The Pharmacologic Basis of Antiepileptic Drug Action
Corresponding Author
Jong M. Rho
Departments of Neurology and Pediatrics, University of Washington School of Medicine and Children's Hospital and Regional Medical Center, Seattle, Washington
Address correspondence and reprint requests to Dr. J. M. Rho at Children's Hospital & Regional Medical Center, Mailstop CH-49, 4800 Sand Point Way, N.E., Seattle, WA 98105, U.S.A. [email protected]Search for more papers by this authorRaman Sankar
Departments of Pediatrics and Neurology, UCLA School of Medicine and Mattel Children's Hospital, Los Angeles, California, U.S.A.
Search for more papers by this authorCorresponding Author
Jong M. Rho
Departments of Neurology and Pediatrics, University of Washington School of Medicine and Children's Hospital and Regional Medical Center, Seattle, Washington
Address correspondence and reprint requests to Dr. J. M. Rho at Children's Hospital & Regional Medical Center, Mailstop CH-49, 4800 Sand Point Way, N.E., Seattle, WA 98105, U.S.A. [email protected]Search for more papers by this authorRaman Sankar
Departments of Pediatrics and Neurology, UCLA School of Medicine and Mattel Children's Hospital, Los Angeles, California, U.S.A.
Search for more papers by this authorAbstract
Summary: The development of medications used in the treatment of epilepsy has accelerated over the past decade, and has benefited from a parallel growth in our knowledge of the basic mechanisms underlying neuronal excitability and synchronization. This understanding of the pharmacologic basis of antiepileptic drug (AED) action has, in large part, arisen from recent advances in cellular and molecular biology, coupled with avenues of drug discovery that have departed somewhat from the largely empiric approaches of the past. Physicians now have available to them an ever-growing armentarium of AEDs, necessitating a firmer appreciation of their mechanisms of action if more rational approaches toward both clinical application and research are to be adopted. An important example in this regard is the concept of rational polypharmacy for patients with epilepsy who are refractory to monotherapy. This review summarizes our current understanding of the molecular targets of clinically significant AEDs, comparing and contrasting their differing mechanisms of action.
References
- 1 Hauptmann A. Luminal bei Epilepsie. Munch Med Wochenschr 1912; 59: 1907–9.
- 2 Merritt HH, Putnam TJ. A new series of anticonvulsant drugs tested by experiments on animals. Arch Neurol Psychiatry 1938; 39: 1003–15.
- 3 Sankar R, Weaver DF. Basic principles of medicinal chemistry. In: J Engel, TA Pedley, eds. Epilepsy: a comprehensive textbook. Philadelphia : Lippincott-Raven, 1998: 1393–403.
- 4 Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA. Antiepileptic drug development: II. anticonvulsant drug screening. Epilepsia 1978; 19: 404–28.
- 5 Crowder JM, Bradford HF. Common anticonvulsants inhibit Ca2+ uptake and amino acid neurotransmitter release in vitro. Epilepsia 1987; 28: 378–82.
- 6 Waldmeier PC, Baumann PA, Wicki P, Feldtrauer JJ, Stierlin C, Schmutz M. Similar potency of carbamazepine, oxcarbazepine, and lamotrigine in inhibiting the release of glutamate and other neurotransmitters. Neurology 1995; 45: 1907–13.
- 7 Leach MJ, Marden CM, Miller AA. Pharmacological studies on lamotrigine: a novel potential antiepileptic drug: II. neurochemical studies on the mechanism of action. Epilepsia 1986; 27: 490–7.
- 8 Avanzini G. Animal models relevant to human epilepsies. Ital J Neurol Sci 1995; 16: 5–8.
- 9 RH Levy, RH Mattson, BS Meldrum, eds. Antiepileptic drugs. 4th ed. New York : Raven Press, 1995.
- 10 Macdonald RL, Kelly KM. Antiepileptic drug mechanisms of action. Epilepsia 1995; 36(suppl.2): S2–12.
- 11
Rogawski MA.
Epilepsy. In: L Pullan,
J Patel, eds.
Neurotherapeutics: emerging strategies.
Totowa
,
NJ
: Humana Press, 1996: 193–273.
