Volume 29, Issue 3 pp. 333-383
Full Access

An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids

T. J. B. HOLLAND

T. J. B. HOLLAND

Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK

Search for more papers by this author
R. POWELL

R. POWELL

School of Earth Sciences, The University of Melbourne, Victoria 3010, Australia ( [email protected] )

Search for more papers by this author
First published: 16 February 2011
Citations: 1,939

Improvements have already been made to the dataset: for the current top-copy, please go to http://www.esc.cam.ac.uk/people/academic-staff/tim-holland, or http://www.metamorph.geo.uni-mainz.de/thermocalc/.

Abstract

The thermodynamic properties of 254 end-members, including 210 mineral end-members, 18 silicate liquid end-members and 26 aqueous fluid species are presented in a revised and updated internally consistent thermodynamic data set. The PVT properties of the data set phases are now based on a modified Tait equation of state (EOS) for the solids and the Pitzer & Sterner (1995) equation for gaseous components. Thermal expansion and compressibility are linked within the modified Tait EOS (TEOS) by a thermal pressure formulation using an Einstein temperature to model the temperature dependence of both the thermal expansion and bulk modulus in a consistent way. The new EOS has led to improved fitting of the phase equilibrium experiments. Many new end-members have been added, including several deep mantle phases and, for the first time, sulphur-bearing minerals. Silicate liquid end-members are in good agreement with both phase equilibrium experiments and measured heat of melting. The new dataset considerably enhances the capabilities for thermodynamic calculation on rocks, melts and aqueous fluids under crustal to deep mantle conditions. Implementations are already available in thermocalc to take advantage of the new data set and its methodologies, as illustrated by example calculations on sapphirine-bearing equilibria, sulphur-bearing equilibria and calculations to 300 kbar and 2000 °C to extend to lower mantle conditions.

Introduction

The need for thermodynamic data of sufficient quality to make reliable calculations on rocks continues to grow, particularly to capitalize on new methods of application of phase equilibria that involve increasingly complex solid and fluid solutions, as well as on new advances in software.

The basic philosophy from our earlier summary (Holland & Powell, 1998; hereafter referred to as HP98) is maintained. The thermodynamic data extraction involves using weighted least squares on the different types of data (calorimetric, phase equilibria, natural mineral partitioning) to determine enthalpies of formation of the end-members of the phases. Entropies, volumes, heat capacities, thermal expansions and compressibilities are not derived by regression, but are taken as known in this process. Where they are not known experimentally, they are estimated as outlined in our earlier papers. The new regression involves determination of the enthalpies of 254 end-members, of which 69 are new to the data set, with an overall fit in which inline image is 1.09 (inline image being a goodness-of-fit parameter, identical to inline image in geochronology that relates directly to the chi-squared test).

Major methodological changes from HP98 are embodied in this new data set, within the basic philosophy outlined above. They are documented below, along with minor ones that have arisen since HP98, some of which are incorporated in the currently used data set, tc-ds55.txt, from November 2003, but have not been documented properly before.

A list of the chemical compositions of the end-members considered in this study may be found in Table 1. The end-members are listed under the headings orthosilicates and ring silicates (garnet, olivine, etc.), chain silicates (pyroxene and pyroxenoid, amphibole, etc.), sheet silicates (mica, chlorite, etc.), framework silicates, oxides and hydroxides, carbonates, elements, high-pressure phases, gas species, melt species and aqueous species. The new data set itself is given in Table 2. Table 3 lists the calorimetric data used in the dataset generation. Appendix 1 gives the data sources for the thermodynamic properties, and Appendix 2 is a summary table of the experimental studies used in the data set regression. Appendix 3 provides information on minor changes since the publication of HP98. The table of all the experimentally determined mineral equilibrium brackets used in the least squares analysis and the calculated fit to them is presented in Table S1 as well as at http://www.esc.cam.ac.uk/people/academic-staff/tim-holland and http://www.metamorph.geo.uni-mainz.de/thermocalc/. This is in the form of full computer output from the data extraction program LSQDS. Table S2 contains the activity–composition relations that were used in the generation of the data set.

