THE EVOLUTIONARY ECOLOGY OF AN ANTIPREDATOR REACTION NORM: DAPHNIA PULEX AND CHAOBORUS AMERICANUS
Ken Parejko
Department of Biology, Saginaw Valley State University, University Center, MI, 48604 USA
Present address: Department of Biology, Winona State University, Winona, MN 55987 USA.Search for more papers by this authorStanley I. Dodson
Department of Zoology, University of Wisconsin, Madison, WI, 53706 USA
Search for more papers by this authorKen Parejko
Department of Biology, Saginaw Valley State University, University Center, MI, 48604 USA
Present address: Department of Biology, Winona State University, Winona, MN 55987 USA.Search for more papers by this authorStanley I. Dodson
Department of Zoology, University of Wisconsin, Madison, WI, 53706 USA
Search for more papers by this authorAbstract
Ponds containing the parthenogenetic zooplankter Daphnia pulex with and without chaoborid predators were sampled over the course of a season. A significant (P < 0.05) Spearman rank correlation was found between predator density and the expression of an antipredator defense (neckteeth) by the Daphnia. The reaction norms (percent induction of a single genotype versus predator density) of clones isolated from predator-free and predator-rich habitats were determined in a laboratory setting. There was a statistically significant different response among the six clones tested (P < 0.05). Clones isolated from chaoborid ponds showed significantly greater sensitivity to the presence of predator than clones from predator-free ponds (P < 0.05). In the laboratory, food levels under which prey were cultured affected induction of the antipredator response. Highest induction was found at the lowest food level used.
Literature Cited
- Black, A. R., and S. I. Dodson. 1990. Demographic costs of Chaoborus-induced phenotypic plasticity in Daphnia pulex. Oecologia 83: 117–122.
- Black, R. W., and L. B. Slobodkin. 1987. What is cyclomorphosis? Freshw. Biol. 18: 373–378.
- Bold, H. C., and M. J. Wynne. 1978. Introduction to the Algae: Structure and Reproduction. Prentice-Hall, Englewood Cliffs, NJ.
- Bradshaw, A. D. 1965. The evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115–155.
- Bull, J. J. 1987. Evolution of phenotypic variance. Evolution 41: 303–315.
- Carvalho, G. R. 1988. Differences in the frequency and fecundity of PGI-marked genotypes in a natural population of Daphnia magna Strauss. Funct. Ecol. 2: 453–462.
- Crease, T. J., Stanton, D. J., and P. D. N. Hebert. 1989. Polyphyletic origins of asexuality in Daphnia pulex. II. Mitochondrial-DNA variation. Evolution 43: 1016–1026.
- Crowl, T. A., and A. P. Covich. 1990. Predator-induced life-history shifts in a freshwater snail. Science 247: 949–951.
- DeMeester, L., and H. Dumont. 1988. The genetics of phototaxis in Daphnia magna: Existence of three phenotypes for vertical migration among parthenogenic females. Hydrobiology 162: 47–55.
- Dodson, S. I. 1972. Mortality in a population of Daphnia rosea. Ecology 53: 1011–1023.
- Dodson, S. I. 1974. Adaptive change in plankton morphology in response to size selective predation: A new hypothesis of cyclomorphosis. Limnol. Oceanogr. 19: 721–729.
- Dodson, S. I. 1988. The ecological role of chemical stimuli for the zooplankton: Predator-induced morphology in Daphnia. Oecologia 78: 361–367.
- Dodson, S. I. 1989. Predator-induced reaction norms. Bioscience 39: 447–452.
- Gilbert, J. J. 1966. Rotifer ecology and embryological induction. Science 151: 1234–1237.
- Havel, J. E. 1985. Cyclomorphosis of Daphnia pulex spined morphs. Limnol. Oceanogr. 30(4): 853–861.
- Havel, J. E. 1987. Predator-induced defenses: A review, pp. 263–278. In W. C. Kerfoot and A. Sih (eds.), Predation: Direct and Indirect Impacts on Aquatic Communities. Univ. Press of New England, Hanover, NH.
- Havel, J. E., and S. I. Dodson. 1984. Chaoborus predation on typical and spined morphs of Daphnia pulex: Behavioral observations. Limnol. Oceanogr. 29: 487–494.
- Havel, J. E., and S. I. Dodson. 1987. Reproductive costs of Chaoborus-induced polymorphism in Daphnia pulex. Hydrobiology 150: 273–281.
- Hebert, P. D. N., and T. Crease. 1983. Clonal diversity in populations of Daphnia pulex reproducing by obligate parthenogenesis. Heredity 51: 353–369.
- Hebert, P. D. N., R. D. Ward, and L. J. Weider. 1988. Clonal-diversity patterns and breeding-system variation in Daphnia pulex, an asexual-sexual complex. Evolution 42: 147–159.
- Jacobs, J. 1987. Cyclomorphosis in Daphnia. In Mem. D' Ist. Ital. Di Idrobiol, Vol. 45. Verbania Pallanza.