10.1007/978-1-59259-466-5_6 Google Scholar
- 12 Meldrum BS. Update on the mechanism of action of antiepileptic drugs. Epilepsia 1996; 37(suppl.6): S4–11.
- 13 White HS. Clinical significance of animal seizure models and mechanism of action studies of potential antiepileptic drugs. Epilepsia 1997; 39(suppl.1): S9–17.
- 14 Macdonald RL, Greenfield LJ Jr. Mechanisms of action of new antiepileptic drugs. Curr Opin Neurol 1997; 10: 121–8.
- 15 De Lorenzo RJ. Phenytoin: mechanisms of action. In: RH Levy, RH Mattson, BS Meldrum, eds. Antiepileptic drugs. 4th ed. New York : Raven Press, 1995: 271–82.
- 16 McLean MJ, Macdonald RL. Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. J Pharmacol Exp Ther 1983; 227: 779–89.
- 17 McLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986; 237: 1001–11.
- 18 McLean MJ, Macdonald RL. Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986b; 238: 727–32.
- 19 Kuo CC, Bean BP. Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Mol Pharmacol 1994a; 46: 716–25.
- 20 Kuo CC, Bean BP. Na+ channels must deactivate to recover from inactivation. Neuron 1994b; 12: 819–29.
- 21 Ragsdale DS, Scheuer T, Catterall WA. Frequency and voltage-dependent inhibition of type IIA Na+ channels, expressed in a mammalian cell line, by local anesthetic, antiarrhythmic, and anticonvulsant drugs. Mol Pharmacol 1991; 40: 756–65.
- 22 Wakamori M, Kaneda M, Oyama Y, Akaike N. Effects of chlordiazepoxide, chlorpromazine, diazepam, diphenylhydantoin, flunitrazepam and haloperidol on the voltage-dependent sodium current of isolated mammalian brain neurons. Brain Res 1989; 494: 374–8.
- 23 Tomaselli G, Marban E, Yellen G. Sodium channels from human brain RNA expressed i. Xenopus oocytes: basic electrophysiologic characteristics and their modification by diphenylhydantoin. J Clin Invest 1989; 83: 1724–32.
- 24 Woodbury DM. Phenytoin: proposed mechanisms of anticonvulsant, action. Adv Neurol 1980; 27: 447–71.
- 25 Potter PE, Detwiler P, Thorne B, Moskal JR. Diphenylhydantoin attenuates hypoxia-induced release of [3H]glutamate from rat hippocampal slices. Brain Res 1991; 558: 127–30.
- 26 Laffling AJ, Scherr P, McGivern JG, Patmore L, Sheridan RD. Electrophysiological actions of phenytoin o. N-methyl-D-aspartate receptor-mediated responses in rat hippocampus in vitro. Br J Pharmacol 1995; 115: 67–72.
- 27 Hough CJ, Irwin RP, Gao XM, Rogawski MA, Chuang DM. Carbamazepine inhibition o. N-methyl-D-aspartate-evoked calcium influx in rat cerebellar granule cells. J Pharmacol Exp Ther 1996; 276: 143–9.
- 28 Hobbs WR, Rall TW, Verdoorn TA. Hypnotics and sedatives; ethanol. In: JG Hardman, LE Limbard, PB Molinoff, RW Ruddon, AG Gilman, eds. Goodman and Gilman's the pharmacological basis of therapeutics. 9th ed. New York : McGraw-Hill, 1996: 361–96.
- 29 Sieghart W. GABAA receptors: ligand-gated Cl ion channels modulated by multiple drug binding sites. Trends Pharmacol Sci 1992; 13: 446–50.
- 30 Macdonald RL, Twyman RE. Kinetic properties and regulation of GABAA receptor channels. In: T Narahashi, ed. Ion channels. Vol 3. New York : Plenum Press, 1992: 315–43.
- 31 Madonald RL, Olsen RW. GABAA receptor channels. Ann Rev Neurosci 1994; 17: 569–602.
- 32 Twyman RE, Rogers CJ, Macdonald RL. Differential regulation of γ-aminobutyric acid receptor channels by diazepam and phenobarbital. Ann Neurol 1989; 25: 213–20.