Table 1. The formulae and abbreviations of the end-members of the phases in the internally consistent data set. A bullet beside an abbreviated name indicates that it is a new end-member in the dataset.
Group Abbreviation End-member Formula
Garnets & olivines alm almandine Fe3Al2Si3O12
andr andradite Ca3Fe2Si3O12
gr grossular Ca3Al2Si3O12
knor • knorringite Mg3Cr2Si3O12
maj • majorite Mg4Si4O12
py pyrope Mg3Al2Si3Ol2
spss spessartine Mn3Al2Si3O12
chum clinohumite Mg9Si4O16(OH)2
fa fayalite Fe2SiO4
fo forsterite Mg2SiO4
lrn larnite Ca2SiO4
mont monticellite CaMgSiO4
teph tephroite Mn2SiO4
Aluminosilicates and andalusite Al2SiO5
ky kyanite Al2SiO5
sill sillimanite Al2SiO5
amul • Al-mullite Al2.5Si0.5O4.75
smul • Si-mullite Al2SiO5
fctd Fe-chloritoid FeAl2SiO5(OH)2
mctd Mg-chloritoid MgAl2SiO5(OH)2
mnctd Mn-chloritoid MnAl2SiO5(OH)2
fst Fe-staurolite Fe 4Al18Si7.5O44(OH)4
mst Mg-staurolite Mg4Al18Si7.5O44(OH)4
mnst Mn-staurolite Mn4Al18Si7.5O44(OH)4
tpz hydroxy-topaz Al2SiO4(OH)2
Other orthosilicates ak akermanite Ca2MgSi2O7
geh gehlenite Ca2Al2SiO7
jgd • julgoldite (FeFe) Ca4Fe6Si6O21(OH)7
merw merwinite Ca3MgSi2O8
mpm pumpellyite (MgAl) Ca4MgAl5Si6O21(OH)7
fpm pumpellyite (FeAl) Ca4FeAl5Si6O21(OH)7
rnk rankinite Ca3Si2O7
sph sphene CaTiSiO5
spu spurrite Ca5Si2CO11
ty tilleyite Ca5Si2C2O13
zrc zircon ZrSiO4
Sorosilicates cz clinozoisite Ca2Al3Si3O12(OH)
ep epidote(ordered) Ca2FeAl2Si3O12(OH)
fep Fe-epidote Ca2Fe2AlSi3O12(OH)
law lawsonite CaAl2Si2O6(OH)4
pmt • piemontite (ordered) Ca2MnAl2Si3Oi2(OH)
zo zoisite Ca2Al3Si3O12(OH)
vsv vesuvianite Ca19Mg2Al11Si18O69(OH)9
Cyclosilicates crd cordierite Mg2Al4Si5O18
hcrd hydrous-cordierite Mg2Al4Si5O17(OH)2
fcrd Fe-cordierite Fe2Al4Si5O18
mncrd Mn-cordierite Mn2Al4Si5O18
osm1 osumilite (1) KMg2Al5Si10O30
osm2 osumilite (2) KMg3Al3Si11O30
fosm Fe-osumilite KFe2Al5Si10O30
High-P phases apv • Al-perovskite AlAlO3
cpv • Ca-perovskite CaSiO3
cstn • CaSi-titanite CaSi2O5
fak • Fe-akimotoite FeSiO3
fpv • Fe-perovskite FeSiO3
frw • Fe-ringwoodite Fe2SiO4
fwd • Fe-wadsleyite Fe2SiO4
mak • akimotoite MgSiO3
mpv • Mg-perovskite MgSiO3
mrw • Mg-ringwoodite Mg2SiO4
mwd • Mg-wadsleyite Mg2SiO4
phA phaseA Mg7Si2O8(OH)6
Pyroxenes & pyroxenoids acm acmite NaFeSi2O6
caes • Ca-eskola pyroxene Ca0.5AlSi2O6
cats Ca-tschermaks pyroxe CaAl2SiO6
cen • clino enstatite Mg2Si2O6
di diopside CaMgSi2O6
en enstatite Mg2Si2O6
fs ferrosilite Fe2Si2O6
hed hedenbergite CaFeSi2O6
hen • Hi-P clinoenstatite Mg2Si2O6
jd jadeite NaAlSi2O6
kos • kosmochlor NaCrSi2O6
mgts Mg-tschermaks pyroxe MgAl2SiO6
pren • protoenstatite Mg2Si2O6
pswo pseudowollastonite CaSiO3
pxmn pyroxmangite MnSiO3
rhod rhodonite MnSiO3
wal • walstromite CaSiO3
wo wollastonite CaSiO3
Amphibole anth anthophyllite Mg7Si8O22(OH)2
cumm cummingtonite Mg7Si8O22(OH)2
fact ferroactinolite Ca2Fe5Si8O22(OH)2
fanth Fe-anthophyllite Fe7Si8O22(OH)2
fgl ferroglaucophane Na2Fe3Al2Si8O22(OH)2
gl glaucophane Na2Mg3Al2Si8O22(OH)2
grun grunerite Fe7Si8O22(OH)2
parg pargasite NaCa2Mg4Al3Si6O22(OH)2
rieb riebeckite Na2Fe5Si8O22(OH)2
tr tremolite Ca2Mg5Si8O22 (OH)2
ts tschermakite Ca2Mg3Al4Si6O22(OH)2
Other chain silicates deer deerite Fe 18Si12O40(OH)10
fcar ferrocarpholite FeAl2Si2O6(OH)4
fspr Fe-sapphirine (221) Fe4Al8Si2O20
mcar magnesiocarpholite MgAl2Si2O6(OH)4
spr4 sapphirine (221) Mg4Al8Si2O20
spr5 sapphirine (351) Mg3Al10SiO20
Micas ann annite KFe3AlSi3O10(OH)2
cel celadonite KMgAlSi4O10(OH)2
east eastonite KMg2Al3Si2O10(OH)2
fcel ferroceladonite KFeAlSi4O10(OH)2
ma margarite CaAl4Si2O10(OH)2
mnbi Mn-biotite KMn3AlSi3O10(OH)2
mu muscovite KAl3Si3O10(OH)2
naph sodaphlogopite NaMg3AlSi3O10(OH)2
pa paragonite NaAl3Si3O10(OH)2
phl phlogopite KMg3AlSi3O10(OH)2
Chlorites afchl Al-free chlorite Mg6Si4O10(OH)8
ames amesite (14A) Mg4Al4Si2O10(OH)8
clin clinochlore (ordered) Mg5Al2Si3O10(OH)8
daph daphnite Fe5Al2Si3O10(OH)8
fsud ferrosudoite Fe2Al4Si3O10(OH)8
mnchl Mn-chlorite Mn5Al2Si3O10(OH)8
sud sudoite Mg2Al4Si3O10(OH)8
Other sheet silicates atg antigorite Mg48Si34O85(OH)62
chr chrysotile Mg3Si2O5(OH)4
fpre • ferri-prehnite Ca2FeAlSi3O10(OH)2
fstp • ferrostilpnomelane K0.5Fe5Al2Si8O18(OH)12.5
fta ferrotalc Fe3Si4O10(OH)2
glt • greenalite Fe3Si2O5(OH)4
kao kaolinite Al2Si2O5(OH)4
liz • lizardite Mg3Si2O5(OH)4
minm • Mg-minnesotaite Mg3Si4O10(OH)2
minn • minnesotaite Fe3Si4O10(OH)2
mstp • Mg-stilpnomelane K0.5Mg5Al2Si8O18(OH)12.5
pre prehnite Ca2Al2Si3O10(OH)2
prl pyrophyllite Al2Si4O10(OH)2
ta talc Mg3Si4O10(OH)2
tap • prl-talc Al2Si4O10(OH)2
tats tschermak-talc Mg2Al2Si3O10(OH)2
Feldspars & feldspathoid abh albite (high) NaAlSi3O8
albite ab NaAlSi3O8
an anorthite CaAl2Si2O8
anl analcite NaAlSi2O5(OH)2
cg • carnegieite (low) NaAlSiO4
cgh • carnegieite (high) NaAlSiO4
kcm • K-cymrite KAlSi3O7(OH)2
kls kalsilite KAlSiO4
lc leucite KAlSi2O6
mic microcline KAlSi3O8
ne nepheline NaAlSiO4
san sanidine KAlSi3O8
Silica minerals coe coesite SiO2
crst cristobalite (high) SiO2
q quartz SiO2
stv stishovite SiO2
trd tridymite (high) SiO2
Other framework silicates heu heulandite CaAl2Si7O12(OH)12
hol • hollandite KAlSi3O8
lmt laumontite CaAl2Si4O8(OH)8
me meionite Ca4Al6Si6CO27
sdl • sodalite Na8Al6Si6O24Cl2
stlb stilbite CaAl2Si7O11(OH)14
wa • Si-wadeite K2Si4O9
wrk wairakite CaAl2Si4Oio(OH)4
Oxides bdy baddeleyite ZrO2
bix • bixbyite Mn2O3
cor corundum Al2O3
cup • cuprite Cu2O
esk • eskolaite Cr2O3
fper • ferropericlase FeO
geik geikielite MgTiO3
hem hematite Fe2O3
herc hercynite FeAl2O4
ilm ilmenite FeTiO3
lime lime CaO
mang manganosite MnO
mcor • MgSi-corundum MgSiO3
mft magnesioferrite MgFe2O4
mt magnetite Fe3O4
NiO nickel oxide NiO
per periclase MgO
picr • picrochromite MgCr2O4
pnt pyrophanite MnTiO3
ru rutile TiO2
sp spinel MgAl2O4
ten • tenorite CuO
usp ulvospinel Fe2TiO4
Hydroxides br brucite Mg(OH)2
dsp diaspore AlO(OH)
gth goethite FeO (OH)
Carbonates ank ankerite CaFe(CO3)2
arag aragonite CaCO3
cc calcite CaCO3
dol dolomite CaMg(CO3)2
mag magnesite MgCO3
rhc rhodochrosite MnCO3
sid siderite FeCO3
Halides & sulphides any • anhydrite CaSO4
hlt • halite NaCl
lot • low troilite FeS
pyr • pyrite FeS2
syv • sylvite KCl
tro • troilite FeS
trot • pyrrhotite FeS
trov • pyrrhotite Fe0.875S
Elements Cu • copper Cu
diam diamond C
gph graphite C
iron iron Fe
Ni nickel Ni
S • sulphur S
Gas species H2O water H2O
CO2 carbon dioxide CO2
CO carbon monoxide CO
CH4 methane CH4
O2 oxygen O2
H2 hydrogen H2
S2 • sulphur gas S2
H2S • Hydrogen sulphide H2S
Melt species abL albite liquid NaAlSi3O8
anL anorthite liquid CaAl2Si2O8
corL • corundum liquid Al2O3
diL diopside liquid CaMgSi2O6
enL enstatite liquid Mg2Si2O6
faL fayalite liquid Fe2SiO4
foL forsterite liquid Mg2SiO4
h2oL H2O liquid H2O
hltL • halite liquid) NaCl
kspL K-feldspar liquid KAlSi3O8
lcL • leucite liquid KAlSi2O6
limL • CaO liquid CaO
neL • nepheline liquid NaAlSiO4
perL • MgO liquid MgO
qL quartz liquid SiO2
silL sillimanite liquid Al2SiO5
syvL • sylvite (liquid) KCl
woL • wollastonite liquid CaSiO3
Aqueous
species
H+ hydrogen ion H+
Cl chloride ion Cl
OH hydroxyl ion HO
Na+ sodium ion Na+
K+ potassium ion K+
Ca++ calcium ion Ca2+
Mg++ magnesium ion Mg2+
Fe++ ferrous ion Fe 2+
Al+++ aluminium ion Al3+
CO3 carbonate ion inline image
AlOH3 aluminium hydroxide Al(OH)3
AlOH4 aluminium hydroxide inline image
KOH potassium hydroxide K(OH)
HCl hydrogen chloride HCl
KCl potassium chloride KCl
NaCl sodium chloride NaCl
CaCl2 calcium chloride CaCl2
CaCl+ calcium chloride CaCl+
MgCl2 magnesium chloride MgCl2
MgCl+ magnesium chloride MgCl+
FeCl2 ferrous chloride FeCl2
aqSi silica (aq) SiO2
HS sulphide (aq) HS
HSO3 sulphite (aq) inline image
SO42− sulphate (aq) inline image
HSO4 sulphate2 (aq) inline image
Table 2a. Molar thermodynamic properties (units: kJ, K, kbar) of the end-members whose formulae can be found in Table 1.
Group End-member inline image inline image S V inline image inline image inline image
a b c d inline image inline image inline image inline image
Garnet and olivine Almandine (alm) −5260.65 1.31 342.00 11.525 0.6773 0 −3772.7 −5.0440 2.12 1900.0 2.98 −0.0016
Andradite (andr) −5769.08 1.56 316.40 13.204 0.6386 0 −4955.1 −3.9892 2.86 1588.0 5.68 −0.0036
grossular (gr) −6642.95 1.46 255.00 12.535 0.6260 0 −5779.2 −4.0029 2.20 1720.0 5.53 −0.0032
Knorringite (knor) −5687.75 3.88 317.00 11.738 0.6130 0.3606 −4178.0 −3.7294 2.37 1743.0 4.05 −0.0023
Majorite (maj) −6050.33 9.62 255.20 11.457 0.7136 −0.0997 −1158.2 −6.6223 1.83 1600.0 4.56 −0.0028
