Cellular Behaviour Modulated by Ions: Electrophysiological Implications
HANS MACHEMER
Arbeitsgruppe Zelluläre Erregungsphysiologie, Fakultaät für Biologie, Ruhr-Universität. D-4630 Bochum, Federal Republic of Germany
Search for more papers by this authorHANS MACHEMER
Arbeitsgruppe Zelluläre Erregungsphysiologie, Fakultaät für Biologie, Ruhr-Universität. D-4630 Bochum, Federal Republic of Germany
Search for more papers by this authorABSTRACT
. This essay considers the responses of Paramecium and other ciliates to the inorganic ion environment from an elec-trophysiological point of view. In reviewing data from published and unpublished sources it is shown that ions affect the cellular behaviour in multiple ways because the transmembrane potential can change due to the alteration of equilibrium potentials, ion conductances and surface charges of the membrane. Sensory input including effects from the ionic environment converge upon the membrane potential which has a temporal and spatial summing function. Hyperpolarizing and depolarizing potential shifts from the set point are near-simultaneously and omnidirectionally transmitted along the membrane including the ciliary boundaries. The membrane potential regulates ciliary motility via an intraciliary messenger, Ca2+, which can enter, and presumably leave, the cytosol directly adjacent to the ciliary motor. Integration of the responses of thousands of cilia occurs in accordance with the electrical and structural provisions of the cell. Potential-regulated motor and behavioural responses attenuate with time. This phenomenon, which has been loosely termed adaptation, has an electrophysiological basis in analogy to membrane accommodation following sustained stimulus input. The mechanisms of adaptation serve to restore, in principle, the membrane resting state and, thereby, the sensitivity to depolarizing and hyperpolarizing shifts of the membrane potential and the cell's responsiveness to environmental stimuli, respectively. For the inorganic ions involved in chemosensation the terms attractant and repellent are not applicable. They should be reserved to signalling substances which per se can define the behaviour of the cell.
LITERATURE CITED
- 1 Alverdes, F. 1923. Neue Bahnen in der Lehre vom Verhalten der niederen Organismen. Berlin, Julius Springer .
- 2 Armstrong, C. M. & Matteson, D. R. 1986. The role of calcium ions in the closing of K channels. J. Gen. Physiol, 87: 817–832.
- 3 Armstrong, C. M. & Taylor, S & R. 1980. Interaction of barium ions with potassium channels in squid giant axons. Biophys. J., 30: 473–488.
- 4 Ballanyi, K. & Deitmer, J. W. 1984. Concentration-dependent effects of Ba on action potentials and membrane currents in the ciliate Stylonychia. Comp. Biochem. Physiol., 78A: 575–581.
- 5 Bonini, N. M., Gustin, M. C. & Nelson, D. L. 1986. Regulation of ciliary motility by membrane potential in Paramecium: a role for cyclic AMP. Cell Motil. Cytoskel., 6: 256–272.
- 6 Brehm, P. & Eckert, R. 1978. Calcium entry leads to inactivation of calcium current in Paramecium. Science, 202: 1203–1205.
- 7 Brehm, P., Eckert, R. & Tillotson, D. 1980. Calcium-mediated inactivation of calcium current in Paramecium. J. Physiol., 306: 193–203.
- 8 De Peyer, J. E. & Deitmer, J. W. 1980. Divalent cations as charge carriers during two functionally different membrane currents in the ciliate Stylom-chia. J. Exp. Biol., 88: 73–89.
- 9 De Peyer, J. E. & Machemer, H. 1977. Membrane excitability in Stylonychia: properties of the two-peak regenerative Ca-response. J. Comp. Physiol., 121: 15–32.
- 10
De Peyer, J. E. &
Machemer, H.
1978. Hyperpolarizing and depolarizing mechanoreceptor potentials in Stylonychia.
J. Comp. Physiol., 127: 255–266.
10.1007/BF01350116 Google Scholar
- 11
De Peyer, J. E. &
Machemer, H.
1982a. Electromechanical coupling in cilia II. Effects of hyperpolarizing voltage steps.
Cell Motility, 2: 497–508.
10.1002/cm.970020508 Google Scholar
- 12
De Peyer, J. E. &
Machemer, H.
1982b. Electromechanical coupling in cilia I. Effects of depolarizing voltage steps.
Cell Motility, 2: 483–496.