- 33 Löscher W, Schmidt D. Diazepam increases aminobutyric acid in human cerebrospinal fluid. J Neurochem 1987; 49: 152–7.
- 34 McLean MJ, Macdonald RL. Benzodiazepines, but not beta carbolines, limit high frequency repetitive firing of action potentials of spinal cord neurons in cell culture. J Pharmacol Exp Ther 1988; 244: 789–95.
- 35 Skerritt JH, Werz MA, McLean MJ, Macdonald RL. Diazepam and its anomalou. p-chloro-derivative Ro 5-4864: comparative effects on mouse neurons in cell culture. Brain Res 1984; 310: 99–105.
- 36 Polc P. Electrophysiology of benzodiazepine receptor ligands: multiple mechanisms and sites of action. Prog Neurobiol 1988; 31: 349–423.
- 37 Ransom BR, Barker JL. Pentobarbital selectively enhances GABA-mediated post-synaptic inhibition in tissue cultured mouse spinal neurons. Brain Res 1976; 114: 530–5.
- 38 Macdonald RL, Barker JL. Enhancement of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: a common mode of anticonvulsant action. Brain Res 1979; 167: 323–36.
- 39 Rho JM, Donevan SD, Rogawski MA. Direct activation of GABAA receptors by barbiturates in cultured rat hippocampal neurons. J Physiol (Lond) 1996; 497: 509–22.
- 40 Macdonald RL, Rogers CJ, Twyman RE. Barbiturate regulation of kinetic properties of the GABAA receptor channel of mouse spinal neurones in culture. J Physiol (Lond) 1989; 417: 483–500.
- 41 Marszalec W, Narahashi T. Use-dependent pentobarbital block of kainate and quisqualate currents. Brain Res 1993; 608: 7–15.
- 42 French-mullen JMH, Barker JL, Rogawski M. Calcium current block by (-)-pentobarbital, phenobarbital and CHEB but not (+)-pentobarbital in acutely isolated hippocampal CA1 neurons: comparison with effects on GABA-activated Cl− current. J Neurosci 1993; 13: 3211–21.
- 43 Gibbs FA, Lennox WG, Gibbs EL. The electroencephalogram in diagnosis and in localization of epileptic seizures. Arch Neurol Psychol 1936; 36: 1225–35.
- 44 Jasper HH, Droogleever-Fortuyn J. Experimental studies on the functional anatomy of petit mal epilepsy. Assoc Res Nerv Ment Dis 1947; 26: 272–98.
- 45
Penfield W,
Jasper H.
Epilepsy and the functional anatomy of the human brain.
Boston
: Little, Brown, 1954.
10.1097/00007611-195407000-00024 Google Scholar
- 46 Gloor P, Avoli M, Kostopoulos G. Thalamocortical relationships in generalized epilepsy with bilaterally synchronous spike-and-wave discharge. In: M Avoli, P Gloor, G Kostopoulos, R Naquel, eds. Generalized epilepsy: neurobiological approaches. Boston : Birkhauser, 1990: 190–212.
- 47 Snead OC. Basic mechanisms of generalized absence seizures. Ann Neurol 1995; 37: 146–57.
- 48 Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 1989; 25: 582–93.
- 49 Coulter DA, Huguenard JR, Prince DA. Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: calcium current reduction. Br J Pharmacol 1990; 100: 800–6.
- 50 Davis R, Peters DH, McTavish D. Valproic acid: a reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1994; 47: 332–72.
- 51 Cotariu D, Zaidman JL, Evans S. Neurophysiological and biochemical changes evoked by valproic acid in the central nervous system. Prog Neurobiol 1990; 34: 343–54.
- 52 Löscher W. Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochem Res 1993; 18: 485–502.
- 53 Fariello RG, Varasi M, Smith MC. Valproic acid: mechanisms of action. In: RH Levy, RH Mattson, BS Meldrum, eds. Antiepileptic drugs. 4th ed. New York : Raven Press, 1995: 581–8.
- 54 Zona C, Avoli M. Effects induced by the antiepileptic drug valproic acid upon the ionic currents recorded in rat neocortical neurons in cell culture. Exp Brain Res 1990; 81: 313–7.