Pyrope (py) −6282.13 1.06 269.50 11.313 0.6335 0 −5196.1 −4.3152 2.37 1743.0 4.05 −0.0023
Spessartine (spss) −5693.65 3.14 335.30 11.792 0.6469 0 −4525.8 −4.4528 2.27 1740.0 6.68 −0.0038
Clinohumite (chum) −9609.82 2.49 443.00 19.785 1.0700 −1.6533 −7899.6 −7.3739 2.91 1194.0 4.79 −0.0040
Fayalite (fa) −1477.74 0.68 151.00 4.631 0.2011 1.7330 −1960.6 −0.9009 2.82 1256.0 4.68 −0.0037
Forsterite (fo) −2172.57 0.57 95.10 4.366 0.2333 0.1494 −603.8 −1.8697 2.85 1285.0 3.84 −0.0030
Larnite (lrn) −2307.04 0.90 127.60 5.160 0.2475 −0.3206 0 −2.0519 2.90 985.0 4.07 −0.0041 1
Monticellite (mont) −2251.31 0.52 109.50 5.148 0.2507 −1.0433 −797.2 −1.9961 2.87 1134.0 3.87 −0.0034
Tephroite (teph) −1733.95 1.05 155.90 4.899 0.2196 0 −1292.7 −1.3083 2.86 1256.0 4.68 −0.0037
Aluminosilicates Andalusite (and) −2588.72 0.68 92.70 5.153 0.2773 −0.6588 −1914.1 −2.2656 1.81 1442.0 6.89 −0.0048
Kyanite (ky) −2593.02 0.67 83.50 4.414 0.2794 −0.7124 −2055.6 −2.2894 1.92 1601.0 4.05 −0.0025
Sillimanite (sill) −2585.85 0.68 95.40 4.986 0.2802 −0.6900 −1375.7 −2.3994 1.12 1640.0 5.06 −0.0031 2
Mullite (amul) −2485.51 0.91 113.00 5.083 0.2448 0.0968 −2533.3 −1.6416 1.36 1740.0 4.00 −0.0023
Mullite (smul) −2569.28 0.69 101.50 4.987 0.2802 −0.6900 −1375.7 −2.3994 1.36 1740.0 4.00 −0.0023
Chloritoid (fctd) −3208.31 0.80 167.00 6.980 0.4161 −0.3477 −2835.9 −3.3603 2.80 1456.0 4.06 −0.0028
Chloritoid (mctd) −3549.31 0.75 146.00 6.875 0.4174 −0.3771 −2920.6 −3.4178 2.63 1456.0 4.06 −0.0028
Chloritoid (mnctd) −3336.20 1.68 166.00 7.175 0.4644 −1.2654 −1147.2 −4.3410 2.60 1456.0 4.06 −0.0028
Staurolite (fst) −23 755.04 6.34 1010.00 44.880 2.8800 −5.6595 −10642.0 −25.3730 1.83 1800.0 4.76 −0.0026
Staurolite (mnst) −24 246.42 8.60 1034.00 45.460 2.8733 −8.9064 −12688.0 −24.7490 2.09 1800.0 4.76 −0.0026
Staurolite (mst) −25 124.32 6.28 910.00 44.260 2.8205 −5.9366 −13774.0 −24.1260 1.81 1684.0 4.05 −0.0024
Topaz (tpz) −2900.76 0.96 100.50 5.339 0.3877 −0.7120 −857.2 −3.7442 1.57 1315.0 4.06 −0.0031
Other orthosilicates Akermanite (ak) −3865.63 0.94 212.50 9.254 0.3854 0.3209 −247.5 −2.8899 2.57 1420.0 4.06 −0.0029
Gehlenite (geh) −3992.26 1.33 198.50 9.024 0.4057 −0.7099 −1188.3 −3.1744 2.23 1080.0 4.08 −0.0038 2
Julgoldite (jgd) −11 809.63 8.50 830.00 31.080 1.7954 −3.7986 −4455.7 −14.8880 2.49 1615.0 4.05 −0.0025
Merwinite (merw) −4545.87 1.36 253.10 9.847 0.4175 0.8117 −2923.0 −2.3203 3.19 1200.0 4.07 −0.0034
Pumpellyite (fpm) −14 033.82 2.63 657.00 29.680 1.7372 −2.4582 −5161.1 −14.9630 2.49 1615.0 4.05 −0.0025
Pumpellyite (mpm) −14 386.75 2.41 629.00 29.550 1.7208 −2.4928 −5998.7 −14.6203 2.47 1615.0 4.05 −0.0025
Rankinite (rnk) −3943.92 1.36 210.00 9.651 0.3723 −0.2893 −2462.4 −2.1813 3.28 950.0 4.09 −0.0043
Sphene (sph) −2601.65 0.96 124.00 5.565 0.2279 0.2924 −3539.5 −0.8943 1.58 1017.0 9.85 −0.0097 1
Spurrite (spu) −5847.08 2.23 332.00 14.697 0.6141 −0.3508 −2493.1 −4.1680 3.40 950.0 4.09 −0.0043
Tilleyite (ty) −6368.39 2.21 390.00 17.039 0.7417 −0.5345 −1434.6 −5.8785 3.41 950.0 4.09 −0.0043
Zircon (zrc) −2035.05 1.66 83.03 3.926 0.2320 −1.4405 0 −2.2382 1.25 2301.0 4.04 −0.0018
Sorosilicates Clinozoisite (cz) −6895.42 1.31 301.00 13.630 0.6309 1.3693 −6645.8 −3.7311 2.33 1197.0 4.07 −0.0034
Epidote (ep) −6473.90 1.17 315.00 13.920 0.6133 2.2070 −7160.0 −2.9877 2.34 1340.0 4.00 −0.0030
Epidote (fep) −6027.57 1.23 329.00 14.210 0.5847 3.0447 −7674.2 −2.2443 2.31 1513.0 4.00 −0.0026
Lawsonite (law) −4868.61 0.81 229.00 10.132 0.6878 0.1566 375.9 −7.1792 2.65 1229.0 5.45 −0.0044
Piemontite (pmt) −6543.04 2.70 340.00 13.820 0.5698 2.7790 −5442.9 −2.8126 2.38 1197.0 4.07 −0.0034
Zoisite (zo) −6896.21 1.31 298.00 13.575 0.6620 1.0416 −6006.4 −4.2607 3.12 1044.0 4.00 −0.0038
Vesuvianite (vsv) −42 345.19 8.95 1890.00 85.200 4.4880 −5.7952 −22269.3 −33.4780 2.75 1255.0 4.80 −0.0038
Cyclosilicates Cordierite (crd) −9163.48 1.51 404.10 23.322 0.9061 0 −7902.0 −6.2934 0.68 1290.0 4.10 −0.0031 2
Cordierite (fcrd) −8444.02 1.66 461.00 23.710 0.9240 0 −7039.4 −6.4396 0.67 1290.0 4.10 −0.0031 2
Cordierite (hcrd) −9449.32 1.52 475.60 23.322 0.9802 0 −7035.9 −6.6808 0.67 1290.0 4.10 −0.0031 2
Cordierite (mncrd) −8693.64 3.60 473.00 24.027 0.8865 0 −8840.0 −5.5904 0.69 1290.0 4.10 −0.0031 2
Osumilite (fosm) −14 238.91 3.99 762.00 38.320 1.6560 −3.4163 −6497.7 −14.1143 0.49 800.0 4.10 −0.0051
Osumilite (osm1) −14 959.21 3.83 701.00 37.893 1.6258 −3.5548 −8063.5 −13.4909 0.47 810.0 4.10 −0.0051
Osumilite (osm2) −14 799.99 4.05 724.00 38.440 1.6106 −3.4457 −8262.1 −13.1288 0.47 810.0 4.10 −0.0051
High-pressure phases akimotoite (fak) −1142.14 10.12 91.50 2.760 0.1003 1.3328 −4364.9 0.4198 2.12 2180.0 4.55 −0.0022
Akimotoite (mak) −1490.85 0.62 59.30 2.635 0.1478 0.2015 −2395.0 −0.8018 2.12 2110.0 4.55 −0.0022
CaSi-titanite (cstn) −2496.17 2.81 99.50 4.818 0.2056 0.6034 −5517.7 −0.3526 1.58 1782.0 4.00 −0.0022
Perovskite (apv) −1646.76 1.12 51.80 2.540 0.1395 0.5890 −2460.6 −0.5892 1.80 2030.0 4.00 −0.0020
Perovskite (cpv) −1541.73 1.80 73.50 2.745 0.1593 0 −967.3 −1.0754 1.87 2360.0 3.90 −0.0016
Perovskite (fpv) −1084.64 8.14 91.00 2.548 0.1332 1.0830 −3661.4 −0.3147 1.87 2810.0 4.14 −0.0016
Perovskite (mpv) −1443.02 0.69 62.60 2.445 0.1493 0.2918 −2983.0 −0.7991 1.87 2510.0 4.14 −0.0016
PhaseA (phA) −7132.27 1.90 348.00 15.442 0.9640 −1.1521 −4517.8 −7.7247 3.79 1450.0 4.06 −0.0028
Ringwoodite (frw) −1471.79 0.76 140.00 4.203 0.1668 4.2610 −1705.4 −0.5414 2.22 1977.0 4.92 −0.0025
Ringwoodite (mrw) −2127.66 0.78 90.00 3.949 0.2133 0.2690 −1410.4 −1.4959 2.01 1781.0 4.35 −0.0024
Wadsleyite (fwd) −1467.92 0.97 146.00 4.321 0.2011 1.7330 −1960.6 −0.9009 2.73 1690.0 4.35 −0.0026
Wadsleyite (mwd) −2138.50 0.76 93.90 4.051 0.2087 0.3942 −1709.5 −1.3028 2.37 1726.0 3.84 −0.0022
Pyroxene and pyroxenoid Acmite (acm) −2583.50 2.43 170.60 6.459 0.3071 1.6758 −1685.5 −2.1258 2.11 1060.0 4.08 −0.0038
Ca-eskola pyroxene (caes) −3002.01 1.74 127.00 6.050 0.3620 −1.6944 −175.9 −3.5657 2.31 1192.0 5.19 −0.0044
Ca-Tschermak pyroxene (cats) −3310.14 0.80 135.00 6.356 0.3476 −0.6974 −1781.6 −2.7575 2.08 1192.0 5.19 −0.0044 2
Clinoenstatite (cen) −3091.12 0.66 132.00 6.264 0.3060 −0.3793 −3041.7 −1.8521 2.11 1059.0 8.65 −0.0082
Clinoenstatite high-P (hen) −3082.74 0.67 131.70 6.099 0.3562 −0.2990 −596.9 −3.1853 2.26 1500.0 5.50 −0.0036
Diopside (di) −3201.69 0.62 142.90 6.619 0.3145 0.0041 −2745.9 −2.0201 2.73 1192.0 5.19 −0.0044
Enstatite (en) −3090.23 0.66 132.50 6.262 0.3562 −0.2990 −596.9 −3.1853 2.27 1059.0 8.65 −0.0082
Ferrosilite (fs) −2388.72 0.81 189.90 6.592 0.3987 −0.6579 1290.1 −4.0580 3.26 1010.0 4.08 −0.0040
Hedenbergite (hed) −2841.92 0.94 175.00 6.795 0.3402 0.0812 −1047.8 −2.6467 2.38 1192.0 3.97 −0.0033
Jadeite (jd) −3025.26 1.67 133.50 6.040 0.3194 0.3616 −1173.9 −2.4695 2.10 1281.0 3.81 −0.0030
Kosmochlore (kos) −2746.80 2.46 149.65 6.309 0.3092 0.5419 −664.6 −2.1766 1.94 1308.0 3.00 −0.0023
Mg-Tschermak pyroxene (mgts) −3196.61 0.73 131.00 6.050 0.3714 −0.4082 −398.4 −3.5471 2.17 1028.0 8.55 −0.0083
Protoenstatite (pren) −3084.57 0.67 137.00 6.476 0.3562 −0.2990 −596.9 −3.1853 2.30 1059.0 8.65 −0.0082
Pseudowollastonite (pswo) −1627.94 0.47 87.80 4.008 0.1578 0 −967.3 −1.0754 2.85 1100.0 4.08 −0.0037
Pyroxmangite (pxmn) −1323.14 0.73 99.30 3.472 0.1384 0.4088 −1936.0 −0.5389 2.80 840.0 4.00 −0.0048
Rhodonite (rhod) −1322.35 0.73 100.50 3.494 0.1384 0.4088 −1936.0 −0.5389 2.81 840.0 4.00 −0.0048
Walstromite (wal) −1625.88 0.48 83.50 3.763 0.1593 0 −967.3 −1.0754 2.54 795.0 4.10 −0.0052
Wollastonite (wo) −1633.75 0.47 82.50 3.993 0.1593 0 −967.3 −1.0754 2.54 795.0 4.10 −0.0052
Amphibole Anthophyllite (anth) −12066.85 2.48 537.00 26.540 1.2773 2.5825 −9704.6 −9.0747 2.52 700.0 4.11 −0.0059
Anthophyllite (fanth) −9624.53 8.80 725.00 27.870 1.3831 3.0669 −4224.7 −11.2576 2.74 700.0 4.11 −0.0059
Cummingtonite (cumm) −12064.71 2.48 538.00 26.330 1.2773 2.5825 −9704.6 −9.0747 2.52 700.0 4.11 −0.0059
Ferroactinolite (fact) −10503.82 2.88 710.00 28.420 1.2900 2.9992 −8447.5 −8.9470 2.88 760.0 4.10 −0.0054
Glaucophane (fgl) −10880.25 5.15 624.00 26.590 1.7629 −11.8992 9423.7 −20.2071 1.83 890.0 4.09 −0.0046
Glaucophane (gl) −11960.24 3.55 530.00 25.980 1.7175 −12.1070 7075.0 −19.2720 1.49 883.0 4.09 −0.0046
Grunerite (grun) −9607.15 3.02 735.00 27.840 1.3831 3.0669 −4224.7 −11.2576 2.74 648.0 4.12 −0.0064
Pargasite (parg) −12664.49 2.27 635.00 27.190 1.2802 2.2997 −12359.5 −8.0658 2.80 912.0 4.09 −0.0045
