PLASTICITY OF JAW AND SKULL MORPHOLOGY IN THE NEOTROPICAL CICHLIDS GEOPHAGUS BRASILIENSIS AND G. STEINDACHNERI
Peter H. Wimberger
Section of Ecology and Systematics, Corson Hall, Cornell University, Ithaca, NY, 14853 USA
Present address: Department of Biology, University of Michigan, Ann Arbor, MI 48109 USA.Search for more papers by this authorPeter H. Wimberger
Section of Ecology and Systematics, Corson Hall, Cornell University, Ithaca, NY, 14853 USA
Present address: Department of Biology, University of Michigan, Ann Arbor, MI 48109 USA.Search for more papers by this authorAbstract
I examined plasticity of jaw and skull morphology induced by feeding different diets in two species of the neotropical cichlid genus Geophagus. The two species possess different modes of development, which affect the size at which young begin feeding. I hypothesized that the difference in size at first feeding could lead to a difference in the amount of change inducible in the two species. The young of the substrate-spawning species, G. brasiliensis, which begin feeding at a smaller size, were predicted to be more plastic than those of the mouthbrooding species, G. steindachneri. The two diets used to induce differences were brine shrimp nauplii and chironomid larvae. Numerous measures of the jaw and skull differed significantly between groups fed the two diets but the amount of plasticity induced was small and would not present a problem for taxonomists. Contrary to my prediction, both the magnitude and pattern of plasticity induced in the two species was similar. Thus, mode of parental care and the size at which young begin feeding do not affect the degree of plasticity. Fish fed brine shrimp nauplii were longer in oral jaw region, but were shorter and shallower in the area behind the oral jaws. An additional group of G. brasiliensis was fed flake food to compare the results of this study to other studies. The differences in measures between fish fed brine shrimp diets and flake food diets were greater than those between fish fed brine shrimp and chironomid larvae. A possible role of plasticity for enhancing rather than retarding morphological evolution is discussed.
Literature Cited
- Anker, G. Ch. 1974. Morphology and kinetics of the stickleback, Gasterosteus aculeatus. Trans. Zool. Soc. (London) 32: 311–416.
10.1111/j.1096-3642.1974.tb00030.x Google Scholar
- Baldwin, J. M. 1902. Development and Evolution. McMillan, N.Y.
10.5962/bhl.title.26970 Google Scholar
- E. K. Balon (ed.). 1980. Charrs, salmonid fishes of the genus Salvelinus. Dr. W. Junk, The Hague, Netherlands.
- Barel, C. D. N. 1983. Towards a constructional morphology of cichlid fishes (Teleostei, Perciformes). Neth. J. Zool. 33: 357–424.
- Baumgartner, J. V., M. A. Bell, and P. H. Weinberg. 1988. Body form differences between the Enos Lake species pair of threespine sticklebacks (Gasterosteus aculeatus complex). Can. J. Zool. 66: 467–474.
- Behnke, R. J. 1980. A systematic review of the genus Salvelinus, pp. 440–479. In E. K. Balon (ed.), Charrs, Salmonid Fishes of the Genus Salvelinus. Dr. W. Junk, The Hague, Netherlands.
- Behnke, R. J. 1984. Organizing the diversity of the arctic charr complex, pp. 3–22. In L. Johnson and B. L. Burns (eds.), Biology of the Arctic Charr. Univ. of Manitoba Press, Winnipeg, Canada.
- Bentzen, P., and J. D. McPhail. 1984. Ecology and evolution of sympatric sticklebacks (Gasterosteus): Specialization for alternative trophic niches in the Enos Lake species pair. Can. J. Zool. 62: 2280–2286.
- Bentzen, P., M. S. Ridgway, and J. D. McPhail. 1984. Ecology and evolution of sympatric sticklebacks (Gasterosteus): Spatial segregation and seasonal habitat shifts in the Enos Lake species pair. Can. J. Zool 62: 2436–2439.
- Black, R. W. II, and L. B. Slobodkin. 1987. What is cyclomorphosis? Freshwater Biol. 18: 373–378.