- 55 Van den Berg RJ, Kok P, Voskuyl RA. Valproate and sodium currents in cultured hippocampal neurons. Exp Brain Res 1993; 93: 279–87.
- 56 Godin Y, Heiner L, Mark J, Mandel P. Effects of di-n-propylacetate, an anticonvulsive compound, on GABA metabolism. J Neurochem 1969; 16: 869–73.
- 57 Löscher W. Valproate induced changes in GABA metabolism at the subcellular level. Biochem Pharmacol 1981; 30: 1364–6.
- 58 Phillips NI, Fowler LJ. The effects of sodium valproate on γ-aminobutyrate metabolism and behaviour in naive and ethanolamine-o-sulphate pretreated rats and mice. Biochem Pharmacol 1982; 31: 2257–61.
- 59 Macdonald RL, Bergey GK. Valproic acid augments GABA mediated postsynaptic inhibition in cultured mammalian neurons. Brain Res 1979; 170: 558–62.
- 60 Gent JP, Phillips NI. Sodium di-n-propylacetate (valproate) potentiates the responses of GABA and muscimol on single central neurons. Brain Res 1980; 197: 275–8.
- 61 Baldino Fjr, Geller HM. Sodium valproate enhancement of γ-aminobutyric acid (GABA) inhibition: electrophysiological evidence for anticonvulsant activity. J Pharmacol Exp Ther 1981; 217: 445–50.
- 62 Zeise ML, Lasparow S, Zieglgansberger W. Valproate suppresse. N-methyl-D-aspartate evoked, transient depolarizations in the rat neocortex in vitro. Brain Res 1991; 544: 345–8.
- 63 Gean PW, Huang CC, Hung CR, Tsai JJ. Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices. Brain Res Bull 1994; 33: 333–6.
- 64 Kelly KM, Gross RA, Macdonald RL. Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci Lett 1990; 116: 233–8.
- 65 Bergstrom WH, Garzoli RF, Lombroso C, Davidson DT, Wallace WM. Observations on metabolic and clinical effects of carbonic anhydrase inhibitors in epileptics. Am J Dis Child 1952; 84: 71–3.
- 66 Forsythe WI, Owens JR, Toothill C. Effectiveness of acetazol-amide in the treatment of carbamazepine-resistant epilepsy in children. Dev Med Child Neurol 1981; 23: 761–9.
- 67 Resor SR Jr, Resor LD. Chronic acetazolamide monotherapy in the treatment of juvenile myoclonic epilepsy. Neurology 1990; 40: 1677–81.
- 68 Resor SR, Resor LD, Woodbury DM, Kemp JW. Acetazolamide. In: RH Levy, RH Mattson, BS Meldrum, eds. Antiepileptic drugs. 4th ed. New York : Raven Press, 1995: 969–85.
- 69 Velísek L, Moshé SL, Xu Shu-Guang, Cammer W. Reduced susceptibility to seizures in carbonic anhydrase II deficient mutant mice. Epilepsy Res 1993; 14: 115–21.
- 70 Cammer W, Fredman T, Rose AL, Norton WT. Brain carbonic anhydrase: activity in isolated myelin and the effect of hexachlorophene. J Neurochem 1976; 27: 165–71.
- 71 Yandrasitz JR, Ernst SA, Salganicoff L. The subcellular distribution of carbonic anhydrase in homogenates of perfused rat brain. J Neurochem 1976; 27: 707–15.
- 72 Sapirstein VS, Lees MB, Trachtenberg MC. Soluble and membrane bound carbonic anhydrases from rat CNS: regional development. J Neurochem 1978; 31: 283–7.
- 73 Rousel G, Delaunoy JP, Nussbaum JL, Mandel P. Demonstration of a specific localization of carbonic anhydrase C in the glial cells of rat CNS by an immunohistochemical method. Brain Res 1979; 160: 47–55.
- 74 Woodbury DM, Engstrom FL, White HS, Chen CF, Kemp JW, Chow SY. Ionic and acid-base regulation of neurons and glia during seizures. Ann Neurol 1984; 16(suppl): S135–44.