Riebeckite (rieb) −10024.77 5.30 695.00 27.490 1.7873 −12.4882 9627.1 −20.2755 1.80 890.0 4.09 −0.0046
Tremolite (tr) −12304.56 2.17 553.00 27.270 1.2602 0.3830 −11455.0 −8.2376 2.61 762.0 4.10 −0.0054
Tschermakite (ts) −12555.30 1.77 533.00 26.800 1.2448 2.4348 −11965.0 −8.1121 2.66 760.0 4.10 −0.0054
Other chain silicates Deerite (deer ) −18341.50 6.45 1650.00 55.740 3.1644 −2.7883 −5039.1 −26.7210 2.75 630.0 4.12 −0.0065
Carpholite (fcar) −4411.57 1.01 251.10 10.695 0.6866 −1.2415 186.0 −6.8840 2.21 525.0 4.14 −0.0079
Carpholite (mcar) −4771.22 0.79 221.50 10.590 0.6830 −1.4054 291.0 −6.9764 2.43 525.0 4.14 −0.0079
Sapphirine (fspr) −9659.86 5.87 485.00 19.923 1.1329 −0.7348 −10420.2 −7.0366 1.96 2500.0 4.04 −0.0017
Sapphirine (spr4) −11022.40 3.10 425.50 19.900 1.1331 −0.7596 −8816.6 −8.1806 2.05 2500.0 4.04 −0.0016
Sapphirine (spr5) −11135.69 3.83 419.50 19.750 1.1034 0.1015 −10957.0 −7.4092 2.06 2500.0 4.04 −0.0016
Mica annite (ann) −5144.23 3.19 418.00 15.432 0.8157 −3.4861 19.8 −7.4667 3.80 513.0 7.33 −0.0143
Celadonite (cel) −5834.87 2.83 290.00 13.957 0.7412 −1.8748 −2368.8 −6.6169 3.07 700.0 4.11 −0.0059
Celadonite (fcel) −5468.47 2.86 330.00 14.070 0.7563 −1.9147 −1586.1 −6.9287 3.18 700.0 4.11 −0.0059
Eastonite (east) −6330.48 3.04 318.00 14.738 0.7855 −3.8031 −2130.3 −6.8937 3.80 530.0 7.33 −0.0143
Margarite (ma) −6242.11 1.40 265.00 12.964 0.7444 −1.6800 −2074.4 −6.7832 2.33 1000.0 4.08 −0.0041
Mn-biotite (mnbi) −5477.59 4.85 433.00 15.264 0.8099 −5.9213 −1514.4 −6.9987 3.80 530.0 7.33 −0.0143
Muscovite (mu) −5976.56 2.90 292.00 14.083 0.7564 −1.9840 −2170.0 −6.9792 3.07 490.0 4.15 −0.0085
Na-phlogopite (naph) −6171.92 1.99 318.00 14.450 0.7735 −4.0229 −2597.9 −6.5126 3.28 513.0 7.33 −0.0143
Paragonite (pa) −5942.91 1.81 277.00 13.211 0.8030 −3.1580 217.0 −8.1510 3.70 515.0 6.51 −0.0126
Phlogopite (phl) −6214.95 2.90 326.00 14.964 0.7703 −3.6939 −2328.9 −6.5316 3.80 513.0 7.33 −0.0143
Chlorites Al-free chlorite (afchl) −8728.65 2.27 439.00 21.570 1.1550 −0.0417 −4024.4 −9.9529 2.04 870.0 4.09 −0.0047
Amesite (ames) −9039.80 1.96 413.00 20.710 1.1860 −0.2599 −3627.2 −10.6770 2.00 870.0 4.09 −0.0047
Clinochlore (clin) −8909.23 1.55 437.00 21.140 1.1708 −0.1508 −3825.8 −10.3150 2.04 870.0 4.09 −0.0047
Daphnite (daph) −7116.71 3.20 584.00 21.620 1.1920 −0.5940 −4826.4 −9.7683 2.27 870.0 4.09 −0.0047
Mn-chlorite (mnchl) −7702.37 8.36 595.00 22.590 1.1365 −0.5243 −5548.1 −8.9115 2.23 870.0 4.09 −0.0047
Sudoite (fsud) −7900.11 2.08 456.00 20.400 1.4663 −4.7365 −1182.8 −14.3880 2.08 870.0 4.09 −0.0047
Sudoite (sud) −8626.91 1.65 395.00 20.300 1.4361 −4.8749 −2748.5 −13.7640 1.99 870.0 4.09 −0.0047
Other sheet silicates Antigorite (atg) −71416.61 15.14 3600.00 175.480 9.6210 −9.1183 −35941.6 −83.0342 2.60 496.0 6.31 −0.0127
Chrysotile (chr) −4360.96 0.98 221.30 10.746 0.6247 −2.0770 −1721.8 −5.6194 2.20 628.0 4.00 −0.0064
Fe-talc (fta) −4798.43 4.24 352.00 14.225 0.5797 3.9494 −6459.3 −3.0881 1.80 430.0 6.17 −0.0144
Greenalite (glt) −3297.65 1.69 310.00 11.980 0.5764 0.2984 −3757.0 −4.1662 2.28 630.0 4.00 −0.0063
Kaolinite (kao) −4122.10 0.78 203.70 9.934 0.4367 −3.4295 −4055.9 −2.6991 2.51 645.0 4.12 −0.0064
Lizardite (liz) −4369.14 1.08 212.00 10.645 0.6147 −2.0770 −1721.8 −5.6194 2.20 710.0 3.20 −0.0045
Minnesotaite (minn) −4819.29 1.49 355.00 14.851 0.5797 3.9494 −6459.3 −3.0881 1.80 430.0 6.17 −0.0144
Minnesotaite (minm) −5866.01 10.26 263.90 14.291 0.6222 0 −6385.5 −3.9163 1.80 430.0 6.17 −0.0144
Prehnite (fpre) −5766.75 1.35 320.00 14.800 0.7371 −1.6810 −1957.3 −6.3581 1.58 1093.0 4.01 −0.0037
Prehnite (pre) −6202.10 1.11 292.80 14.026 0.7249 −1.3865 −2059.0 −6.3239 1.58 1093.0 4.01 −0.0037
Prl-talc (tap) −5589.24 1.03 245.00 13.450 0.7845 −4.2948 1251.0 −8.4959 4.50 370.0 10.00 −0.0271
Pyrophyllite (prl) −5640.68 1.01 239.00 12.804 0.7845 −4.2948 1251.0 −8.4959 4.50 370.0 10.00 −0.0271
Stilpnomelane (fstp) −12550.45 9.09 930.20 37.239 1.9443 −1.2289 −4840.2 −16.6350 3.68 513.0 7.33 −0.0143
Stilpnomelane (mstp) −14288.03 25.51 847.40 36.577 1.8622 −1.4018 −8983.1 −14.9230 3.71 513.0 7.33 −0.0143
Talc (ta) −5897.17 1.16 259.00 13.665 0.6222 0 −6385.5 −3.9163 1.80 430.0 6.17 −0.0144
Tschermak-talc (tats) −5992.20 0.98 259.00 13.510 0.5495 3.6324 −8606.6 −2.5153 1.80 430.0 6.17 −0.0144
Feldspar and feldspathoid Albite (ab) −3935.49 1.69 207.40 10.067 0.4520 −1.3364 −1275.9 −3.9536 2.36 541.0 5.91 −0.0109 2
Albite-high (abh) −3921.49 1.68 224.30 10.105 0.4520 −1.3364 −1275.9 −3.9536 2.40 541.0 5.91 −0.0109
Analcite (anl) −3307.25 1.68 232.00 9.740 0.6435 −1.6067 9302.3 −9.1796 2.76 400.0 4.18 −0.0104
Anorthite (an) −4232.70 0.79 200.50 10.079 0.3705 1.0010 −4339.1 −1.9606 1.41 860.0 4.09 −0.0048 2
Carnegieite-high (cgh) −2077.99 1.76 135.00 5.670 0.2292 1.1876 0 −1.9707 4.67 465.0 4.16 −0.0089
Carnegieite-low (cg) −2091.70 1.76 118.70 5.603 0.1161 8.6021 −1992.7 0 4.50 465.0 4.16 −0.0089
Kalsilite (kls) −2122.89 2.91 136.00 6.052 0.2420 −0.4482 −895.8 −1.9358 3.16 514.0 2.00 −0.0039
Leucite (lc) −3029.23 2.82 198.50 8.826 0.3698 −1.6332 684.7 −3.6831 1.85 450.0 5.70 −0.0127 2
Microcline (mic) −3975.33 2.80 214.30 10.871 0.4488 −1.0075 −1007.3 −3.9731 1.65 583.0 4.02 −0.0069
Nepheline (ne) −2094.54 1.75 124.40 5.419 0.2727 −1.2398 0 −2.7631 4.63 465.0 4.16 −0.0089 1
Sanidine (san) −3966.68 2.80 214.30 10.871 0.4488 −1.0075 −1007.3 −3.9731 1.65 583.0 4.02 −0.0069 2
Silica minerals Coesite (coe) −907.02 0.27 39.60 2.064 0.1078 −0.3279 −190.3 −1.0416 1.23 979.0 4.19 −0.0043
Cristobalite (crst) −904.24 0.27 50.86 2.745 0.0727 0.1304 −4129.0 0 0 160.0 4.35 −0.0272
Quartz (q) −910.70 0.27 41.43 2.269 0.0929 −0.0642 −714.9 −0.7161 0 730.0 6.00 −0.0082 1
Stishovite (stv) −876.39 0.49 24.00 1.401 0.0681 0.6010 −1978.2 −0.0821 1.58 3090.0 4.60 −0.0015
Tridymite (trd) −907.08 0.27 44.10 2.800 0.0749 0.3100 −1174.0 −0.2367 0 150.0 4.36 −0.0291
Other framework silicates Heulandite (heu) −10 545.09 1.80 783.00 31.700 1.5048 −3.3224 −2959.3 −13.2972 1.57 274.0 4.00 −0.0146
Hollandite (hol) −37 91.94 5.27 166.20 7.128 0.4176 −0.3617 −4748.1 −2.8199 2.80 1800.0 4.00 −0.0022
Laumontite (lmt) −7262.64 1.12 465.00 20.370 1.0134 −2.1413 −2235.8 −8.8067 1.37 860.0 4.09 −0.0048
Meionite (me) −13 841.95 2.61 752.00 33.985 1.3590 3.6442 −8594.7 −9.5982 1.82 870.0 4.09 −0.0047
K-cymrite (kcm) −4232.63 2.81 281.50 11.438 0.5365 −1.0090 −980.4 −4.7350 3.21 425.0 2.00 −0.0047
Sodalite (sdl) −13405.41 10.54 910.00 42.130 1.5327 4.7747 −2972.8 −12.4270 4.63 465.0 4.16 −0.0089
Stilbite (stlb) −10 896.63 2.23 710.00 32.870 1.5884 −3.2043 −3071.6 −13.9669 1.51 860.0 4.09 −0.0048
Wadeite (wa) −4271.79 6.46 254.00 10.844 0.4991 0 0 −4.3501 2.66 900.0 4.00 −0.0044
Wairakite (wrk) −6662.40 1.11 380.00 19.040 0.8383 −2.1460 −2272.0 −7.2923 1.49 860.0 4.09 −0.0048
Oxides Baddelyite (bdy) −1100.34 1.63 50.40 2.115 0.1035 −0.4547 −416.2 −0.7136 2.00 953.0 3.88 −0.0041
Bixbyite (bix) −959.00 1.09 113.70 3.137 0.1451 2.3534 721.6 −1.0084 2.91 2230.0 4.04 −0.0018
Corundum (cor) −1675.33 0.75 50.90 2.558 0.1395 0.5890 −2460.6 −0.5892 1.80 2540.0 4.34 −0.0017
Cuprite (cup) −170.60 0.11 92.40 2.344 0.1103 0 0 −0.6748 3.33 1310.0 5.70 −0.0043
Eskolaite (esk) −1137.35 4.31 83.00 2.909 0.1190 0.9496 −1442.0 −0.0034 1.59 2380.0 4.00 −0.0017
Geikielite (geik) −1568.97 0.89 73.60 3.086 0.1510 0 −1890.4 −0.6522 2.15 1700.0 8.30 −0.0049
Hematite (hem) −825.65 0.68 87.40 3.027 0.1639 0 −2257.2 −0.6576 2.79 2230.0 4.04 −0.0018 1
Hercynite (herc) −1953.09 0.85 113.90 4.075 0.2167 0.5868 −2430.2 −1.1783 2.06 1922.0 4.04 −0.0021 2
Ilmenite (ilm) −1230.43 0.84 109.50 3.169 0.1389 0.5081 −1288.8 −0.4637 2.40 1700.0 8.30 −0.0049 1
Lime (lime) −634.61 0.50 38.10 1.676 0.0524 0.3673 −750.7 −0.0510 3.41 1130.0 3.87 −0.0034
Manganosite (mang) −385.55 0.41 59.70 1.322 0.0598 0.3600 −31.4 −0.2826 3.69 1645.0 4.46 −0.0027
Mg-corundum (mcor) −1474.43 2.87 59.30 2.635 0.1478 0.2015 −2395.0 −0.8018 2.12 2110.0 4.55 −0.0022
Magnesioferrite (mft) −1442.29 2.71 121.00 4.457 0.2705 −0.7505 −999.2 −2.0224 3.63 1857.0 4.05 −0.0022 1
Magnetite (mt) −1114.51 0.95 146.90 4.452 0.2625 −0.7205 −1926.2 −1.6557 3.71 1857.0 4.05 −0.0022 1
Ni-oxide (NiO ) −239.47 0.36 38.00 1.097 0.0477 0.7824 −392.5 0 3.30 2000.0 3.94 −0.0020 1
Periclase (per) −601.55 0.27 26.50 1.125 0.0605 0.0362 −535.8 −0.2992 3.11 1616.0 3.95 −0.0024
Periclase (fper) −271.97 2.05 60.60 1.206 0.0444 0.8280 −1214.2 0.1852 7.43 1520.0 4.90 −0.0032
