Carbon Nutrition and Metabolism of Polytomella caeca*
DONALD L. WISE
Department of Biology, University College, New York University, New York 53, N. Y.
Department of Biology, The College of Wooster, Wooster, Ohio.
Search for more papers by this authorDONALD L. WISE
Department of Biology, University College, New York University, New York 53, N. Y.
Department of Biology, The College of Wooster, Wooster, Ohio.
Search for more papers by this authorFrom a dissertation presented in partial fulfillment of the requirements for the Ph.D. in biology at New York University.
Abstract
SYNOPSIS. Polytomella caeca utilizes as sole carbon sources in chemically defined media: acetate, propionate, butyrate, valerate, pyruvate, succinate, ethyl, butyl, amyl, and hexyl alcohols. Glyceraldehyde and α-ketoglutarate sustain very small populations. Caproate, caprylate, fumarate, malate, propyl, heptyl, and octyl alcohols and the iso-compounds iso-butyrate, iso-butyl and iso-hexyl alcohols are inadequate.
Acetate is not assimilated <pH 5.0, propionate and butyrate <pH 6.0, and valerate <pH 7.0. Optimum for utilization of succinate is pH 3.0, for pyruvate pH 4.0, utilized also at pH 2.0 Fatty acids are utilized dissociated; succinate and pyruvate are utilized undissociated. Alcohols are assimilated throughout pH 4.0–7.4, except hexanol at pH 7.4. Alcohol availability is proportional to molecular length-1.
pH after growth of fatty acid media is 8.4 ± 0.4; stable in pH 2.0 pyruvate and pH 3.0 succinate media; 3.5 ± 0.3 in alcohol media with initial pH <6.0. Longer alcohols cause less pH decrease during growth.
Acetate concentrations <0.2% do not support maximum populations; concentrations of 0.2–1.0% do. pH after growth increases in these media to pH 8.5 with maximum populations.
Malate, fumarate, α-ketoglutarate, and lactate seem not to penetrate the cell, but are metabolized by homogenates. Methylene blue reduction by homogenates indicates the presence of lactic, malic, succinic and α-ketoglutaric dehydrogenases, fumarase and glutamic transaminase. Extracts contain Embden-Meyerhof phosphate esters, ATP, and ADP.
REFERENCES
- 1 Albaum, H. G., Schatz, A., Hutner, S. H. & Hirshfield, A. 1950 Phosphorylated compounds in Euglena. Arch. Biochem. 29, 210–8.
- 2 Bandurski, R. S. & Axelrod, B. 1951 The chromato-graphic identification of some biologically important phosphate esters. J. Biol. Chem. 193, 405–10.
- 3 Barker, S. A., Bebbington, A. & Bourne, E. J. 1953 The mode of action of the Q-enzyme of Polytomella caeca. J. Chem. Soc., 4051–60.
- 4 Barrett, J. T., Larson, A. D. & Kallio, R. E. 1953 The nature of the adaptive lag of Pseudomonas fluorescens toward citrate. J. Bacteriol. 65, 187–92.
- 5 Barron, E. S. G. & Ghiretti, F. 1953 Pathways of acetate oxidation. Biochim. et Biophys. Acta 12, 239–49.
- 6 Bebbington, A., Bourne, E. J., Stacey, M. & Wilkinson, I. A. 1952 The Q-enzyme of Polytomella caeca. J. Chem. Soc., 240–5.
- 7 Bebbington, A., Bourne, E. J. & Wilkinson, I. A. 1952 The conversion of amylose into amylopectin by the Q-enzyme of Polytomella caeca. J. Chem. Soc., 246–53.
- 8 Beinert, H., Bock, R. M., Boldman, D. S., Green. D. E., Mahler, H. R., Mii, S., Stausly, P. G. & Wakil, S. J. 1953 The reconstruction of the fatty acid oxidizing system of animal tissues. J. Am. Chem. Soc. 75, 4111–2.
- 9 Bevington, J. C., Bourne, E. J. and Turton, C. N. 1953 Chemical degradation of C14-containing glucose and its application to C14-containing starch from Polytomella caeca. Chemistry & Industry, 1390–1.
- 10 Bourne, E. J., Stacey, M. & Wilkinson, I. A. 1950 The composition of the polysaccharide synthesized by Polytomella caeca. J. Chem. Soc., 2694–8.
- 11 Brown, G. M. & Snell, E. E. 1954 Pantothenic acid conjugates and growth of Acetobacter suboxydans. J. Bacteriol. 67, 465–71.
- 12 Campbell, J. J. R. & Stokes, N. F. 1951 Tricarboxylic acid cycle in Pseudomonas aeruginosa. J. Biol. Chem. 190, 853–8.
- 13 Cirillo, V. P. 1955 Induction and inhibition of adaptive enzyme formation in a phytoflagellate. Proc. Soc. Exptl. Biol. Med. 88, 352–4.
- 14 Cirillo, V. P. 1956 Induced enzyme synthesis in the phytoflagellate, Polytoma. J. Protozool. 3, 69–74.
- 15 Cirillo, V. P. 1957 Long-term adaptation to fatty acids by the phytoflagellate, Polytoma uvella. J. Protozool. 4, 60–2.
- 16 Cosgrove, W. S. & Swanson, B. K. 1952 Growth of Chilomonas paramecium in simple organic media. Physiol. Zoöl. 25, 287–92.
- 17 Dewey, V. C. & Kidder, G. W. 1954 Comparative activity of pantothenic acid and its conjugates for Tetrahymenid ciliates. Proc. Soc. Exptl. Biol. Med. 87, 198–9.
- 18 Eisenberg, M. A. 1953 The tricarboxylic acid cycle in Rhodospirillum rubrum. J. Biol. Chem. 203, 815–36.