- 75 Koch A, Woodbury DM. Carbonic anhydrase inhibition and brain electrolyte composition. Am J Physiol 1960; 198: 434–40.
- 76 Schwartzkroin PA. Cellular electrophysiology of human epilepsy. Epilepsy Res 1994; 17: 185–92.
- 77 Traynelis SF, Cull-Candy SG. Proton inhibition o. N-methyl-D-aspartate receptors in cerebellar neurons. Nature 1990; 345: 347–50.
- 78 Krishek BJ, Amato A, Connolly CN, Moss SJ, Smart TG. Proton sensitivity of the GABAA receptor is associated with the receptor subunit composition. J Physiol (Lond) 1996; 492: 431–43.
- 79 Staley KJ, Soldo BL, Proctor WR. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 1995; 269: 977–81.
- 80 Swinyard EA, Sofia RD, Kupferburg HJ. Comparative anticonvulsant activity and neurotoxicity of felbamate and four prototype antiepileptic drugs in mice and rats. Epilepsia 1986; 27: 27–34.
- 81 Leppik IE, Dreifuss FE, Pledger GW, et al. Felbamate for partial seizures: results of a controlled clinical trial. Neurology 1991; 41: 1785–9.
- 82 Ritter FJ and The Felbamate Study Group in Lennox-Gastaut syndrome. Efficacy of felbamate in childhood epileptic encephalopathy (Lennox-Gastaut syndrome). N Engl J Med 1993; 328: 29–33.
- 83 White HS, Wolf HH, Swinyard EA, Skeen GA, Sofia RD. A neuropharmacological evaluation of felbamate as a novel anticonvulsant. Epilepsia 1992; 33: 564–72.
- 84 Pisani A, Stefani A, Siniscalchi A, Mercuri NB, Bernardi G, Calabresi P. Electrophysiological actions of felbamate on rat striatal neurones. Br J Pharmacol 1995; 116: 2053–61.
- 85 Taglialatela M, Ongini E, Brown AM, DiRenzo G, Annunziato L. Felbamate inhibits cloned voltage-dependent Na+ channels from human and rat brain. Eur J Pharmacol 1996; 316: 373–7.
- 86 Stefani A, Calabresi P, Pisani A, Mercuri NB, Siniscalchi A, Bernardi G. Felbamate inhibits dihydropyridine-sensitive calcium channels in central neurons. J Pharmacol Exp Ther 1996; 277: 121–7.
- 87 Rho JM, Donevan SD, Rogawski MA. Mechanism of action of the anticonvulsant felbamate: opposing effects o. N-methyl-D-aspartate and γ-aminobutyric acid receptors. Ann Neurol 1994; 35: 229–34.
- 88 Ticku MK, Kamatchi GL, Sofia RD. Effect of anticonvulsant felbamate on GABAA receptor system. Epilepsia 1991; 32: 389–91.
- 89 Kume A, Greenfield LJ Jr, Macdonald RL, Albin RL. Felbamate inhibits [3H]t-butylbicycloorthobenzoate (TBOB) binding and enhances Cl− current at the gamma-aminobutyric acidA (GABAA) receptor. J Pharmacol Exp Ther 1996; 277: 1784–92.
- 90 Rho JM, Donevan SD, Rogawski MA. Barbiturate-like actions of the propanediol dicarbamates felbamate and meprobamate. J Pharmacol Exp Ther 1997; 280: 1383–91.
- 91 McCabe RT, Wasterlain CG, Kucharczyk N, Sofia RD, Vogel JR. Evidence for anticonvulsant and neuroprotectant action of felbamate mediated by strychnine-insensitive glycine receptors. J Pharmacol Exp Ther 1993; 264: 1248–52.
- 92 Subramaniam S, Rho JM, Penix L, Donevan SD, Fielding RP, Rogawski MA. Felbamate block of th. N-methyl-D-aspartate receptor. J Pharmacol Exp Ther 1995; 273: 878–86.
- 93 Rogawski MA. The NMDA receptor, NMDA antagonists and epilepsy therapy. Drugs 1992; 44: 279–92.
- 94 Coffin V, Cohen-Williams M, Barnett A. Selective antagonism of the anticonvulsant effects of felbamate by glycine. Eur J Pharmacol 1994; 256: R9–10.
