Growth in vitro and Metabolism of Plasmodium vinckei chabaudi*
G. H. COOMBS
Biological Laboratory, University of Kent, Canterbury, Kent, CT2 7NJ, England
Dr. Coombs: Department of Zoology, University of Glasgow, Glasgow, G12 8QQ, Scotland.
Search for more papers by this authorCorresponding Author
W. E. GUTTERIDGE
Biological Laboratory, University of Kent, Canterbury, Kent, CT2 7NJ, England
Correspondence to Dr. Gutteridge.Search for more papers by this authorG. H. COOMBS
Biological Laboratory, University of Kent, Canterbury, Kent, CT2 7NJ, England
Dr. Coombs: Department of Zoology, University of Glasgow, Glasgow, G12 8QQ, Scotland.
Search for more papers by this authorCorresponding Author
W. E. GUTTERIDGE
Biological Laboratory, University of Kent, Canterbury, Kent, CT2 7NJ, England
Correspondence to Dr. Gutteridge.Search for more papers by this authorThe research reported in this paper was supported in part by the U.S.A.M.R.D.C., Washington, U.S.A.
Abstract
SYNOPSIS. An in vitro system, based on the rocker dilution technic, has been developed that supports intraerythrocytic growth of a rat-adapted strain of Plasmodium vinckei chabaudi from ring to schizont stages; some reinvasion was obtained, although invariably, this was associated with a decrease in parasite numbers. Pertinent features were the very high buffer content of the medium and the low oxygen tension of the gaseous phase. Lactate production, glucose utilization, and 3H-leucine and 3H-adenosine incorporations were investigated for their suitability to monitor parasite growth. Throughout an 18-hr incubation there was a continuous and increasing production of lactate and utilization of glucose, which correlated well with the development of the parasites from ring to schizont stages. During the same period, there was a low but continuous and increasing incorporation of 3H-leucine into parasite protein. However, 3H-adenosine was incorporated only for the 1st hr of incubation, after which time no net incorporation occurred. Parasites grew normally from ring to schizont stages even in the absence of adenosine from the dilution medium.
REFERENCES
- 1 Ball EG, Anfinsen CB, Geiman QM, McKee RW, Ormsbee RA. 1945. In vitro growth and multiplication of the malaria parasite, Plasmodium knowlesi. Science 101, 522–44.
- 2 Booden T, Hull RW. 1973. Nucleic acid precursor synthesis by Plasmodium lophurae parasitizing chicken erythrocytes. Exp. Parasitol. 34, 220–8.
- 3 Büngener W, Nielsen G. 1967. Nukleinsäurenstoffwechsel bei experimenteller malaria. 1. Untersuchungen über den einbau von thymidin, uridin und adenosin in malariaparasiten (Plasmodium berghei und Plasmodium vinckei). Z. Tropenmed. Parasit. 18, 456–62.
- 4 Büngener W, Nielsen G. 1968. Nukleinsärenstoffwechsel bei experimenteller malaria. 2. Einbau von adenosin und hypoxanthin in die nukleinsäuren von malariaparasiten (Plasmodium berghei und Plasmodium vinckei). Z. Tropenmed. Parasit. 19, 185–97.
- 5 Carter R, Walliker D. 1974. What is Plasmodium chabaudi? J. Protozool. 21, 449.
- 6 Cenedella RJ, Rosen H, Angel CR, Saxe LH. 1968. Free amino acid production in vitro by Plasmodium berghei. Am. J. Trop. Med. Hyg. 17, 800–3.
- 7 Conklin KA, Chou SC, Siddiqui WA, Schnell JV. 1973. DNA and RNA syntheses by intraerythrocytic stages of Plasmodium knowlesi. J. Protozool. 20, 683–8.
- 8 Coombs GH, Gutteridge WE. 1974. Growth in vitro of Plasmodium chabaudi. Parasitology 69, xii.
- 9 Geiman QM, Anfinsen CB, McKee RW, Ormsbee RA, Ball EG. 1946. Studies on malaria parasites. VII. Methods and techniques for cultivation. J. Exp. Med. 84, 583–605.
- 10 Geiman QM, Siddiqui WA, Schnell JV. 1966. In vitro studies on erythrocytic stages of plasmodia; medium improvement and results with seven species of malaria parasites. Mil. Med. 131 (Suppl.), 1015–25.
- 11 Gutteridge WE. 1969. Some effects of pentamidine diisethionate on Crithidia fasciculata. J. Protozool. 16, 306–11.
- 12 Gutteridge WE., Al Chalabi K. 1973. Thymidine phosphorylase activity in Crithidia fasciculata, in P Puytorac, J Grain, eds., Progress in Protozoology, Proc. 4th Int. Cong. Protozool., Sept. 1973, Université de Clermont, Clermont-Ferrand , p. 164.
