Low Insulin-Like Growth Factor (IGF-1) in the Cerebrospinal Fluid of Children with Progressive Encephalopathy, Hypsarrhythmia, and Optic Atrophy (PEHO) Syndrome and Cerebellar Degeneration
Corresponding Author
Raili Riikonen
Department of Child Neurology, Children's Hospital, University of Kuopio, Kuopio
Address correspondence and reprint requests to Dr. R. Riikonen at Department of Child Neurology, Children's Hospital, P.O.B. 1777, FIN-70211 Kuopio, Finland. [email protected]Search for more papers by this authorMirja Somer
Department of Medical Genetics, Väestöliitto, The Family Federation of Helsinki
Search for more papers by this authorUrsula Turpeinen
Helsinki University Central Hospital Laboratory, Helsinki, Finland
Search for more papers by this authorCorresponding Author
Raili Riikonen
Department of Child Neurology, Children's Hospital, University of Kuopio, Kuopio
Address correspondence and reprint requests to Dr. R. Riikonen at Department of Child Neurology, Children's Hospital, P.O.B. 1777, FIN-70211 Kuopio, Finland. [email protected]Search for more papers by this authorMirja Somer
Department of Medical Genetics, Väestöliitto, The Family Federation of Helsinki
Search for more papers by this authorUrsula Turpeinen
Helsinki University Central Hospital Laboratory, Helsinki, Finland
Search for more papers by this authorAbstract
Summary: Purpose: In patients with progressive encephalopathy, hypsarrhythmia, and optic atrophy (PEHO) syndrome, the pathophysiology underlying early progressive cerebellar and brainstem degeneration and severe epilepsy is unknown. Because insulin-like growth factor (IGF)-1 has been shown significantly to promote survival of cerebellar neurons, we wanted to see if the IGF system played a role in the pathogenesis of cerebellar atrophy.
Methods: We used a sensitive enzyme immunoassay kit for measuring cerebrospinal fluid (CSF) IGF-1 and insulin-like growth-binding protein (IGFBP)-3 in four groups of patients: PEHO syndrome patients (eight), PEHO-like patients (seven), age-matched controls (31), and patients with other types of cerebellar atrophy (11).
Results: Patients with PEHO syndrome and those with other progressive, degenerative cerebellar diseases had lower levels of CSF IGF-1 than the controls with other neurologic diseases. The CSF IGF-1 also allowed us to differentiate the “true” PEHO patients from the “PEHO-like” patients (those with similar clinical symptoms but without the typical neuroophthal-mologic or neuroradiologic findings). The concentrations of IGFBP-3 did not significantly differ in any of the patient or control groups studied.
Conclusions: CSF IGF-1 levels might be used as a marker of the degeneration of neurons in specific areas.
References
- 1 Riikonen R. Infantile spasms in siblings. J Pediatr Neurosci 1987; 3: 235–44.
- 2 Salonen R, Somer M, Haltia M, Lorentz M, Norio R. Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO syndrome). Clin Genet 1991; 39: 287–93.
- 3 Somer M. Diagnostic criteria and genetics of the PEHO syndrome. J Med Genet 1993; 30: 932–6.
- 4 Somer M, Sainio K. Epilepsy and the electroencephalogram in progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (the PEHO syndrome. Epilepsia 1993; 34: 727–31.
- 5 Somer M, Salonen O, Pihko H, Norio R. PEHO syndrome (progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy): neuroradiologic findings. AJNR Am J Neuroradiol 1993; 14: 861–7.
- 6 Somer M, Setälä K, Kivelä T, Haltia M, Norio R. The PEHO syndrome (progressive encephalopathy with oedema, hypsarrhythmia and optic atrophy). Neuroophthalmology 1993; 13: 65–74.
- 7 Haltia M, Somer M. Infantile cerebello-optic atrophy; neuropathology of the progressive encephalopathy syndrome with edema, hypsarrhythmia, and optic atrophy (the PEHO syndrome). Acta Neuropathol 1993; 85: 241–7.
- 8 Fujimoto S, Yokochi K, Nakano M, Wada Y. Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO syndrome) in two Japanese siblings. Neuropediatrics 1995; 26: 270–2.
- 9 Chitty L., Robb S, Berry C, Silver D, Baraitser M. PEHO or PEHO-like syndrome. Clin Dysmorph 1996; 5: 143–52.
- 10 Shevell MI, Colangelo P, Treacy E, Polomeno RC, Rosenblatt B. Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO syndrome). Pediatr Neurol 1996; 15: 337–9.
- 11 Harvey AS, Jayakar P, Duchowny M, et al. Hemifacial seizures and cerebellar ganglioglioma: an epilepsy syndrome of infants with seizures of cerebellar origin. Ann Neurol 1996; 40: 91–8.
- 12 McLone DG, Stieg PE, Scott RM, Barnett F, Barnes PD, Folkerth R. Cerebellar epilepsy. Neurosurgery 1998; 42: 1106–11.
- 13 Baker J, Liu J-P, Robertson E, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993; 75: 73–82.
- 14 Liu J-P, Baker J, Perkins A, Robertson E, Efstratiadis A. Mice carrying null mutations of genes encoding insulin-like growth factor I (IGF-1) and type I IGF-receptor (IGF-R. Cell 1993; 75: 59–72.
- 15 Jones J, Clemmons D. Insulin-like growth factors and their binding protein: biological actions. Endocr Rev 1995; 16: 3–34.
- 16 Höppener J, de Pagter- Holthuizen P, Geurts van Kessel A, et al. The human gene encoding insulin-like growth factor I is located on chromosom. 12. Hum Genet 1985; 69: 157–60.