- Bookstein, F. L., B. Chernoff, R. L. Elder, J. M. Humphries Jr., G. R. Smith, and R. E. Strauss. 1985. Morphometrics in Evolutionary Biology. Special Publication 15. The Academy of Natural Sciences of Philadelphia, PA.
- Bradshaw, A. D. 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115–155.
- Brooks, J. L. 1946. Cyclomorphosis in Daphnia. I. An analysis of D. retrocurva and D. galeata. Ecol. Monogr. 16: 409–447.
- Burnaby, T. P. 1966. Growth-invariant discriminant functions and generalized distances. Biometrics 22: 96–110.
- Cichoki, F. 1976. Cladistic history of cichlid fishes and reproductive strategies of the American genera Acarichthys, Biotodoma, and Geophagus. Ph.D. Diss., Univ. of Michigan, Ann Arbor, MI.
- Collins, J. P., and J. E. Cheek. 1983. Effect of food and density on development of typical and cannibalistic salamander larvae in Ambystoma tigrinum nebulosum. Am. Zool. 23: 77–84.
- Dodson, S. I. 1974. Adaptive changes in plankton morphology in response to size-selective predation: A new hypothesis of cyclomorphosis. Limnol. Oceanog. 15: 131–137.
10.4319/lo.1970.15.1.0131 Google Scholar
- Dunn, J. R. 1983. The utility of developmental osteology in taxonomic and systematic studies of teleost larvae: A review. NOAA Technical Report NMFS Circular 450.
- Ehlinger, T. J., and D. S. Wilson. 1988. Complex foraging polymorphism in bluegill sunfish. Proc. Nat. Acad. Sci. 85: 1878–1882.
- Falconer, D. S. 1981. An Introduction to Quantitative Genetics, Second Ed. Longman House, Essex, England.
- Fishelson, L. 1966. Untersuchungen zur vergleichenden Entwicklungsgeschichte der Gattung Tilapia (Cichlidae, Teleostei). Zool. Jb. Anat. Bd. 83: 571–656.
- Fryer, G. 1977. Evolution of species flocks of cichlid fishes in African Lakes. Z. Zool. Syst. Evolut. Forsch. 15: 141–165.
- Fryer, G., and T. D. Iles. 1972. The Cichlid Fishes of the Great Lakes of Africa. TFH Publications, Neptune City, NJ.
- Gause, 1947. Problems of evolution. Trans. Conn. Acad. Arts Sci. 37: 17–68.
- Gosse, J. P. 1976. Revision du genre Geophagus. Mem. Acad. R. Sci. Outre-Mer Cl. Sci. Nat. Med. N.S. 19: 172–213.
- Greenwood, P. H. 1965. Environmental effects on the pharyngeal mill of a cichlid fish, Astatoreochromis alluaudi and their taxonomic implications. Proc. Linn. Soc. Lond. 176: 1–10.
10.1111/j.1095-8312.1965.tb00932.x Google Scholar
- Grudzien, T. A., and B. J. Turner. 1984. Direct evidence that the Ilyodon morphs are a single biological species. Evolution 38: 402–407.
- Hinton, R. J., and J. A. McNamara, Jr. 1984. Effect of age on the adaptive response of the adult temporomandibular joint. Angle Orthodontist 54: 154–162.
- Hoogerhoud, R. J. C. 1986. Ecological morphology of some cichlid fishes. Ph.D. Diss., Leiden, The Netherlands.
- Hubbs, C. L., and K. F. Lagler. 1964. Fishes of the Great Lakes Region. Univ. of Michigan Press, Ann Arbor.
- James, F. C. 1983. Environmental component of morphological differentiation in birds. Science 221: 184–186.
- L. Johnson, and B. L. Burns (eds.). 1984. Biology of the arctic charr. Univ. of Manitoba Press, Winnipeg, Canada.
- Kornfield, I. L., D. C. Smith, P. S. Gagnon, and J. N. Taylor. 1982. The cichlid fish of Cuatro Cienegas, Mexico: Direct evidence of conspecificity among distinct trophic morphs. Evolution 36: 658–664.