Picrochromite (picr) −1762.60 3.28 118.30 4.356 0.1961 0.5398 −3126.0 −0.6169 1.80 1922.0 4.04 −0.0021 2
Pyrophanite (pnt) −1361.99 2.16 105.50 3.288 0.1435 0.3373 −1940.7 −0.4076 2.40 1700.0 8.30 −0.0049
Rutile (ru) −944.37 0.78 50.50 1.882 0.0904 0.2900 0 −0.6238 2.24 2220.0 4.24 −0.0019
Spinel (sp) −2301.26 0.84 82.00 3.978 0.2229 0.6127 −1686.0 −1.5510 1.93 1922.0 4.04 −0.0021 2
Tenorite (ten) −156.10 2.18 42.60 1.222 0.0310 1.3740 −1258.0 0.3693 3.57 2000.0 3.94 −0.0020
Ulvospinel (usp) −1491.10 1.01 180.00 4.682 −0.1026 14.2520 −9144.5 5.2707 3.86 1857.0 4.05 −0.0022
Hydroxides Brucite (br) −923.65 0.30 63.20 2.463 0.1584 −0.4076 −1052.3 −1.1713 6.20 415.0 6.45 −0.0155
Diaspore (dsp) −999.86 0.38 34.50 1.786 0.1451 0.8709 584.4 −1.7411 3.57 2280.0 4.04 −0.0018
Goethite (gth) −561.79 0.35 60.30 2.082 0.1393 0.0147 −212.7 −1.0778 4.35 2500.0 4.03 −0.0016
Carbonates Ankerite (ank) −1970.62 0.77 188.46 6.606 0.3410 −0.1161 0 −3.0548 3.46 914.0 3.88 −0.0043 2
Aragonite (arag) −1207.82 0.46 89.80 3.415 0.1923 −0.3052 1149.7 −2.1183 6.14 614.0 5.87 −0.0096 1
Calcite (cc) −1207.88 0.46 92.50 3.689 0.1409 0.5029 −950.7 −0.8584 2.52 733.0 4.06 −0.0055 1
Dolomite (dol) −2325.76 0.58 156.10 6.429 0.3589 −0.4905 0 −3.4562 3.28 943.0 3.74 −0.0040 2
Magnesite (mag) −1110.93 0.32 65.50 2.803 0.1864 −0.3772 0 −1.8862 3.38 1028.0 5.41 −0.0053
Rhodochrosite (rhc) −892.28 0.41 98.00 3.107 0.1695 0 0 −1.5343 2.44 953.0 3.88 −0.0041
Siderite (sid) −762.22 0.57 93.30 2.943 0.1684 0 0 −1.4836 4.39 1200.0 4.07 −0.0034
Sulphides and halides Anhydrite (any) −1434.40 3.50 106.90 4.594 0.1287 4.8545 −1223.0 −0.5605 4.18 543.8 4.19 −0.0077
Halite (hlt) −411.30 0.22 72.10 2.702 0.0452 1.7970 0 0 11.47 238.0 5.00 −0.0210
Pyrite (pyr) −171.64 1.28 52.90 2.394 0.0373 2.6715 −1817.0 0.6493 3.10 1395.0 4.09 −0.0029
Pyrrhotite (trot) −99.03 1.34 65.50 1.819 0.0502 1.1052 −940.0 0 5.68 658.0 4.17 −0.0063 1
Pyrrhotite (trov) −96.02 1.17 57.50 1.738 0.0511 0.8307 −669.7 0 5.94 658.0 4.17 −0.0063 1
Troilite (lot) −102.16 0.48 60.00 1.818 0.0502 1.1052 −940.0 0 4.93 658.0 4.17 −0.0063 1
Troilite (tro) −97.76 0.48 70.80 1.819 0.0502 1.1052 −940.0 0 5.73 658.0 4.17 −0.0063 1
Sylvite (syv) −436.50 0.22 82.60 3.752 0.0462 1.7970 0 0 11.09 170.0 5.00 −0.0294
Elements Copper (Cu) 0 0.00 33.14 0.711 0.0124 0.9220 −379.9 0.2335 3.58 1625.0 4.24 −0.0026
Diamond (diam) 2.00 0.06 2.38 0.342 0.0243 0.6272 −377.4 −0.2734 0.49 4465.0 1.61 −0.0004
Graphite (gph) 0.00 0.00 5.74 0.530 0.0510 −0.4429 488.6 −0.8055 1.67 312.0 3.90 −0.0125
Iron (iron) 0.00 0.00 27.09 0.709 0.0462 0.5159 723.1 −0.5562 3.56 1640.0 5.16 −0.0031 1
Nickel (Ni) 0.00 0.00 29.87 0.659 0.0498 0 585.9 −0.5339 4.28 1905.0 4.25 −0.0022 1
Sulphur (S) 0.00 0.00 32.05 1.551 0.0566 −0.4557 638.0 −0.6818 6.40 145.0 7.00 −0.0063
Gas species Methane (CH4) −74.81 0.37 186.26 0 0.1501 0.2063 3427.7 −2.6504 0 0 0 0
Carbon monoxide (CO) −110.53 0.19 197.67 0 0.0457 −0.0097 662.7 −0.4147 0 0 0 0
Carbon dioxide (CO2) −393.51 0.08 213.70 0 0.0878 −0.2644 706.4 −0.9989 0 0 0 0
Hydrogen (H2) 0.00 0.00 130.70 0 0.0233 0.4627 0 0.0763 0 0 0 0
Hydrogen sulphide (H2S) −20.30 0.44 205.77 0 0.0474 1.0240 615.9 −0.3978 0 0 0 0
Oxygen (O2) −0.00 0.00 205.20 0 0.0483 −0.0691 499.2 −0.4207 0 0 0 0
Sulphur gas (S2) 128.54 0.32 231.00 0 0.0371 0.2398 −161.0 −0.0650 0 0 0 0
Water (H2O) −241.81 0.02 188.80 0 0.0401 0.8656 487.5 −0.2512 0 0 0 0
Melt species Albite liq (abL) −3926.05 1.69 149.90 10.858 0.3580 0 0 0 3.37 176.0 14.35 −0.0815 4
Anorthite liq (anL) −4277.91 0.84 29.00 10.014 0.4300 0 0 0 5.14 210.0 6.38 −0.0304 4
Corundum liq (corL) −1632.02 1.02 14.90 3.369 0.1576 0 0 0 7.03 150.0 6.00 0 4
Diopside liq (diL) −3193.70 0.70 42.10 7.288 0.3340 0 0 0 8.51 249.0 8.04 −0.0323 4
Enstatite liq (enL) −3096.58 0.80 −4.00 6.984 0.3536 0 0 0 6.81 218.0 7.20 −0.0330 4
Fayalite liq (faL) −1463.04 0.71 96.00 4.677 0.2437 0 0 0 10.71 290.0 10.42 −0.0359 4
Forsterite liq (foL) −2237.32 0.60 −62.00 4.312 0.2694 0 0 0 9.20 362.0 10.06 −0.0278 4
Water liq (h2oL) −295.01 0.03 45.50 1.460 0.0800 0 0 0 46.33 46.2 1.50 −0.0325 4
Halite liq (hltL) −392.99 0.23 80.10 2.938 0.0720 −0.3223 0 0 29.50 64.0 4.61 −0.0720 4
K-feldspar liq (kspL) −3980.06 2.80 132.20 11.431 0.3680 0 0 0 4.93 174.0 6.84 −0.0393 4
Leucite liq (lcL) −3068.37 2.82 102.00 8.590 0.2870 0 0 0 6.70 175.0 7.00 −0.0394 4
Lime liq ( limL) −692.37 0.52 −47.50 1.303 0.0990 0 0 0 17.50 362.0 10.06 −0.0278 4
Nepheline liq (neL) −2116.71 1.76 52.90 5.200 0.2165 0 0 0 13.70 250.0 7.37 −0.0295 4
Periclase liq (perL) −654.14 0.36 −64.30 0.839 0.0990 0 0 0 22.60 362.0 10.06 −0.0278 4
Quartz liq (qL) −921.03 0.27 16.30 2.730 0.0825 0 0 0 0 220.0 9.46 −0.0430 4
Sillimanite liq (silL) −2594.05 1.79 10.00 6.051 0.2530 0 0 0 4.08 220.0 6.36 −0.0289 4
Sylvite liq (syvL) −417.41 0.23 94.50 3.822 0.0669 0 0 0 30.10 56.0 4.65 −0.0830 4
Wollastonite liq (woL) −1642.20 0.51 22.50 3.965 0.1674 0 0 0 6.69 305.0 9.38 −0.0308 4
Aqueous species H+ 0 0.00 0 0 0 0 0 0 0 0 0 0 3
inline image −167.08 0.11 56.73 1.779 0 0 0 0 0 0 0 0 3
inline image −230.02 0.11 −10.71 −0.418 0 0 0 0 0 0 0 0 3
Na+ −240.30 0.11 58.40 −0.111 0 19.1300 0 0 0 0 0 0 3
K+ −252.17 0.11 101.04 0.906 0 7.2700 0 0 0 0 0 0 3
Ca++ −543.30 1.09 −56.50 −1.806 0 −6.9000 0 0 0 0 0 0 3
Mg++ −465.96 1.09 −138.10 −2.155 0 −4.6200 0 0 0 0 0 0 3
Fe++ −90.42 3.28 −107.11 −2.220 0 0 0 0 0 0 0 0 3
Al+++ −527.23 1.64 −316.30 −4.440 0 0 0 0 0 0 0 0 3
inline image −675.23 0.11 −50.00 −0.502 0 0 0 0 0 0 0 0 3
AlOH3 −1251.85 1.09 53.60 0 0 0 0 0 0 0 0 0 3
AlOH4 −1495.78 1.09 126.90 0 0 0 0 0 0 0 0 0 3
KOH −473.62 1.31 109.62 −0.800 0 9.4500 0 0 0 0 0 0 3
HCl −162.13 0.87 56.73 1.779 0 9.0300 0 0 0 0 0 0 3
KCl −400.03 1.42 184.81 4.409 0 5.4300 0 0 0 0 0 0 3
NaCl −399.88 1.20 126.09 2.226 0 19.1300 0 0 0 0 0 0 3
CaCl2 −877.06 1.31 46.00 3.260 0 13.6900 0 0 0 0 0 0 3
CaCl+ −701.28 1.75 27.36 0.574 0 −6.9000 0 0 0 0 0 0 3
MgCl2 −796.08 2.29 −22.43 2.920 0 23.9900 0 0 0 0 0 0 3
MgCl+ −632.48 0.87 −81.37 0.126 0 −4.6200 0 0 0 0 0 0 3
FeCl2 −375.34 3.28 109.88 2.700 0 45.0300 0 0 0 0 0 0 3
aqSi −887.81 0.68 46.35 1.832 0 17.7500 0 0 0 0 0 0 3
inline image −16.04 5.46 68.00 2.065 0 0 0 0 0 0 0 0 3
HSO3 −623.82 5.46 139.00 3.330 0 0 0 0 0 0 0 0 3
SO42− −906.12 5.46 18.80 1.388 0 0 0 0 0 0 0 0 3
HSO4 −885.70 5.46 125.04 3.520 0 0 0 0 0 0 0 0 3
  • inline image is the regressed enthalpy of formation from the elements; inline image is 1SD on the enthalpy of formation; inline image is the entropy; inline image the volume (all properties at 1 bar and 298 K); inline image, inline image, inline image and inline image are the coefficients in the heat capacity polynomial inline image; inline image and inline image are thermal expansion and bulk modulus; inline image is the thermal expansion parameter; inline image, inline image and inline image are the bulk modulus (at 298 K, 1 bar) and its first and second pressure derivatives; inline image is a flag, 1 signifying a phase transition described via Landau theory and 2 signifying a phase transition described via Bragg-Williams theory, 3 signifies an aqueous species and 4 signifies a melt end-member.
Table 2b. Landau theory parameters used for end-members in the data set.
inline image inline image inline image
lrn 1710 10.03 0.0500
sph 485 0.40 0.0050
q 847 4.95 0.1188
ne 467 10.00 0.0800
hem 955 15.60 0
NiO 520 5.70 0
ilm 1900 12.00 0.0200
mt 848 35.00 0
mft 665 17.00 0
cc 1240 10.00 0.0400
arag 1240 9.00 0.0450
trot 598 12.00 0.0410
tro 598 12.00 0.0410
lot 420 10.00 0
trov 595 10.00 0.0160
iron 1042 8.30 0
Ni 631 3.00 0
  • inline image is the critical temperature at 1 bar, inline image and inline image are the entropy and volume of disordering at inline image. See Holland & Powell (1998) for further details.
Table 2c. Symmetric formalism (SF; a generalized Bragg–Williams theory) parameters used for end-members in the data set.
inline image inline image inline image inline image inline image Fac
sill 4.75 0.0100 4.75 0.0100 1 0.25
geh 7.51 0.0900 7.50 0.0900 1 0.80
crd 36.71 0.1000 36.70 0.1000 2 1.50
hcrd 36.71 0.1000 36.70 0.1000 2 1.50
fcrd 36.71 0.1000 36.70 0.1000 2 1.50
mncrd 36.71 0.1000 36.70 0.1000 2 1.50
cats 3.80 0.0100 3.80 0.0100 1 0.25
ab 14.00 0.0420 13.00 0.0420 3 0.90
san 8.65 0.0240 8.50 0.0240 3 0.80
an 42.01 0.1000 42.00 0.1000 1 2.00
lc 11.61 0.4000 11.60 0.4000 2 0.70
sp 8.00 0 1.20 0 2 0.50