- 19 Elliott, A. M. 1935 Effects of certain organic acids and protein derivatives on the growth of Colpidium. Arch. Protistenk. 84, 472–94.
- 20 Foulkes, E. C. 1954 Citrate metabolism and cell permeability. J. Bacteriol. 68, 505.
- 21 Ganguli, N. C. 1953 Paper chromatographic identification of phosphate esters present in rat-liver tissue. Naturwissenschaften 40, 624.
- 22 Hanes, C. S. & Isherwood, F. A. 1949 Separation of the phosphoric esters on the filter paper chromatogram. Nature 164, 1107–12.
- 23 Holz, G. G., Jr. 1954 The oxidative metabolism of a cryptomonad flagellate, Chilomonas paramecium. J. Protozool. 1, 114–20.
- 24 Kogut, M. & Podoski, E. P. 1953 Oxidative pathways of a fluorescent Pseudomonas. Biochem. J. 55, 800–11.
- 25 Lang, K. & Bassler, K. H. 1953 Decomposition of propionic acid by the cyclophorase system and by Torula yeast. Biochem. Z. 324, 401–7.
- 26 Lipmann, F. 1953 On chemistry and function of Coenzyme A. Bacteriol. Revs. 17, 1–16.
- 27 Little, P. A., Oleson, J. J. & Williams, J. H. 1951 Growth studies on Polytomella agilis. Proc. Soc. Exptl. Biol. Med. 78, 510–3.
- 28 Loefer, J. B. 1942 Growth of Chlorogonium tetragamum as affected by hydrogen-ion and sodium acetate concentrations. Physiol. Zoöl. 15, 333–41.
- 29 Lwoff, A. 1935 L'oxytrophie et le organismes oxytrophes. Compt. rend. soc. biol. 119, 87–90.
- 30 Lwoff, A. 1935 La nutrition azotée et carbonée de Polytomella agilis. Ibid, 974–6.
- 31 Lwoff, A. 1941 Limites de concentration en ions H et OH compatibles avec le dévelopment in vitro du flagelléPolytomella caeca. Ann. Inst. Pasteur 66, 407–16.
- 32 Lwoff, A. & Dusi, H. 1938 Culture des divers flagellés leucophytes en milieu synthetique. Compt. rend. soc. biol. 127, 53–6.
- 33 Lwoff, A., Ionesco, H. & Gutmann, A. 1949 Métabolisme de l'amidon chez un flagellé sans chlorophylle incapable d'utiliser le glucose. Compt. rend. 228, 324–44.
- 34 Lwoff, A., Ionesco, H. & Gutmann, A. 1950 Synthèse et utilization de l'amidon chez un flagellé sans chlorophylle incapable d'utiliser les sucros. Biochim. et Biophys. Acta 4, 270–5.
- 35 Marvel, C. S. & Richards, J. C. 1949 Separation of polybasic acids by fractional extraction. Anal. Chem. 21, 1480–3.
- 36 Mehler, A. H., Kornberg, A., Grisolia, S. & Ochoa, S. 1948 The enzymatic mechanism of oxidation-reductions between malate or isocitrate and pyruvate. J. Biol. Chem. 174, 961–77.
- 37 Pringsheim, E. G. 1937 Beiträge zur Physiologie saprophytischer Algen und Flagellaten. I. Chlorogonium und Hyalogonium. Planta 26, 631–64.
- 38 Pringsheim, E. G. 1937 Beiträge zur Physiologie saprophytischer Algen und Flagellaten. II. Polytoma und Polytomella. Ibid, 665–91.
- 39 Pringsheim, E. G. 1937 Assimilation of different organic substances by saprophytic Flagellata. Nature 139, 196.
- 40 Provasoli, L. 1938 Studi sulla nutrizione dei Protozoi. Boll. zool. agrar. e. bachicolt. 9, 1–124.
- 41 Sanadi, D. R., Gibson, D. M., Ayengar, P. & Ouellet, L. 1954 New intermediates in the phosphorylation coupled to alpha-ketoglutarate oxidation. Biochim. et Biophys. Acta. 13, 146–8.
- 42 Sanadi, D. R. & Littlefield, J. W. 1951 Studies on alpha-ketoglutaric acid oxidase. I. Formation of “active” succinate. J. Biol. Chem. 193, 683–9.
- 43 Seaman, G. R. 1956 Succinate metabolism of haemoflagellates. Exptl. Parasitol. 5, 138–48.
- 44 Seaman, G. R. & Naschke, M. D. 1955 Reversible cleavage of succinate by extracts of Tetrahymena. J. Biol. Chem. 217, 1–12.
- 45 Singer, I. & Trager, W. 1956 Coenzyme A changes in liver, spleen and kidney of rats with infections of Plasmodium berghei. Proc. Soc. Exptl. Biol. Med. 91, 315–8.
- 46 Stanier, R. Y. 1947 Acetic acid production from ethanol by fluorescent pseudomonads. J. Bacteriol. 54, 191–4.
- 47 Straub, F. B. 1941 On the reoxidation of diaphoraseflavoprotein. Enzymologia 9, 148–9.
- 48 Trager, W. 1954 Coenzyme A and the malaria parasite Plasmodium lophurae. J. Protozool. 1, 231–7.
- 49 Umbreit, W. W., Barris, R. H. & Stauffer, J. F. 1949 Manometric Techniques and Tissue Metabolism, 2nd ed., Burgess Publ. Co., Minneapolis .
- 50 Whiteley, H. R. 1953 Mechanism of propionic acid formation by succinate decarboxylation. II. Formation and decarboxylation of succinyl-Co A. Proc. Natl. Acad. Sci. U. S. 39, 779–85.
- 51 Wise, D. L. 1955 Carbon sources for Polytomella caeca. J. Protozool. 2, 156–8.