10.1002/cm.970020507 Google Scholar
- 13 Deitmer, J. W. 1984. Evidence for two voltage-dependent calcium currents in the membrane of the ciliate Stylonychia. J. Physiol., 355: 137–159.
- 14 Deitmer, J. W. 1986. Voltage-dependence of two inward currents carried by calcium and barium in the ciliate Stylonychia. J. Physiol., 380: 551–574.
- 15 Dryl, S. 1961. The velocity of forward movement of Parame-cium caudatum in relation to pH of medium. Bull. Acad. Pol. Sci. Ser. Biol., 9: 71–74.
- 16 Dryi, S. & Grebecki, A. 1966. Progress in the study of excitation and response in ciliates. Protoplasma, 62: 255–284.
- 17 Eckert, R. 1972. Bioelectric control of ciliary activity. Scince, 176: 473–481.
- 18 Eckert, R. & Brehm, P. 1979. Ionic mechanisms of excitation in Paramecium. Ann. Rev. Biophys. Bioeng., 8: 353–383.
- 19 Eckert, R. & Chad, J. E. 1984. Inactivation of Ca channels. Prog. Biophys. Molec. Biol., 44: 215–267.
- 20 Endo, H. & Hiwatashi, K. 1981. Chemical induction of conjugation in K+-resistant mutants of Paramecium caudatum. Jpn. J. Genet., 56: 591.
- 21 Former, H. 1925. Über die Gesetzmäβigkeit der Wirkungen des osmotischen Druckes physiologisch indifferenter Lösungen auf ein-zellige, tierische Organisrmen. Biol. Zbl., 45: 417–446.
- 22 Fraenkel, G. S. and Gunn, D. L. 1961. The Orientation of Animals. Dover Publications, New York .
- 23 Hagiwara, S. & Byerli, L. 1981. Calcium channel. Annu. Rev. Neurosci., 4: 69–125.
- 24 Hansma, H. G. 1981. Evidence for a Ca-channel mutation in the K+-resistant mutants of Paramecium. J. Membr. Biol., 60: 257–264.
- 25 Hennessey, T. M. & Kung, C. 1985. Slow inactivation of the calcium current of Paramecium is dependent on voltage and not internal calcium. J. Physiol., 365: 165–179.
- 26 Hennessey, T. M., Machemer, H. & Nelson, D. L. 1985. Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization. Eur. J. Cell Biol., 36: 153–156.
- 27 Hermann, A. & Gorman, A. L. F. 1979. Blockade of voltage-dependent and Ca2+-dependent K+ current components by internal Ba2+ in molluscan pacemaker neurons. Experientia, 35: 229–231.
- 28 Hess, P. & Tsien, R. W. 1984. Mechanism of ion permeation through calcium channels. Nature, 309: 453–456.
- 29 Hildebrand, E. 1975. Bedeutung der Konkurrenz zwischen Calcium und anderen Kationen für die Steuerung der Leitfähigkeit sen-sorischer Membranen. Verh. Dtsch. Zool Ges., 1974: 24–28.
- 30 Hildebrand, E. 1978. Ciliary reversal in Paramecium: temperature dependence of K+-induced excitability decrease and of recovery. J Camp. Physiol., 127: 39–44.
- 31 Hildebrand, E. & Dryl, S. 1976. Significance of Ca2+ and K+ ions for the excitation of the protozoan membrane. Bioelectrochem. Bioenerg., 3: 543–544.
- 32 Hildebrand, E. & Dryl, S. 1983. Dependence of ciliary reversal in Paramecium on extracellular Ca2+ concentration. J. Comp. Physiol., 152: 385–394.
- 33 Hook, C & Hildebrand, E. 1980. Excitability of Paramecium and the significance of negative surface charges. A model analysis. J. Math. Biol., 9: 347–360.
- 34 Izumi, A. & Nakaoka, Y. 1987. cAMP-mediated inhibitory effect of calmodulin antagonists on ciliary reversal of Paramecium. Cell Motil Cytoskel., 7: 154–160.
- 35 Jahn, T. 1962. The mechanism of ciliary movement. II. Ion antagonism and ciliary reversal. J. Cell. Comp. Physiol., 60: 217–228.
- 36
Jennings, H. S.
1906. Behavior of the Lower Organisms. Co-lumbia University Press,
New York
.
10.1037/10817-000 Google Scholar
- 37 Kamada, T. & Kinosita, H. 1940. Calcium-potassium factor in ciliary reversal of Paramecium. Proc. Imp. Acad. Tokyo, 16: 125–130.