herc 18.30 0 13.60 0 2 1.00
picr 8.00 0 1.20 0 2 0.50
dol 11.91 0.0160 11.90 0.0160 1 1.00
ank 11.91 0.0160 11.90 0.0160 1 1.00
  • inline image and inline image are the total enthalpy and volume of disordering, inline image and inline image are the interaction energy terms used in inline image, inline image is the number of Si disordering with each Al, and fac is a scaling factor on the energy of disordering. See Holland & Powell (1996a,b) for further details.
Table 2d. Values for inline image, the temperature dependence of the bulk modulus for melt end-members in the data set.
inline image
SyvL −0.02000
hltL −0.01500
perL −0.04100
limL −0.04100
corL −0.03500
qL −0.03500
h2oL −0.00001
foL −0.04400
faL −0.05500
woL −0.02000
enL −0.02400
diL −0.03730
silL −0.02900
anL −0.05500
kspL −0.00900
abL −0.02600
neL −0.00800
lcL 0
Table 2e. inline image, the augmented inline image term in the heat capacity for aqueous species in the modified density model of Anderson et al., (1991), inline image.
inline image
Na+ 0.0306
K+ 0.0072
AlOH3 0.1015
inline image 0.0965
HCl 0.0540
CaCl2 0.0343
CaCl+ 0.0400
MgCl2 0.0186
MgCl+ 0.1126
FeCl2 0.0124
aqSi 0.0283
inline image 0.2680
HSO4 0.0220
Table 3a. Regressed values for enthalpy of formation (kJ/mol) from the elements and their uncertainties compared with the compilation of Robie & Hemingway (1995). The ΔfH and corresponding standard deviation (σ) are from the original data tabulation, for ambient conditions. The e* are residuals, the difference between fitted values and tabulated values, normalised to σ. The fitted values and their standard deviations are given in Table 2. hat is the diagonal element of the hat matrix.
ΔfH σ e * hat
fo −2173.00 2.00 −0.22 0.07
fa −1478.20 1.40 −0.34 0.20
teph −1731.50 3.00 0.82 0.10
lrn −2306.70 3.00 0.11 0.08
py −6285.00 4.00 −0.72 0.06
alm −5264.70 5.00 −0.81 0.06
gr −6643.00 3.00 −0.02 0.20
andr −5771.00 5.90 −0.32 0.06
and −2589.90 2.00 −0.59 0.10
ky −2593.80 2.00 −0.39 0.10
sill −2586.10 2.00 −0.13 0.10
ak −3865.40 3.00 0.08 0.08
crd −9161.50 5.90 0.34 0.06
sph −2602.90 3.00 −0.41 0.09
zrc −2034.20 3.10 0.27 0.24
en −3091.20 3.00 −0.32 0.04
cen −3091.10 3.00 0.01 0.04
fs −2390.40 6.00 −0.28 0.02
di −3201.50 2.00 0.10 0.08
jd −3029.30 3.60 −1.12 0.18
cats −3306.30 5.00 0.77 0.02
rhod −1321.60 2.00 0.38 0.11
pxmn −1322.30 2.00 0.42 0.11
wo −1634.80 1.40 −0.75 0.09
pswo −1627.60 1.40 0.25 0.09
prl −5640.00 1.50 0.46 0.38
ta −5897.20 2.00 −0.02 0.28
kao −4120.10 4.00 0.50 0.03
chr −4360.00 3.00 0.32 0.09
ab −3935.00 2.60 0.19 0.35
abh −3921.00 5.00 0.10 0.10
mic −3974.60 3.90 0.19 0.43
san −3965.60 4.10 0.26 0.39
an −4234.00 3.00 −0.43 0.06
q −910.70 0.50 −0.01 0.25
trd −907.00 4.00 0.02 0.00
coe −905.60 2.10 0.67 0.01
ne −2092.10 3.90 0.63 0.17
cg −2089.30 4.00 0.60 0.16
anl −3310.10 5.00 −0.57 0.09
lime −635.10 0.90 −0.54 0.26
ru −944.00 0.80 0.46 0.79
per −601.60 0.30 −0.18 0.70
fper −260.00 5.00 −0.03 0.42
mang −385.20 0.50 0.71 0.57
cor −1675.70 1.30 −0.28 0.28
hem −826.20 1.30 −0.43 0.23
bix −959.00 1.00 0 1.00
NiO −239.30 0.40 0.44 0.69
pnt −1360.10 4.00 0.47 0.24
ilm −1232.00 2.50 −0.63 0.09
bdy −1100.60 1.70 −0.15 0.77
ten −156.10 2.00 0 1.00
cup −170.60 0.10 0 1.00
sp −2299.10 2.00 1.08 0.15
mt −1115.73 2.10 −0.58 0.17
mft −1441.50 3.00 0.26 0.68
usp −1493.80 3.00 −0.90 0.09
picr −1762.60 3.00 0 1.00
br −924.50 2.00 0.58 0.02
dsp −1000.60 5.00 −0.15 0.00
gth −562.60 2.10 −0.39 0.02
cc −1207.40 1.30 0.37 0.11
arag −1207.40 1.40 0.30 0.09
mag −1113.30 4.00 −0.59 0.01
sid −760.60 3.00 0.54 0.03
rhc −892.90 0.50 −1.24 0.58
dol −2324.50 1.50 0.84 0.13
syv −436.50 0.20 0 1.00
hlt −411.30 0.20 0 1.00
pyr −171.50 1.70 0.08 0.48
lot −101.00 3.00 0.39 0.02
trov −97.50 5.00 −0.30 0.05
any −1434.40 3.20 0 1.00
diam 1.90 0.10 −1.01 0.26
S2 128.60 0.30 0.19 0.98
H2S −20.60 0.70 −0.42 0.33
Table 3b. Oxide and reaction calorimetry. Enthalpies (kJ), with uncertainty (σ), are given at T and 298K. e* is the normalised enthalpy residual, and hat is the diagonal element of the hat matrix.
Reaction T °C H (cal) σ H (298) e * hat
mwd mwd = fo 702 30.0 3.0 32.3 −0.6 0.02 Akaogi et al. (1989)
mrw mrw = fo 702 39.1 2.6 43.6 −0.5 0.04 Akaogi et al. (1989)
mrw mrw = mwd 702 9.1 2.6 11.2 0.1 0.01 Akaogi et al. (1989)
fwd fwd = fa 702 9.6 1.3 9.6 −0.2 0.23 Akaogi et al. (1989)
frw frw = fa 702 3.8 2.4 5.5 −0.2 0.02 Akaogi et al. (1989)
frw frw = fwd 702 −5.8 2.7 −4.1 −0.1 0.07 Akaogi et al. (1989)
mak mak = mpv 697 −51.1 6.6 −51.0 −0.5 0.00 Akaogi & Ito (1993)
mak 2mak = en 697 118.2 8.6 121.8 1.5 0.01 Ashida et al. (1988)
mrw mrw = mpv + per 697 −96.8 5.8 −92.8 −1.7 0.01 Navrotsky (1995)
mag mag = per + CO2 25 −116.8 1.0 −116.8 −0.9 0.03 Chai & Navrotsky (1993)
cc cc = lime + CO2 25 −178.3 1.2 −178.3 1.2 0.04 Chai & Navrotsky (1993)
dol dol = per + lime + 2CO2 25 −304.3 1.9 −304.3 −0.9 0.03 Chai & Navrotsky (1993)
sill sill = cor + q 697 −2.4 1.2 −0.5 −0.6 0.00 Charlu et al. (1975)
and and = cor + q 697 −5.0 1.2 −3.6 −0.7 0.00 Anderson et al. (1977)
ky ky = cor + q 697 −8.3 1.2 −7.1 −0.1 0.00 Anderson & Kleppa (1969)
sp sp = per + cor 697 −22.5 1.2 −25.7 −1.1 0.03 Charlu et al. (1975)
py py = 3per + cor + 3q 697 −74.1 5.5 −69.8 0.1 0.01 Charlu et al. (1975)
py 2py = 3en + 2cor 700 55.5 8.6 61.0 0.5 0.00 Charlu et al. (1975)
fo fo = 2per + q 750 −59.5 1.9 −58.0 0.4 0.04 Brousse et al. (1984)
en en = 2per + 2q 697 −67.9 3.5 −66.8 −0.3 0.01 Brousse et al. (1984)
mont mont = lime + per + q 750 −104.8 1.7 −103.4 0.6 0.03 Brousse et al. (1984)
ak ak = 2lime + per + 2q 750 −178.2 1.6 −172.5 0.6 0.11 Brousse et al. (1984)
crd crd = 2per + 2cor + 5q 697 −68.9 3.0 −58.6 −0.8 0.02 Charlu et al. (1975)
spr4 spr4 = 4per + 4cor + 2q 697 −85.7 4.0 −87.7 1.4 0.04 Kleppa & Newton (1975)
di di = lime + per + 2q 697 −146.4 1.7 −143.6 0.3 0.04 Charlu et al. (1975)
wo wo = lime + q 697 −89.9 1.5 −87.8 0.4 0.03 Charlu et al. (1975)
pswo pswo = lime + q 697 −83.3 1.3 −80.3 1.8 0.04 Charlu et al. (1975)
an an = wo + cor + q 727 −13.5 1.5 −10.7 1.5 0.03 Zhu et al. (1993)
rhod rhod = mang + q 713 −26.4 1.3 −24.4 1.3 0.22 Navrotsky & Coons (1976)
rhod rhod = pxmn 713 0.2 2.0 0.2 −0.3 0.00 Navrotsky & Coons (1976)
zrc zrc = q + bdy 25 −24.0 3.0 −24.0 0.0 0.01 O'Neill 2006
ky ky = sill 701 −6.2 1.2 −6.8 0.3 0.00 Holm & Kleppa (1966)
and and = sill 701 −2.8 1.0 −3.3 −0.4 0.01 Holm & Kleppa (1966)
hcrd hcrd = crd + H2O 25 −42.5 3.0 −42.5 0.5 0.00 Carey & Navrotsky (1992)
clin 2clin = ames + afchl 25 −50.0 1.0 −50.0 0 1.00 This study
ep 2ep = fep + cz 25 −25.0 10.0 −25.0 0.0 0.00 Holland & Powell (1998)
ab ab = abh 25 −14.0 0.1 −14.0 −0.0 0.98 Holland & Powell (1996)
mic mic = san 25 −8.6 0.1 −8.6 −0.0 1.00 Holland & Powell (1996)
cg cg = cgh 693 −8.1 1.0 −13.7 0.0 0.00 Richet et al. (1990)
stv stv = coe 25 29.9 1.2 29.9 −0.6 0.10 Liu et al. (1996)
CO2 CO2 = gph + O2 25 −393.5 0.1 −393.5 0.1 0.98 Robie & Hemingway (1985)
H2O 2H2O = 2H2+ O2 25 −483.6 0.0 −483.6 −0.0 1.00 Robie & Hemingway (1985)
H2S H2S = 2H2+ S 25 −20.6 0.6 −20.6 −0.5 0.45 Robie & Hemingway (1985)
CH4 CH4 = gph + 2H2 25 −74.8 0.3 −74.8 0 1.00 Robie & Hemingway (1985)
CO 2CO = 2gph + O2 25 −221.1 0.3 −221.1 0 1.00 Robie & Hemingway (1985)
aqSi aqSi = q 25 22.9 0.6 22.9 0 1.00 Holland & Powell (1998)
corL corL = cor 2050 107.5 5.4 42.8 −0.1 0.04 Richet & Bottinga (1986)
diL diL = di 1397 137.7 7.0 8.1 0.0 0.00 Lange et al. (1991)
faL faL = fa 1217 90.0 3.0 14.0 −0.2 0.00 Richet & Bottinga (1986)
foL foL = fo 1890 114.0 15.0 −61.0 0.3 0.00 Richet & Bottinga (1986)
anL anL = an 1557 134.0 3.0 −38.2 2.3 0.01 Richet & Bottinga (1986)
abL abL = abh 1120 64.5 3.0 −6.9 −0.8 0.00 Richet & Bottinga (1986)
kspL kspL = san 1200 63.0 5.0 −14.4 −0.2 0.00 Richet & Bottinga (1986)
qL qL = crst 1726 8.9 2.0 −17.0 −0.1 0.00 Richet & Bottinga (1986)
enL enL = en 1561 155.6 12.0 −9.8 −0.3 0.00 Richet & Bottinga (1986)
woL woL = pswo 1544 57.3 2.9 −14.5 −0.1 0.00 Richet & Bottinga (1986)
neL neL = ne 1447 46.3 2.0 −22.2 −0.0 0.00 Richet & Bottinga (1986)
lcL lcL = lc 1686 40.0 10.0 −38.4 0.1 0.00 Estimated, this study
cgh cgh = neL 1526 −21.7 3.0 39.7 0.3 0.00 Estimated, this study
perL perL = per 2825 77.0 10.0 −53.7 −0.1 0.00 This study, Howald (1992)
limL limL = lime 2572 52.0 10.0 −57.9 −0.0 0.00 This study, Howald (1992)
lot lot = iron + S 25 −102.6 3.0 −102.6 −0.1 0.02 Evans et al. (2010)
pyr pyr = iron + 2S 25 −171.6 1.7 −171.6 −0.0 0.48 Evans et al. (2010)