- Kaplan, R. H., and W. S. Cooper. 1984. The evolution of developmental plasticity in reproductive characteristics: An application of the “adaptive coin-flipping” principle. Am. Natur. 123(3): 393–410.
- Krueger, D. A., and S. I. Dodson. 1981. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. 26: 212–223.
- Lampert, W., and U. Schober. 1980. The importance of “threshold” food concentrations. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. Univ. Press of New England, Hanover, NH.
- Lively, C. M. 1986a. Canalization versus developmental conversion in a spatially variable environment. Am. Natur. 128: 561–572.
- Lively, C. M. 1986b. Predator-induced shell dimorphism in the acorn barnacle in Chthamalus anisopoma. Evolution 40: 232–242.
- Loaring, J. M., and P. D. N. Hebert. 1981. Ecological differences among clones of Daphnia pulex. Oecologia 51: 162–168.
- Lomnicki, A., 1988. Population Ecology of Individuals. Princeton Univ. Press, Princeton, NJ.
- Lynch, M. 1984. Spontaneous mutations for life-history characters in an obligate parthenogen. Evolution 39: 804–818.
- Lynch, M., and R. Ennis. 1983. Resource availability, maternal effects, and longevity. Exp. Gerontol. 18: 147–165.
- Lynch, M., Weider, L. J., and W. Lampert. 1986. Measurements of the carbon balance in Daphnia. Limnol. Oceanogr. 31: 17–33.
- MacArthur, R. 1965. Patterns of species diversity. Biol. Rev. 40: 510–533.
- Meyer, A. 1990. Ecological and evolutionary consequences of the trophic polymorphism in Cichlasoma citrinellum (Pisces: Cichlidae). Biol. J. Linn. Soc. 39: 279–299.
- Minitab. 1985. Release 5.1. Minitab, Inc., 3081 Enterprise Dr., State College, PA.
- Newman, R. A. 1989. Developmental plasticity of Schaphiapus conchii tadpoles in an unpredictable environment. Ecology 70: 1775–1787.
- Parejko, K. 1990. Predation by chaoborids on typical and spined Daphnia pulex. Freshw. Biol. 25: 211–217.
- Parejko, K., and S. I. Dodson. 1990a. Progress towards characterization of a predator/prey kairomone: Daphnia pulex and Chaoborus americanus. Hydrobiology 198: 51–59.
- Parejko, K., and S. I. Dodson. 1990b. Embryological aspects of induction in Daphnia pulex. Hydrobiology. In press.
- Perrin, N. 1988. Why are offspring born larger when it is colder? Phenotypic plasticity for offspring size in the cladoceran Simocephalus vetulus. Funct. Ecol. 2: 283–288.
- Riessen, H. P. 1990. Cost-benefit analysis of antipredator defenses in Daphnia pulex. 1990 Ann. Meeting of American Soc. Limnol. Oceanogr., Williamsburg, VA., Abstracts.
- Riessen, H. P., and W. Gary Sprules. 1990. Demographic costs of an antipredator defense in Daphnia pulex. Ecology 71(4): 1536–1546.
- Schlichting, C. D. 1986. The evolution of phenotypic plasticity in plants. Annu. Rev. Ecol. Syst. 17: 667–693.
- Schmalhausen, H. 1949. Factors of evolution. Blakiston, Philadelphia.
- Sokal, R. R., and F. J. Rohlf. 1981. Biometry, 2nd ed. W. H. Freeman, New York.
- Stearns, S. C. 1989. The evolutionary significance of phenotypic plasticity. Bioscience 39: 436–445.
- Stearns, S. C., and J. C. Koella. 1986. The evolution of phenotypic plasticity in life-history traits: Predictions of reaction norms for age and size at maturity. Evolution 40: 893–913.
- Tessier, A. J., and C. E. Goulden. 1982. Estimating food limitations in cladoceran populations. Limnol. Oceanogr. 27: 707–717.
- Threlkeld, S. T. 1979. Estimating cladoceran birth rates: The importance of egg mortality and the egg age distribution. Limnol. Oceanogr. 24: 601–612.
- Van Noordwijk, A. J., and M. Gebhardt. 1987. Reflections on the genetics of quantitative traits with continuous environmental variation, pp. 73–90. In V. Loeschcke (ed.), Genetic Constraints on Adaptive Evolution. Springer-Verlag, Berlin.
10.1007/978-3-642-72770-2_5 Google Scholar
- Weider, L. J. 1985. Spatial and temporal genetic heterogeneity in a natural Daphnia population. J. Plankt. Res. 7: 101–103.
- Weider, L. J., and P. D. Hebert. 1987. Ecological and physiological differentiation among low-Arctic clones of Daphnia pulex. Ecology 68: 188–198.
- West-Eberhard, M. J. 1989. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20: 249–278.
- Woltereck, R. 1909. Weitere experimentelle Untersuchungen uber Artveranderung, speziell uber das Wesen quantitativer Artunterschiede bei Daphniden. Verh. D. Tsch. Zool. Ges. 1909: 110–172.