- 38 Kinosita, H., Dryl, S. & Naitoh, Y. 1964a. Relation between the magnitude of membrane potential and ciliary activity in Parame-cium. J. Fac. Sci. Univ. Tokyo, Sect. 4, 10: 303–309.
- 39 Kinosita, H., Dryl, S. & Naitoh, Y. 1964b. Spontaneous change in membrane potential of Paramecium caudatum induced by barium and calcium ions. Bull. Acad. Pol. Sci., 12: 459–461.
- 40 Kung, C. 1971. Genic mutants with altered system of excitation in Paramecium aurelia I. Phenotypes of the behavioral mutants. Z. Vergl. Physiol., 71: 142–164.
- 41 Kuznicki, L. 1966. Ciliary reversal in Paramecium in relation to external pH. Acta Protozool., 4: 257–261.
- 42 Machemer, H. 1972. Properties of polarized ciliary beat in Paramecium. Acta Protozool, 11: 295–300.
- 43 Machemer, H. 1974. Frequency and directional responses of cilia to membrane potential changes in Paramecium. J. Comp. Physiol., 92: 293–316.
- 44 Machemer, H. 1975. Modification of ciliary activity by the rate of membrane potential changes in Paramecium. J. Comp. Physiol., 101: 343–356.
- 45 Machemer, H. 1976. Interactions of membrane potential and cations in regulation of ciliary activity in Paramecium. J. Exp. Biol. 65: 427–448.
- 46 Machemer, H. 1986. Electromotor coupling in cilia. In: H. C. Lütt-gau (ed.), Membrane control of cellular activity. Fortschr. Zool./ Progr. Zool., 33: 205–250.
- 47 Machemer, H. 1987. Übungen zur Elektrophysiologie tierischer Zellen und Gewebe. Edition Medizin, VCH , Weinheim .
- 48 Machemer, H. 1988a. Electrophysiology. In: H. D. Görtz (ed.), Paramecium. Springer Verlag, Berlin , Heidelberg , New York , Tokyo , pp. 185–215.
- 49 Machemer, H. 1988b. Motor control of cilia. In: H. D. Görtz (ed.), Paramecium. Springer Verlag, Berlin , Heidelberg , New York , Tokyo , pp. 216–235.
- 50 Machemer, H. 1989. Bioelectric control of the ciliary cycle. In: M. Alt & G. Hoffmann (ed.), Biological Motion, Lecture Notes in Biomath. Springer Verlag, Berlin , Heidelberg , New York , London , Paris . Tokyo , Hong Kong . (in press).
- 51 Machemer, H. & De Peyer, J. E. 1977. Swimming sensory cells: electrical membrane parameters, receptor properties and motor control in ciliated protozoa. Verh. Dtsch. Zool. Ges., 1977: 86–110.
- 52
Machemer, H. &
De Peyer, J. E.
1982. Analysis of ciliary beating frequency under voltage-clamp control of the membrane.
Cell Motil. Suppl., 1: 205–210.
10.1002/cm.970020739 Google Scholar
- 53
Machemer, H. &
Deitmer, J. W.
1985. Mechanoreception in ciliates.
Progress in Sensory Physiology, Vol. 5. Springer Verlag,
Heidelberg
.
10.1007/978-3-642-70408-6_2 Google Scholar
- 54 Machemer, H. & Deitmer, J. W. 1987. From structure to behaviour Stylonychia as a model system for cellular physiology. In: J. O. Corliss & D. J. Patterson (ed.), Progress in Protistology, Vol. 2. Biopress, Bristol, pp. 213–330.
- 55 Machemer, H. & Eckert, R. 1975. Ciliary frequency and ori-entational responses to clamped voltage steps in Paramecium. J. Comp. Physiol., 104: 247–260.
- 56 Machemer, H. & Ogura, A. 1979. Ionic conductances of membranes in ciliated and deciliated Paramecium. J. Physiol., 296: 49–60.
- 57 Machemer, H. & Sugino, K. 1986. Parameters of the ciliary cycle under membrane voltage control. Cell Motil. Cytoskel., 6: 89–95.
- 58 Machemer, H. & Sugino, K. 1989. Electrophysiological control of ciliary beating: a basis of motile behaviour in ciliated protozoa. Comp. Biochem. Physiol. A (in press).