Changes to Methodology

The principal differences in methodology from HP98 are outlined before the details of the new data set are presented and discussed.

Equation of state (EOS) for solids

The EOS for solid phases in HP98 involved a thermal expansion expression at 1 bar pressure, with an independent Murnaghan EOS to take the ambient pressure molar volumes to high pressures. To link the expansion and compression terms, a simple linear temperature dependence for the bulk modulus was used. This is now replaced with a more general EOS, and the expansion and compression terms are now linked.

Freund & Ingalls (1989) investigated nine separate EOS to determine which might be most suitable for high pressure work in solids. Their aim was to find a suitable EOS with only two or three adjustable parameters which best fit compression data to very high pressures. The modified Tait equation of Huang & Chow (1974) was one of the best of the equations investigated, in terms of fits to the compression data, and it is adopted here. We then augment this EOS for high temperature use by adding a thermal pressure term, as outlined below, thus integrating the expansion and compression contributions to Gibbs energy. Below, this modified Tait EOS, augmented with a thermal pressure term, is referred to as TEOS.

The 298K (ambient) temperature TEOS, expressed as a three-parameter equation in volume at inline image (where inline image = 298.15K) is:
image(1)
and, in terms of pressure may be rearranged as:
image(2)
The relationship of the parameters to the bulk modulus and its derivatives at zero pressure is (Freund & Ingalls, 1989):
image(3)
where inline image is the bulk modulus at ambient conditions,
image
and inline image and inline image are the first and second derivatives of inline image with pressure also at ambient conditions. Conversely,
image(4)
By substituting equation (3) into equation (1) or (2) and setting inline image, TEOS reduces to the simpler two-parameter Murnaghan equation, with
image
and
image
as used in HP98, with, as a default there, inline image (or inline image).
A major advantage of the three-parameter TEOS over Murnaghan is that the inclusion of the second derivative of bulk modulus gives more flexibility, and allows extrapolation to very high pressures in a sensible fashion when the size and sign of inline image is known. Although Freund & Ingalls (1989) state that experiments do not allow this term to be determined to better than 100% error, their applications suggest that all the successful EOS do seem to point to a fairly uniform but small negative value of inline image for the range of elements and compressible compounds investigated. Jackson & Niesler (1982) suggested that inline image, where inline image is a small number between 0 and 10, and this was confirmed for periclase by Jacobs & Oonk (2000). More importantly, a negative value for inline image is shown to be a requirement in the analysis of Stacey (2005), and should therefore be implemented in such an EOS. Here, to maintain this requirement for a small negative inline image, we adopt the heuristic inline image, with inline image chosen to scale with inline image (see below). With this, the isothermal TEOS can be written in two-parameter form as:
image
or as
image(5)
The relationship between TEOS and the commonly used third-order Birch-Murnaghan, can be seen in series expansion. The latter can be written as:
image
with the Eulerian strain inline image, and inline image. Now, Murnaghan in terms of y is:
image(6)
Accepting that this EOS works well at small compression, TEOS, equation (2), and third-order Birch-Murnaghan, equation (6), can be expanded in terms of inline image around 1 (i.e. no compression). For TEOS to the third power in inline image this gives
image(7)
and for third-order Birch–Murnaghan
image(8)
with this written such that the term in curly brackets corresponds to
image(9)
This brings out that in third-order Birch–Murnaghan, inline image is specified by inline image and inline image, in contrast to TEOS where inline image is a free parameter to be determined from data (or, e.g. via the heuristic above). Note that the term in brackets in equation (9) is close to inline image for inline image, in relation to the heuristic adopted above to approximate inline image. Note also that fourth-order Birch–Murnaghan reduces to third order if the adjustable parameter inline image is substituted with the above expression for inline image. Analogously fourth-order Birch–Murnaghan reduces to third-order Birch–Murnaghan, approximately, if the above heuristic, inline image is adopted. Similar to third-order Birch–Murnaghan, in the so-called universal EOS of Vinet (e.g. Stacey, 2005), inline image is specified by inline image and inline image
image(10)
and an exactly equivalent expression to equation (8) can be written for it.
The EOS adopted here, equation (1), or with the inline image heuristic, equation (5), is derived only for ambient temperature. We may extend it to high temperature by adding a thermal pressure term inline image to equation (2), and using the relationship (Anderson, 1997):
image(11)
For the very few phases that there are sufficient data, Anderson (1997) showed that there is no simple relationship to use for inline image as a function of T, with inline image for some phases becoming constant to high-T, while others increase or decrease slightly. Rearranging the Grüneisen relation gives inline image, and noting that inline image is nearly independent of temperature, the form of inline image should have the shape of a heat capacity function, rising to an approximately constant value. That this is approximately so may be seen for the phases tabulated in Anderson & Isaak (1995) and illustrated here for their forsterite data in Fig. 1a. Here we adopt the simplest regularization that inline image becomes constant to high-T, taking an Einstein function to represent how inline image decreases to zero as temperature decreases to OK:
image
with inline image, and inline image the Einstein temperature. For equation (11), inline image is written as inline image, where n is a normalization constant, equal to inline image at infinite temperature, so inline image, and inline image, with inline image, inline image and inline image being the values of inline image, inline image and inline image at ambient temperature. Then, using equation (11)
image
Details are in the caption following the image

For forsterite, (a) inline image, (b) inline image and (c) inline image, are shown as a function of temperature, at 1 bar. The shape of the temperature dependence is a consequence of the involvement of the Einstein function in the thermal pressure term. The symbols are data from Anderson & Isaak (1995) and the curves are Tait equation of state fits to their data. The Anderson and Isaak data are used here because they present separate values for inline image and inline image, but for the thermodynamic data set itself we have preferred to use the experimental molar volumes listed in Appendix 1.

Writing inline image, this may be rearranged in volume explicit form as:
image(12)
Integrating V with respect to P gives the G contribution
image(13)
This EOS contains an implicit thermal expansion at ambient pressure conditions. At inline image, the thermal expansion inline image is:
image
The compressibility is also a function of temperature and pressure, given by
image

The form of TEOS for thermal expansion is shown in Fig. 1b, with the characteristic shape provided by the Einstein function, and in Fig. 1c the implicit negative temperature dependence of the bulk modulus. These curves are fits of TEOS to the experimental data for forsterite tabulated in Anderson & Isaak (1995). Use of the expressions above necessitates a value for the Einstein temperature inline image for each end-member. Only very rarely are accurate thermal expansion data made at temperatures below ambient, thus making direct determination of inline image by data fitting effectively impossible. We have found that the value of inline image needs only to be known approximately, and affects mainly the low temperature thermal expansion and volume behaviour. An approximate value for inline image is derived for each end-member from the measured entropy (or via Holland, 1989). Thus for end-member i the value of inline image is given by the empirical relationship, inline image, where inline image is the molar entropy (in J inline image) of i and inline image is the number of atoms in i.

TEOS relates the volume at any P–T to the standard state volume with only three adjustable parameters (inline image and inline image). The data set includes a term for inline image to anticipate for the rare occasion where a value other than inline image might be warranted. Fitting TEOS to volume data for phases where volumes have been measured to very high pressures and temperatures (grossular garnet, stishovite and periclase) and for phases where simultaneous high temperature and high pressure measurements have been made (magnesite, dolomite, aragonite, brucite, grossular, andradite, jadeite and muscovite) shows that it behaves very well (see Fig. 3), in fitting all the data, whether at ambient pressures and high temperatures, ambient temperature and high pressures or at combined high pressures and temperatures.

Details are in the caption following the image

Experimental data of Pavese et al. (2001a,b) and the fitted curves from Tait equation of state. (a) The 298 K data to 360 kbar; (b) the high pressure–high temperature data to 1000 K and 40 kbar.

As an example, the data for stishovite to 2300 kbar are shown in Fig. 2a where the lower pressure data (up to 500 kbar) of Andrault et al. (2003) have been fitted with TEOS and, on extrapolation, appear to fit nicely the very high pressure data of Luo et al. (2002). The extrapolatory power of TEOS is seen to be excellent. Also shown in Fig. 2b is the volume thermal expansion data and the good form of the fit to the data. The way volume levels off at low temperature is a reflection of the way thermal expansion drops off to zero (Fig. 1) at low temperatures. Figure 3 illustrates the fit of the high pressure volume data for grossular from Pavese et al. (2001a,b), first as a function of pressure to over 350 kbar, and second as a function of both pressure and temperature to 1000 K and 40 kbar. TEOS appears to have a form that is well suited to represent such data.

Details are in the caption following the image

Stishovite volume data. (a) Precise data of Andrault et al. (2003) up to 500 kbar (squares) and the very high pressure data of Luo et al. (2002) to 2500 kbar (circles with error bars). Error bars for the lower pressure data are smaller than the symbols. Calculated curves: A – fit to low pressure data of Andrault et al., only; B – fit to all data with experimental uncertainties. (b) Volume expansion data of Ito et al. (1974) and the calculated fit.

Although using TEOS in place of Murnaghan makes little difference to the derived thermodynamic data, two related factors have led to significant improvement in the overall data fitting. First, not restricting the value of inline image to 4.0 has allowed better extrapolations to very high pressure, and second (and more significantly) the incorporation of the implicit thermal expansion and the consequent temperature dependence of bulk modulus inline image through the thermal pressure has made the volume behaviour at high pressures and temperatures more reliable.

Equation of state for fluid phases

Pure fluid species

The EOS for fluids used in HP98 was the CORK equation (Holland & Powell, 1991) which was derived for the purposes of extrapolation to high pressures. The equations of Pitzer & Sterner (1995) have now been substituted in place of CORK for both H2O and CO2 for the following two reasons: (i) the CORK expressions did not fit the volumes for H2O in the region of the critical point closely (fig. 2 of Holland & Powell, 1991), and (11) the CORK expressions involved a piecewise continuous transition in compressibility at 2 kbar which made for difficulties in root-finding algorithms for free energy. The differences between CORK and Pitzer & Sterner (1995) volumes and free energies are minor for H2O, and virtually indistinguishable for CO2. Change to the Pitzer & Sterner equations necessitated minor compensating adjustments in entropy for a number of hydrous phases. The CORK equation is, however, retained for calculating volumes and fugacities of CO, CH4, H2, S2 and H2S because of its ease in application of the corresponding-states principle. The constants for the CORK expressions for COH gases are taken from Holland & Powell (1991), table 2). For S2 and H2S the critical constants are taken from Reid et al. (1977) and used with equation (9) in Holland & Powell (1991).