- 17 Rechler M, Nissley S. Insulin-like growth factors: In: M Sporn, A Roberts, eds. Handbook of experimental pharmacology: peptide growth factors and their receptors. I. Berlin : Springer-Verlag. 1989; 263–367.
- 18 Beck K, Bowell-Braxton L, Wildmer H, Valverde J, Hefti F. IGF-1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal paralbumin-containing neurons. Neuron 1995; 14: 17–30.
- 19 Vig P, Desaiaah D, Joshi P, Subramony S, Fratkin J, Currier R. Decreased insulin-like growth factor-I-mediated protein tyrosine phosphorylation in human olivopontocerebellar atrophy and lurcher mutant mouse. J Neurol Sci 1991; 124: 38–44.
- 20 Komoly S, Hudson L, Webster H, et al. Insulin-like growth factor I gene expression is induced in astrocytes during experimental demyelination. Pro. Natl Acad Sci U S A 1992; 89: 1894–8.
- 21 Guthrie K, Nguen T, Gall C. Insulin-like growth factor-1 MRNA is increased in deafferented hippocampus: spatio-temporal correspondence of a trophic event with axon sprouting. J Comp Neurol 1995; 352: 147–60.
- 22 D'Mello S, Galli C, Ciotti T, Calissano P. Induction of apoptosis in cerebellar granule neurons by potassium. Proc Natl Acad Sci U S A 1993; 90: 10989–93.
- 23 Torres-Aleman I, Poins S, Santos-Benito F. Survival of Purkinje cells in cerebellar cultures is increased by insulin-like growth factor 1. Eur J Neurosci 1992; 4: 864–9.
- 24 Torres-Aleman I, Villaba M, Nieto-Bona M. Insulin-like growth factor-1 modulation of cerebellar cell populations is developmen-tally stage-dependent and mediated by specific intracellular pathways. Neuroscience 1998; 83: 321–34.
- 25 Torres-Aleman I, Barrios V, Lledo A, Berciano J. The insulin-like growth factor I system in cerebellar degeneration. Ann Neurol 1996; 39: 335–42.
- 26 Sorva R, Tolppanen EM, Lankinen S, Perheentupa J. Growth evaluation: parent and specific height standards. Arch Dis Child 1989; 64: 1483–7.
- 27 Mincler J. Pathology of the nervous system. Vol 1. New York : McGraw-Hill, 1968: 123.
- 28 Nikali K, Isosomppi T, Lönnqvist T, Mao J, Suomalainen A, Peltonen L. Toward cloning of a novel ataxia gene: refined assigment and physical map of the IOSCA locus (SCA8) on 10q24. Genomics 1997; 39: 185–91.
- 29 Blum P. Insulin-like growth factor-binding protein 3: Entwicking eines radioimmunoassays und untersuchungen zur klinischen be-deutung. Tubingen: Der Medizinischen Fakultät der Universität Tübingen, Habilitationsschrift, 1993: 119–21.
- 30 Harding A. Clinical features and classification of inherited ataxias. In: AE Harding, T Deufel, eds. Inherited ataxias. New York : Raven Press. 1993: 1–14.
- 31 Jellinger K. Neuropathological aspects of infantile spasms. Brain Dev 1987; 9: 349–57.
- 32 Hintz R, Liu F, Seegan G. Characterization of an insulin-like growth factor-I/somatomedin C radioimmunoassay specific for the C-peptide region. J Clin Endocrinol Metab 1982; 55: 927–30.
- 33 Zapf J, Morell B, Walter H, et al. Serum levels of insulin-like growth factor (IGF) and its carrier protein in various metabolic disorders. Acta Endocrinol (Copenh) 1980; 95: 505–17.
- 34 Isley W., Underwood L., Clemmons D. Dietary components that regulate serum somatomedin-C concentrations in humans. J Clin Invest 1983; 71: 175–82.
- 35 Tham A, Nordberg A, Grisson E, Carlsson-Skwirut C, Viitanen M, Sara V. Insulin-like growth factor binding proteins in cerebrospinal fluid and serum in patients with dementia of the Alzheimer type. J Neural Transm 1993; 5: 165–76.
- 36 Bondy C, Werner H, Roberts C, et al. Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II. Neuroscience 1992; 46: 909–23.
- 37 Bach M, Shen-Orr Z, Lowe W, Roberts C, LeRoith D. Insulin-like growth factor I mRNA levels are developmentally regulated in specific regions of the rat brain. Mol Brain Res 1991; 10: 43–8.
- 38 Werther G, Russo V, Baker N, Butler G. The role of the insulin-like growth factor system in the developing brain. Horm Res 1998; 49: 37–40.
- 39 Dudek H, Datta S, Franke T, et al. Regulation of neuronal survival by serine-threonine protein kinase. Akt Sci 1997; 275: 661–5.
- 40 Gao W, Heintz N, Hatten M. Cerebellar granule cell neurogenesis is regulated by cell-cell interactions in vitro. Neuron 1991; 6: 705–15.
- 41 Barres BA. Cell death and control of cell survival in the oligoden-drocyte lineage. Cell 1992; 70: 31–46.
- 42 Bondy C. Transient IGF-1 gene expression during the maturation of functionally related central projection neurons. J Neurosci 1991; 11: 3442–55.
- 43 Reinhardt RR, Bondy CA. Insulin-like growth factors cross the blood-brain barrier. Endocrinology 1994; 135: 1753–61.
- 44 Fernandez A, de la Vega A, Torres-Aleman I. Insulin-like growth factor. Proc Natl Sci U S A 1998; 95: 1253–8.