- 59 Machemer-Röhnisch, S. & Machemer, H. 1989. A Ca paradox electric and behavioural responses of Paramecium to changes in cation concentration of the medium. Eur. J. Proiistol., 25: 45–59.
- 60 Martinac, B. & Hildebrand, E. 1981. Electrically induced Ca2- transport across the membrane of Paramecium caudatum measured by means of flow-through technique. Biochem. Biophys. Acta, 649: 244–252.
- 61
McLaughlin, S.
1976. Electrostatic potentials at membrane-solution interfaces.
Curr. Top Membr. Transp., 9: 71–144.
10.1016/S0070-2161(08)60677-2 Google Scholar
- 62 McLaughlin, S.G. A., Szabo, G. & Eisenman, G. 1971. Divalenions and the surface potential of charged phospholpid membranes. J Gen. Physiol., 58: 667–687.
- 63 Meech, R. W. 1978. Calcium-dependent potassium activation in nervous tissues. Annu. Rev. Biophys. Bioeng., 7: 1–18.
- 64 Murakami, A. 1983. Control of ciliary beat frequency in Myt-ilus. J. Submicrosc. Cytol., 15: 313–316.
- 65 Murakami, A. 1987. Control of ciliary beat frequency in the gill of Mytilus-I. Activation of the lateral cilia by cyclic AMP. Comp. Biochem. Physiol, 86C: 273–279.
- 66 Naitoh, Y. 1968. Ionic control of the reversal response of cilia in Paramecium caudatum. A calcium hypothesis. J. Gen. Physiol., 51: 85–103.
- 67 Naitoh, Y. 1982. Protozoa. In: G. A. B. Shelton (ed.), Electrical Conduction and Behaviour in 'Simple' Invertebrates. Clarendon Press, Oxford , pp. 1–48.
- 68
Naitoh, Y.
1984. Mechanosensory transduction in protozoa. In: G. Colombetti &
F. Lenci (ed.), Membranes and Sensory Transduction. Plenum,
New York
,
London
, pp.
113–135.
10.1007/978-1-4613-2675-5_3 Google Scholar
- 69 Naitoh, Y. & Eekert, R. 1968a. Electrical properties of Paramecium caudatum: modification by bound and free cations. Z. Vergl. Physiol, 61: 427–452.
- 70 Naitoh, Y. & Eckert, R. 1968b. Electrical properties of Paramecium caudatum: all-or-none electrogenesis. Z. Vergl. Physiol., 61: 453–472.
- 71 Naitoh, Y. & Kaneko, H. 1973. Control of ciliary activities by adenosinetriphosphate and divalent cations in Triton-extracted models of Paramecium caudatum. J. Exp. Biol., 58: 657–676.
- 72 Naitoh, Y. & Sugino, K. 1984. Ciliary movement and its control in Paramecium. J. Protozool., 31: 31–40.
- 73 Naitoh, Y. & Yasumasu, I. 1967. Binding of Ca ions by Paramecium caudatum. J. Gen. Physiol., 50: 1303–1310.
- 74 Naitoh, Y., Eckert, R. & Friedman, K. 1972. A regenerative Ca response in Paramecium. J. Exp. Biol., 56: 667–681.
- 75 Nakaoka, Y., Tanaka, H. & Oosawa, F. 1984. Ca2+-dependent regulation of beat frequency of cilia in Paramecium. J. Cell Sci., 65: 223–231.
- 76 Nakaoka, Y., Oka, T., Serizawa, K., Toyotama, H. & Oosawa, F. 1983. Acceleration of Paramecium swimming velocity by various cations. Cell Struct. Funct., 8: 77–84.
- 77 Nilius, B. 1988. Calcium block of guinea-pig heart sodium channels with and without modification by the piperazinylindole DPI 20–106. J. Physiol., 399: 537–558.
- 78 Ogura, A. & Machemer, H. 1980. Distribution of mechano-receptor channels in the Paramecium surface membrane. J. Comp. Physiol., 135: 233–242.
- 79 Oka, T., Nakaoka, Y. & Oosawa, F. 1986. Changes in membrane potential during adaptation to external potassium ions in Paramecium caudatum. J. Exp. Biol., 126: 111–117.
- 80 Pape, H. C. & Machemer, H. 1986. Electrical properties and membrane currents in the ciliate Didinium. J. Comp. Physiol., A 158: 111–124.