- Lanyon, L. E. 1984. Functional strain as a determinant for bone remodeling. Calcif. Tissue Int. 36: S56–S61.
- Lanyon, L. E., and C. T. Rubin. 1985. Functional adaptation in skeletal structures, pp. 1–25. In M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake (eds.), Functional Vertebrate Morphology. Belknap Press, Cambridge, MA
10.4159/harvard.9780674184404.c1 Google Scholar
- Lauder, G. V. 1982. Historical biology and the problem of design. J. Theor. Biol. 97: 57–67.
- Lavelle, C. L. B. 1983. Study of mandibular shape in the mouse. Acta Anat. 117: 314–320.
- Lavin, P. A., and J. D. McPhail. 1985. The evolution of freshwater diversity in the threespine stickleback (Gasterosteus aculeatus): Site specific differentiation of trophic morphology. Can. J. Zool. 63: 2632–2638.
- Legler, J. M. 1981. The taxonomy, distribution, and ecology of Australian freshwater turtles (Testudines: Pleurodira: Chelidae). Nat. Geog. Soc. Res. Rep. 13: 391–404.
- Levins, R. F. 1968. Evolution in Changing Environments. Princeton Univ. Press, Princeton, NJ.
10.1515/9780691209418 Google Scholar
- Liem, K. F. 1980. Adaptive significance of intra- and interspecific differences in the feeding repertoires of cichlid fishes. Am. Zool. 20: 295–314.
- Livingstone, D. A. 1975. Late quaternary climatic change in Africa. Annu. Rev. Ecol. Syst. 6: 249–280.
- Lovell, T. 1989. Nutrition and Feeding of Fish. Van Nostrand Reinhold, N.Y.
10.1007/978-1-4757-1174-5 Google Scholar
- Lowe-McConnell, R. 1959. Breeding behavior patterns and ecological differences between Tilapia species and their significance for evolution within the genus Tilapia (Pisces: Cichlidae). Proc. Zool. Soc. Lond. 132: 1–30.
10.1111/j.1469-7998.1959.tb05510.x Google Scholar
- McKaye, K. R., and R. Marsh. 1983. Food switching by two specialized algae scraping cichlid fishes in Lake Malawi, Africa. Oecologia 56: 245–248.
- McPhail, J. D. 1984. Ecology and evolution of sympatric sticklebacks (Gasterosteus): Morphological and genetic evidence for a species pair in Enos Lake, British Columbia. Can. J. Zool. 62: 1402–1408.
- Meyer, A. 1987. Phenotypic plasticity and heterochrony in Cichlasoma managuense and their implications for speciation in cichlid fishes. Evolution 41: 1357–1369.
- Meyer, A. 1989. Cost of morphological specialization: Feeding performance of the two morphs in the trophically polymorphic cichlid fish, Cichlasoma citrinellum. Oecologia 80: 431–436.
- Meyer, A. 1990. Ecological and evolutionary consequences of the trophic polymorphism in Cichlasoma citrinellum (Pisces: Cichlidae). Biol. J. Linn. Soc. 39: 279–299.
- Meyer, A. In press. Trophic polymorphisms in cichlid fish: Do they represent intermediate steps during sympatric speciation and explain their adaptive radiation? In J. H. Schroder (ed.), New Trends in Ichthyology. Paul Parey, Berlin, Germany.
- Moss, M. L. 1961. Studies of the acellular bone of teleost fish. 1. Morphological and systematic variations. Acta Anat. 46: 343–362.
- Neter, J., W. Wasserman, and M. H. Kutner. 1985. Applied Linear Statistical Models. Richard D. Irwin, Inc., Homewood, IL.
- Nordeng, H. 1983. Solution to the “char” problem based on arctic char (Salvelinus alpinus) in Norway. Can. J. Fish. Aq. Sci. 40: 1372–1387.
- Parenti, L. R. 1986. The phylogenetic significance of bone types in euteleost fishes. Zool. J. Linn. Soc. 87: 37–51.