- 95 White HS, Harmsworth WL, Sofia RD, Wolf HH. Felbamate modulates the strychnine-insensitive glycine receptor. Epilepsy Res 1995; 20: 41–8.
- 96 Taylor CP, Gee NS, Su TZ, et al. A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 1998; 29: 233–49.
- 97 Löscher W, Honack D, Taylor CP. Gabapentin increases amino-oxyacetic acid-induced GABA accumulation in several regions of rat brain. Neurosci Lett 1991; 128: 150–4.
- 98 Welty DF, Schielke GP, Vartanian MG, Taylor CP. Gabapentin anticonvulsant action in rats: disequilibrium with peak drug concentrations in plasma and brain microdialysate. Epilepsy Res 1993; 16: 175–81.
- 99 Hill DR, Suman-Chauhaun N, Woodruff GN. Localization of [3H]gabapentin to a novel site in rat brain: autoradiographic studies. Eur J Pharmacol 1993; 244: 303–9.
- 100 Thurlow RJ, Brown JP, Gee NS, Hill DR, Woodruff GN. [3H]Gabapentin may label a system L-like neutral amino acid carrier in brain. Eur J Pharmacol 1993; 247: 341–5.
- 101 Gee NS, Brown JP, Dissanayake VUK, Offord J, Thurlow R, Woodruff GN. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the α2δ subunit of a calcium channel. J Biol Chem 1996; 271: 5768–76.
- 102 Rock DM, Kelly KM, Macdonald RL. Gabapentin actions on ligand- and voltage-gated responses in cultured rodent neurons. Epilepsy Res 1993; 16: 89–98.
- 103 Honmou O, Oyelese AA, Kocsis JD. The anticonvulsant gabapentin enhances promoted release of GABA in hippocampus: a field potential analysis. Brain Res 1995a; 692: 273–7.
- 104 Honmou O, Kocsis JD, Richerson GB. Gabapentin potentiates the conductance increased induced by nipecotic acid in CA1 pyramidal neurons in vitro. Epilepsy Res 1995b; 20: 193–202.
- 105 Petroff OA, Rothman DL, Behar KL, Lamoureux D, Mattson RH. The effect of gabapentin on brain gamma-aminobutyric acid in patients with epilepsy. Ann Neurol 1996; 39: 95–9.
- 106 Reynolds EH, Milner G, Matthews DM, Chanarin I. Anticonvulsant therapy, megaloblastic haemopoiesis and folic acid metabolism. Q J Med 1966; 140: 521–37.
- 107 Rogawski MA, Porter RJ. Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 1990; 42: 223–86.
- 108 Miller AA, Wheatley P, Sawyer DA, Baxter MG, Roth B. Pharmacological studies on lamotrigine: a novel potential antiepileptic drug: I. Anticonvulsant profile in mice and rats. Epilepsia 1986; 27: 483–9.
- 109 Beran RG, Berkovic SF, Dunagan FM, et al. Double-blind, placebo-controlled, crossover study of lamotrigine in treatment-resistant generalised epilepsy. Epilepsia 1998; 39: 1329–33.
- 110 Cheung H, Kamp D, Harris E. An in vitro investigation of the action of lamotrigine on neuronal-activated sodium channels. Epilepsy Res 1992; 13: 107–12.
- 111 Lang DG, Wang CM, Cooper BR. Lamotrigine, phenytoin and carbamazepine interactions on the sodium current present in N4TG1 mouse neuroblastoma cells. J Pharmacol Exp Ther 1993; 266: 820–35.
- 112 Xie X, Lancaster B, Peakman T, Carthwaite C. Interaction of the antiepileptic drug lamotrigine with recombinant rat brain type IIA Na+ channels and with native Na+ channels in rat hippocampal neurones. Pflugers Arch 1995; 430: 437–46.
- 113 Maryanoff BE, Nortey SO, Gardocki JF, Shank RP, Dodgson SP. Anticonvulsan. o-alkyl sulfamates, 2,3:4,5-bis-o-(1-methlethylidene)-beta-D-fructopyranose sulfamate and related compounds. J Med Chem 1987; 30: 880–7.
