evolutionary determinants of relative clutch mass in lizards. Herpetologica 38: 237–255.
- Werner, Y. L. 1972. Observations on eggs of eublepharid lizards, with comments on the evolution of the Gekkonidae. Zool. Meded. 47: 211–224.