- Reist, J. R. 1986. An empirical evaluation of several univariate methods for size variation in morphometric data. Can. J. Zool. 63: 1429–1439.
- Ridley, M. 1983. The Explanation of Organic Diversity: The Comparative Method and Adaptations for Mating. Clarendon Press, Oxford, UK.
- Rohlf, F. J., and F. L. Bookstein. 1987. A comment on shearing as a method for “size correction.” Syst. Zool. 36: 356–367.
- SAS Institute. 1985. User's Guide. Statistics, Version 5 Ed. SAS Institute Inc., Cary, NC.
- Sage, R. D., and R. K. Selander. 1975. Trophic radiation through polymorphism in cichlid fishes. Proc. Nat. Acad. Sci. 72: 4669–4673.
- Schmalhausen, I. I. 1949. Factors of Evolution. The Blakiston Co., Philadelphia, PA.
- Scholz, C. A., and B. R. Rosendahl. 1988. Low lake stands in Lakes Malawi and Tanganyika, East Africa, delineated with multifold seismic data. Science 240: 1645–1648.
- Sire, J., A. Huysseune, and F. J. Meunier. 1990. Osteoclasts in teleost fish: Light and electron microscopical observations. Cell Tissue Res. 260: 85–94.
- Sokal, R. R., and F. J. Rohlf. 1981. Biometry. W.H. Freeman and Co., N.Y.
- Stearns, S. C. 1980. A new view of life-history evolution. Oikos 35: 266–281.
- Stearns, S. C. 1989. The evolutionary significance of phenotypic plasticity. BioScience 39: 436–445.
- Sultan, S. E. 1987. Evolutionary implications of phenotypic plasticity in plants. Evol. Biol. 21: 127–178.
- Taylor, W. R., and G. C. van Dyke. 1985. Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium 9: 107–119.
- Thorpe, R. S. 1975. Quantitative handling of characters useful in snake systematics with particular reference to intraspecific variation in the ringed snake Natrix natrix. Biol J. Linn. Soc. 7: 27–43.
- van der Meer, H. J., and G. Ch. Anker. 1984. Retinal resolving power and sensitivity of the photopic system in seven haplochromine species. Neth. J. Zool. 34: 197–209.
- Via, S., and R. Lande. 1985. Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39: 505–522.
- Waddington, C. H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563–565.
10.1038/150563a0 Google Scholar
- Waddington, C. H. 1975. The Evolution of an Evolutionist. Cornell Univ. Press, Ithaca, NY.
- Wainwright, P. C., C. W. Osenberg, and G. G. Mittelbach. 1991. Trophic polymorphism in the pumpkinseed sunfish (Lepomis gibbosus L.): Effects of environment on ontogeny. Func. Ecol. 5: 40–55.
- Webb, P. W. 1984. Body form, locomotion and foraging in aquatic animals. Am. Zool. 24: 107–120.
- Weihs, D., and P. W. Webb. 1983. Optimization of locomotion, pp. 339–371. In P. W. Webb and D. Weihs (eds.), Fish Biomechanics. F.A. Praeger Inc., N.Y.
- West-Eberhard, M. J. 1989. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20: 249–278.
- Westneat, M. W. 1990. Feeding mechanics of teleost fishes (Labridae; Perciformes): A test of four-bar linkage models. J. Morph. 205: 269–295.
- Wilkinson, L. 1987. SYSTAT: The System for Statistics. SYSTAT Inc., Evanston, IL.
- Williams, C. K., and R. J. Moore. 1989. Phenotypic adaptation and natural selection in the wild rabbit, Oryctolagus cuniculus, in Australia. J. Anim. Ecol. 58: 495–508.
- Wimberger, P. H. In press. Plasticity of fish body shape: The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biol. J. Linn. Soc.
- Witte, F. 1984. Consistency and functional significance of morphological differences between wild-caught and domestic Haplochromis squamipinnis. Neth. J. Zool. 34: 596–612.
- Wolff, J. D. 1892. Das Gesetz der Transformation der Knochen. A. Hirschwald, Berlin, Germany.
- Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.