- 114 Shank RP, Gardocki JF, Vaught JL, et al. Topiramate: preclinical evaluation of a structurally novel anticonvulsant. Epilepsia 1994; 35: 450–60.
- 115 Coulter DA, Sombati S, De Lorenzo RJ. Selective effects of topiramate on sustained repetitive firing and spontaneous bursting in cultured hippocampal neurons. Epilepsia 1993; 34(suppl. 2): S123.
- 116 Sombati S, Coulter DA, De Lorenzo RJ. Effects of topiramate on sustained repetitive firing and low Mg2+-induced seizure discharges in cultured hippocampal neurons. Epilepsia 1995; 36(suppl.4): 38.
- 117 Severt L, Coulter DA, Sombati S, De Lorenzo RJ. Topiramate selectively blocks kainate currents in cultured hippocampal neurons. Epilepsia 1995; 36(suppl.4): 38.
- 118 White HS, Brown SD, Woodhead JH, Skeen GA, Wolf HH. Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold. Epilepsy Res 1997; 28: 167–79.
- 119 Petroff OA, Hyder F, Rothman DL, Mattson RH. Human brain GABA and homocarnosine increased after starting topiramate. Neurology 1998; 50(supp.4): A312.
- 120 Petroff OA, Rothman DL, Behar KL, Collins TL, Mattson RH. Human brain GABA levels rise rapidly after initiation of viga-batrin therapy. Neurology 1996; 47: 1567–71.
- 121 Nakamura J, Tamura S, Kanda T, et al. Inhibition by topiramate of seizures in spontaneously epileptic rats and DBA/2 mice. Eur J Pharmacol 1994; 254: 83–9.
- 122 Suzdak PD, Frederiksen K, Andersen KE, Sorensen PO, Knutsen LJ, Nielsen EB. NNC-711: a novel potent and selective gamma-aminobutyric acid uptake inhibitor: pharmacological characterization. Eur J Pharmacol 1992; 224: 189–98.
- 123 Ben-Menachem E. International experience with tiagabine add-on therapy. Epilepsia 1995; 36(suppl.6): S14–21.
- 124 Uthman BM, Rowan AJ, Ahmann PA, et al. Tiagabine for complex partial seizures: a randomized, add-on, dose-response trial. Arch Neurol 1998; 55: 56–62.
- 125 Kälviäinen R, Brodie MJ, Duncan J, Chadwick D, Edwards D, Lyby K. A double-blind, placebo-controlled trial of tiagabine given three-times daily as add-on therapy for refractory partial seizures: Northern European Tiagabine Study. Epilepsy Res 1998; 30: 31–40.
- 126 Suzdak PD, Jansen JA. A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 1995; 36: 612–26.
- 127 Borden LA, Dhar TGM, Smith KE, Weinshank RL, Branchek TA, Gluchowski C. Tiagabine, SK&F 89976-A, CI-966, and NNC-711 are selective for the cloned GABA transporter GAT-1. Eur J Pharmacol 1994; 269: 219–24.
- 128 Fink-Jensen A, Suzdak PD, Swedberg MDB, Judge ME, Hansen L, Nielsen PG. The gamma-aminobutyric acid (GABA) uptake inhibitor, tiagabine, increases extracellular brain levels of GABA in awake rats. Eur J Pharmacol 1992; 220: 197–201.
- 129 During M, Mattson R, Scheyer R, et al. The effect of tiagabine hydrochloric acid on extracellular GABA levels in the human hippocampus. Epilepsia 1992; 33(supp.3): 83.
- 130 Thompson SM, Gahwiler BH. Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J Neurophysiol 1992; 67: 1698–701.
- 131 Reckling JC, Jahnsen H, Laursen AM. The effect of two lipophilic γ-aminobutyric acid uptake blockers in CA1 of the rat hippocampal slice. Br J Pharmacol 1990; 99: 103–6.
- 132 Roepstorff A, Lambert JD. Comparison of the effect of the GABA uptake blockers, tiagabine and nipecotic acid, on inhibitory synaptic efficacy in hippocampal CA1 neurones. Neurosci Lett 1992; 146: 131–4.