- 13 Gutteridge WE., Trigg PI. 1970. Incorporation of radioactive precursors into DNA and RNA of Plasmodium knowlesi in vitro. J. Protozool. 17, 89–96.
- 14 Gutteridge WE., Trigg PI. 1972. Periodicity of nuclear DNA synthesis in the intraerythrocytic cycle of Plasmodium knowlesi. J. Protozool. 19, 378–81.
- 15 Hohorst H-J. 1963. L-(+)-lactate. Determination with lactic dehydrogenase and DPN, in HU Bergmeyer, ed., Methods of Enzymatic Analysis, Academic Press, New York and London , pp. 266–70.
- 16 Homewood CA. 1974. Carbohydrate metabolism by intraerythrocytic Plasmodium berghei, in JB Bateman, ed., Basic Research in Malaria, European Research Office and Chelsea College, London , pp. 182–8.
- 17 Huggett A St G, Nixon DA. 1957. Enzymic determination of blood glucose. Biochem. J. 66, 12P.
- 18 Landau I. 1965. Description de Plasmodium chabaudi n. sp., parasite de rongeurs africans. C.R. Acad. Sci. Paris 260, 3758–61.
- 19 Luckow I, Schmidt G, Walter RD, Königk E. 1973. Adenosin-monophosphatsalvage-synthese bei Plasmodium chabaudi. Z. Tropenmed. Parasit. 24, 500–4.
- 20 Richards WHG, Williams SG. 1973. The removal of leucocytes from malaria infected blood. Ann. Trop. Med. Parasitol. 67, 249–50.
- 21 Sherman IW. 1973. Purine uptake and utilization by malaria (Plasmodium lophurae), in P Puytorac, J Grain, eds., Progress in Protozoology, Proc. 4th Int. Cong. Protozool., Sept. 1973, Universitié de Clermont, Clermont-Ferrand , p. 376.
- 22 Tiner JD. 1972. Centrifugal perfusion chambers for incubation of erythrocytes and paratises in fresh plasma, in Basic Research in Malaria, Proc. Helminthol. Soc. Wash. 39, 211–9.
- 23 Tracy SM, Sherman IW. 1972. Purine uptake and utilization by the avian malaria parasite Plasmodium lophurae. J. Protozool. 19, 541–9.
- 24 Trager W. 1947. The development of the malaria parasite Plasmodium lophurae in red blood cell suspensions in vitro. J. Parasitol. 33, 345–50.
- 25 Trager W. 1950. Studies on the extracellular cultivation of an intracellular parasite (avian malaria). I. Development of the organisms in erythrocyte extracts and the favoring effect of adenosine triphosphate. J. Exp. Med. 92, 349–66.
- 26 Trager W. 1971. Malaria parasites (Plasmodium lophurae) developing extracellularly in vitro. Incorporation of labeled precursors. J. Protozool. 18, 392–9.
- 27 Trager W. 1974. Initial extracellular development in vitro of Plasmodium falciparum. Proc. 3rd Int. Cong. Parasitol., Munich 1, 132–3.
- 28 Trigg PI. 1972. Cultivation techniques for the erythrocytic stages of malaria parasites. Bull. Wld. Hlth. Org. 47, 357–73.
- 29 Trigg PI., Gutteridge WE. 1971. A minimal medium for the growth of Plasmodium knowlesi in dilution cultures. Parasitology 62, 113–23.
- 30 Trigg PI., Gutteridge WE. 1972. A rational approach to the serial culture of malaria parasites: evidence for a deficiency in RNA synthesis during the first cycle in vitro. Parasitology 65, 265–71.
- 31 Van Dyke K, Szustkiewicz C, Lantz CH, Saxe LH. 1969. Studies concerning the mechanism of action of anti-malarial drugs—inhibition of the incorporation of adenosine-8-3H into nucleic acids of Plasmodium berghei. Biochem. Pharmacol. 18 1417–25.
- 32 Van Dyke K, Tremblay GC, Lantz CH, Szustkiewicz C. 1970. The source of purines and pyrimidines in Plasmodium berghei. Am. J. Trop. Med. Hyg. 19, 202–8.
- 33 Walsh CJ, Sherman IW. 1968. Purine and pyrimidine synthesis by the avian malaria parasite, Plasmodium lophurae. J. Protozool. 15, 763–70.
- 34 Williams SG, Richards WHG. 1973. Malaria studies in vitro. I. Techniques for the preparation and culture of leucocytefree blood-dilution cultures of Plasmodia. Ann. Trop. Med. Parasitol. 67, 169–78.