- 81 Parducz, B. 1959. Reizphysiologische Untersuchungen an Zi-liaten. VIII. Ablauf der Fluchtreaktion bei allsetiger und anhaltender Reizung. Ann. Hist. Nat. Mus. Natl. Hung., 51: 227–246.
- 82 Pernberg, J. & Machemer, H. 1989. Depolarization-induced membrane current components in Didinium. J. Comp. Physiol., A 164: 551–562.
- 83 Prod'hom, B., Pietrobon, D. & Hess, P. 1987. Direct measurement of proton transfer rates to a group controlling the dihydropyridine-sensitive Ca2+ channel. Nature, 329: 243–246.
- 84 Saimi, Y. & Kung, C. 1980. A Ca-induced Na+ current in Paramecium. J. Exp. Biol., 88: 305–325.
- 85 Saimi, Y. & Kung, C. 1987. Behavioral genetics of Paramecium. Annu. Rev. Genet., 21: 47–65.
- 86 Satow, Y. & Kung, C. 1976. A mutant of Paramecium with increased relative resting potassium permeability. J. Neurobiol., 7: 325–338.
- 87 Satow, Y. & Kung, C. 1979. Voltage-sensitive Ca-channels and the transient inward current in Paramecium tetraurelia. J. Exp. Biol., 78: 149–161.
- 88 Satow, Y. & Kung, C. 1980. Ca-induced K+ outward current in Paramecium tetraurelia. J. Exp. Biol., 88: 293–303.
- 89 Satow, Y. & Kung, C. 1981. Possible reduction of surface charge by a mutation in Paramecium tetmurelia. J. Membrane Biol., 59: 179–190.
- 90 Schein, S. J., Bennet, M. V. L. & Katz, G. M. 1976. Altered calcium conductance in pawns, behavioural mutants of Paramecium aurelia. J. Exp. Biol., 65: 699–724.
- 91 Schultz, J. E., Grünemund, R., von Hirschhausen, R. & Schdönefeld, U. 1984. Ionic regulation of cyclic AMP levels in Paramecium tetraurelia. FEBS Lett., 167: 113–116.
- 92 Schusterman, C. L., Thiede, E. W. & Kung, C. 1978. K+-resistant mutants and “adaptation” in Paramecium. Proc. Natl. Acad. Sci. USA, 75: 5645–5649.
- 93 Smith, R., Preston, R. R., Schulz, S., Gagnon, M. L. & Van Houten, J. 1987. Correlations between cyclic AMP binding and che-moreception in Paramecium. Biochim. Biophys. Acta, 928: 171–178.
- 94 Standen, N. B. & Stanfield, P. R. 1978. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. J. Physiol., 280: 169–191.
- 95 Sugino, K. & Machemer, H. 1988. The ciliary cycle during hyperpolarization-induced activity: an analysis of axonemal functional parameters. Cell Motil. Cytoskel., 11: 275–290.
- 96 Takahashi, M. 1988. Behavioral genetics in P. caudatum. In: H. D. Görtz (ed.), Paramecium. Springer Veriag, Berlin , Heidelberg , New York , Tokyo , pp. 271–281.
- 97 Umbach, J. A. 1982. Changes in intracellular pH affect calcium currents in Paramecium caudatum. Proc. R. Soc. Land. B. 216: 209–224.
- 98 Van Houten, J. 1977. A mutant of Paramecium defective in chemotaxis. Science 198: 746–748.
- 99
Van Houten, J.
1978. Two mechanisms of chemotaxis in Paramecium.
J. Comp. Physiol., 127: 167–174.
10.1007/BF01352301 Google Scholar
- 100 Van Houten, J. 1979. Membrane potential changes during chemokinesis in Paramecium. Science., 204: 1100–1103.
- 101 Van Houten, J. & Preston, R. R. 1988. Chemokinesis. In: H. D. Görtz (ed.), Paramecium. Springer Verlag, Berlin , Heidelberg . New York , Tokyo , pp. 282–300.
- 102
Van Houten, J. &
Van Houten, J.
1982. Computer simulation of Paramecium chemokinesis behavior.
J. Theor. Biol., 98: 453–468.
10.1016/0022-5193(82)90130-8 Google Scholar
- 103
Van Houten, J.,
Hansma, H. &
Kung, C, 1975. Two quanti-tative assays for chemotaxis in Paramecium.
J. Comp. Physiol. 104: 211–223.
10.1007/BF01379461 Google Scholar