- 133 Lippert B, Metcalf BW, Jung MJ, Casara P. 4-Amino-hex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric-acid aminotransferase in mammalian brain. Eur J Biochem 1977; 74: 441–5.
- 134 Larsson OM, Gram L, Schousboe I, Schousboe A. Differential effect of gamma-vinyl GABA and valproate on GABA-transaminase from cultured neurones and astrocytes. Neuropharmacology 1986; 25: 617–25.
- 135 Jung MJ, Lippert B, Metcalf BW, Böhlen P, Schechter PJ. gamma-Vinyl GABA (4-amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: effects on brain GABA metabolism in mice. J Neurochem 1977; 29: 797–802.
- 136 Ben-Menachem E, Hamberger A, Mumford J. Effect of long-term vigabatrin therapy on GABA and other amino acid concentrations in the central nervous system: a case study. Epilepsy Res 1993; 16: 241–3.
- 137 Mattson RH, Petroff O, Rothman D, Behar K. Vigabatrin: effects on human brain GABA levels by nuclear magnetic resonance spectroscopy. Epilepsia 1994; 35(suppl.5): S29–32.
- 138 Gram L, Larsson OM, Johnsen AH, Schousboe A. Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res 1988; 2: 87–95.
- 139 Sabers, Gram L. Pharmacology of vigabatrin. Pharmacol Toxicol 1992; 70: 237–43.
- 140 Yee JM, Agulian S, Kocsis JD. Vigabatrin enhances promoted release of GABA in neonatal rat optic nerve. Epilepsy Res 1998; 29: 195–200.
- 141 Seino M, Naruto S, Ito T, Miyazaki H. Other antiepileptic drugs: zonisamide. In: RH Levy, RH Mattson, BS Meldrum, eds. Antiepileptic drugs. 4th ed. New York : Raven Press, 1995: 1011–23.
- 142 Masuda Y, Karasawa T, Shiraishi Y, Hori M, Yoshida K, Shimizu M. 3-Sulfamoylmethyl-1,2-benzisoxazole, a new type of anticonvulsant drug: pharmacological profile. Arzneitmittelforschung 1980; 30: 477–83.
- 143 Rock DM, Macdonald RL, Taylor CP. Blockade of sustained repetitive action potentials in cultured spinal cord neurons by zonisamide (AD 810, CI 912): a novel anticonvulsant. Epilepsy Res 1989; 3: 138–43.
- 144 Schauf CL. Zonisamide enhances slow sodium inactivation i. Myxicola. Brain Res 1987; 413: 185–8.
- 145 Suzuki S, Kawakami K, Nishimura S, et al. Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res 1992; 12: 21–7.
- 146 Kito M, Maehara M, Watanabe K. Mechanisms of T-type calcium channel blockade by zonisamide. Seizure 1996; 5: 115–9.
- 147 Ito T, Hori M, Kadokawa T. Effects of zonisamide (AD-810) on tungstic acid gel-induced thalamic generalized seizures and conjugated estrogen-induced cortical spike-wave discharges in cats. Epilepsia 1986; 27: 367–74.
- 148 Mori A, Noda Y, Packer L. The anticonvulsant zonisamide scavenges free radicals. Epilepsy Res 1998; 30: 153–8.
- 149 Okada M, Kawata Y, Mizuno K, Wada K, Kondo T, Kaneko S. Interaction between Ca2+, K+, carbamazepine and zonisamide on hippocampal extracellular glutamate monitored with a microdialysis electrode. Br J Pharmacol 1998; 124: 1277–85.
- 150 Masuda Y, Karasawa T. Inhibitory effect of zonisamide on human carbonic anhydrase in vitro. Arzneitmittelforschung 1993; 43: 416–8.
- 151 Masuda Y, Noguchi H, Karasawa T. Evidence against a significant implication of carbonic anhydrase inhibitory activity of zonisamide in its anticonvulsive effects. Arzneitmittelforschung 1994; 44: 267–9.
- 152 Hori M, Ito T, Oka M, et al. General pharmacology of the novel antiepileptic compound zonisamide: 1st communication: effects on central nervous system. Arzneimittelforschung 1987; 37: 1124–30.