Mixing in fluids

Mixtures of gases, such as H2O and CO2, as well as other species in the COHS system are now handled via a Van Laar model as described in Holland & Powell (2003), in which the volumes of the end-members control the asymmetry parameters directly, which allows a controlled extrapolation to very high pressures. Because the mixing properties are very similar to those generated by the modified Redlich–Kwong EOS, the latter were used to derive Van Laar parameters for all other COHS gas end-members. The COH inline image values are from Holland & Powell (2003), and the remaining ones from Evans et al. (2010). This change has led to an overall reduction in the misfit between mixed silicate-carbonate experiments and thermodynamic data.

The earlier HP98 paper also involved aqueous solution thermodynamic properties, based on a modification of the Anderson density model (Anderson et al. (1991) which is retained here. A problem never addressed satisfactorily for aqueous fluids at geological conditions is that of the transition from the dilute region, where Debye–Huckel type (infinite dilution standard state) models are typically used, to the high ionic strength electrolytes such as saturated salt solutions where Raoult's Law type standard states are used. Progress towards resolving this has been made by Evans & Powell (2005), who devised a model which slides smoothly between the two types of behaviour, allowing a single activity–composition expression to be used for mixed aqueous electrolytes and dissolved COHS gas species. An example where such calculations have been used is given below and further examples may be found in Evans et al. (2010).

Use of univariant and divariant experimentally determined equilibria involving solid solutions

A new feature of this data set is the use of univariant equilibria in solving for enthalpies and mixing properties of solid solutions simultaneously. As an example, the univariant reaction sapphirine + quartz = orthopyroxene + sillimanite in the MAS system has been determined experimentally by Newton (1972), Hensen, (1972) and Chatterjee & Schreyer (1972). Along the length of this reaction, from 1050 °C to 1475 °C, the compositions of pyroxene and sapphirine change. By fitting simultaneously to a set of independent reactions between the end-members, the enthalpies of all end-members (spr4, spr5, en, mgts, sill, q) may be optimized together. Consideration of the variation of mixing properties, via the interaction energies (inline image and inline image) also allowed these values to be refined.

As well as univariant reactions, many divariant equilibria were also fitted in the same manner, allowing easy refinement of mixing energies for a number of solid solutions involved across different reactions. This was particularly helpful in refining the properties of the chlorites in MASH (clin, ames, afchl) through the experiments of Baker & Holland (1996), Jenkins (1981) and Jenkins & Chernosky (1986). It has also been used in a number of Fe–Mg and other exchange equilibria between silicates and between silicates and carbonates.

Order–disorder and Landau models

Treatment of order–disorder in HP98 was done with a Landau tricritical model to account for the sharp lambda peaks in the heat capacity exhibited at the phase transition temperatures in such end-members. This was convenient in making a simple representation of the order–disorder characteristics in stoichiometric phases, but is not satisfactory when dealing with solid solutions involving disordering behaviour because the Landau expansion does not correctly incorporate the configurational entropy associated with cation ordering. We now represent many order disorder transitions with a macroscopic Bragg–Williams type of model, the SF or symmetric formalism of Holland & Powell (1996a,b)). End-members now characterized by the SF model include sillimanite, gehlenite, cordierite, albite, K-feldspar, anorthite, spinel, hercynite, dolomite, ankerite. Using the SF model allows solid solutions involving these end-members to be constructed with standard configurational entropies and thus activity–composition expressions, making them much easier to be used in multicomponent solid-solution phase equilibrium calculations.

Melt species

Following on from the initial modelling of simple granitic systems (Holland & Powell, 2001) and its extension into partial melting of pelitic compositions (White et al., 2001), the data for melt components has improved considerably over those initially presented in HP98. The principal differences lie in enforcing the heat of melting as a constraint, where known, in addition to fitting the experimental PT curves and changes introduced through the relaxation of inline image constraint. Many melt end-members now have their properties consistent with experiments which go to high pressures (e.g. qL to 60 kbar, faL to 70 kbar, foL to 153 kbar). In addition, several new melt end-members have been introduced since HP98 [perL (MgO), limL (CaO), corL (Al2O3), wolL (CaSiO3), neL (NaAlSiO4), lcL (KAlSi2O6), KCl and NaCl liquids].

The new thermal expansion expressions used in TEOS are not suitable for melt end-members, as they are based on a vibrational model. The experimental data currently available do not warrant anything more elaborate than constant thermal expansion at the temperatures investigated (Lange, 1997), and so the constant thermal expansion and linear temperature dependence of bulk modulus as in HP98 is retained for melt end-members.

New End-Members in The Data set

The following is a brief outline of additions to the data set in a mineral group or system context; all the new end-members are indicated in Table 1. Changes in activity–composition relations that are implicit in data set generation for these and other end-members are included below in the next subsection.

For the first time, sulphides and sulphur-bearing minerals and fluid species have been incorporated into the data set. The details are published in Evans et al. (2010) and encompass the solid phases pyrite (FeS2), troilite (FeS), pyrrhotites (solid solution between hypothetical end-member trot, FeS and vacancy-bearing trov, inline imageS), anhydrite (CaSO4), elemental sulphur S, gaseous S2 and H2S as well as aqueous species inline image, inline image, inline image and HSinline image. Troilite is described as a low temperature form (lot) from 298 K up to 420 K and a high temperature form (tro) above 420 K. These solids are complicated, involving two lambda transitions in troilites (one at 420 K, one at 598K) and a lambda transition in trov at 595 K. Examples of phase diagram calculations, including pseudosections involving mixed silicates, carbonates and sulphides may be found in Evans et al. (2010).

Several new pyroxene end-members are now included. Clinoenstatite (cen, Mg2Si2O6) and protoenstatite (pren) are new end-members whose enthalpy of formation and entropy are derived from experiments of Atlas (1952), Chen & Presnall (1975) and Boyd & England (1965). A calcium-eskola pyroxene end-member (caes, inline imageAlSi2O6) is introduced to account for vacancy substitutions seen in calcic pyroxene at high pressures, and is calibrated on the experimental results of Gasparik (1984). The activity model used assumes that some short-range ordering between Si–Al on tetrahedral and Mg–Al on octahedral sites can be accommodated by reducing the tetrahedral entropy of mixing to a quarter of the configurational contribution. This then gives the activities of caes and cats in a binary pyroxene as inline image and inline imageinline image with activity coefficients from a regular solution with inline image kJ.

Chromium-bearing end-members are now included: the oxide eskolaite (esk, Cr2O3), the pyroxene kosmochlor (kos, NaCrSi2O6), the garnet knorringite (knor, Mg3Cr2Si3inline image) and the spinel picrochromite (picr, MgCr2O4). We have fitted the experiments on the exchange reaction 2jd + picr = 2kos + sp, assuming that jd–kos is ideal and that the sp–picr solid solution is non-ideal with a symmetrical interaction energy inline image kJ (Carroll Webb & Wood, 1986). We have not added a large entropy increment to knorringite (as done by Klemme, 2004, and Klemme et al., 2000, who assumed that the low-T anomaly seen in the heat capacity of uvarovite applies to knorringite), and thus we have been able to fit the slope and positions of both the reactions 2knor = 3en + 2esk (Turkin et al., 1983) and knor + fo = picr + 2en (Klemme, 2004). The PT slope of the experimental brackets of Irifune et al. (1982) for 2knor = 3en + 2esk are incompatible with the other studies and with the thermodynamic data.

Carnegieite and high-carnegieite (cg, cgh, NaAlSiO4) are fitted to the experiments of Bowen & Greig (1923), Greig & Barth (1938) and Cohen & Klement (1967). These data depend on those for nepheline, and are in turn used to determine those for nepheline liquid and sodalite.

Stilpnomelane with end-members ferrostilpnomelane (fstp, inline image(Fe5Al)[Si8Al]inline imageinline image4H2O) and magnesiostilpnomelane (mstp, inline image(Mg5Al)[Si8Al]inline imageinline image4H2O) is now included. The formula for stilpnomelane is not fully known, but the chosen formula units are based on Eggleton (1972) simplified and normalized to 8 Si pfu. The activities are given by assuming that octahedral Al resides on one site, with Fe and Mg mixing on five sites, so that inline image and inline image with activity coefficients from a regular solution with inline image kJ. The data for the end-members are derived from the reaction 28fstp = 14ann + 5grun + 21alm + 79q + 156H2O and the partitioning of Fe and Mg between stilpnomelane and chlorite (Miyano & Klein, 1989).

Minnesotaite [minn, Fe3Si4O10(OH)2] and its Mg equivalent [minm, Mg3Si4O10(OH)2] are derived from the experiments of Engi (1983) for the reaction 2minn = 3fa + 5q + 2H2O along with data for partitioning of Fe and Mg between carbonate and minnesotaite of Klein (1974). The activities are given by assuming that Fe and Mg mix on three sites, so that inline imageinline image and inline image with activity coefficients from a regular solution with inline image kJ.

Greenalite [glt, Fe3Si2O5(OH)4] was derived using reactions glt + 2q = minn + H2O and 2glt + 5min = 3grun + 6H2O using the constraints discussed by Rasmussen et al. (1998).

Considering pumpellyite, in addition to the original MgAl pumpellyite in HP98 data are presented for a solid solution between three end-members, the MgAl end-member [mpm, Ca4MgAlAl4Si6inline image(OH)7], the FeAl end-member [fpm, Ca4FeAlAl4Si6inline image(OH)7] and the Feinline image end-member julgoldite [jgd, Ca4Feinline imageSi6inline image(OH)7] are included. As in HP98, the mpm end-member is derived from the experiments of Schiffman & Liou (1980), while data for the iron analogue are taken from the Fe–Mg partition between pumpellyite and chlorite of Evans (1990). The jgd end-member is derived from the inline image–Al partitioning data between epidote and pumpellyite given by Cho et al. (1986). Ordering of Mg and Fe onto a single M2a site is assumed for these pumpellyites and activities are given by
image
and
image

Talc now includes a pyrophyllitic end-member [tap, inline image] fitted to the experimental compositions reported by Newton (1972). All experiments involving aluminous talc (e.g. Chernosky, 1978; Massonne et al., 1981; Massonne, 1989; Massonne & Schreyer, 1989; Hoschek, 1995) have been fitted with a model involving both the tschermak substitution and the pyrophyllite-like substitution.

Prehnite now includes a ferric end-member [fpre, Ca2AlFeSi3O10(OH)2]. Ferric iron is assumed to substitute for Al on one octahedral site only, and the activity relations simplify to inline image and inline image with activity coefficients from a regular solution with inline image kJ. The data for fpre are derived from the inline image–Al partitioning data between epidote and prehnite given by Cho et al. (1986).

The halide minerals halite (hlt, NaCl) and sylvite (syv, KCl) and their molten equivalents (hltL and syvL) are included in the data set. The enthalpies of formation of halite and sylvite are taken from Robie & Hemingway (1995), and the molten end-members from fitting to the melting curves to 20 kbar pressure from Clark (1966). The experimental data of Aranovich & Newton (1997, 1998) involving concentrated brines (KCl and NaCl) in equilibrium with brucite and periclase may now be reproduced by direct calculation with the new data set.

Sapphirine has been a difficult phase to quantify thermodynamically, largely because available experiments have not been able to involve characterization of the composition of the sapphirine. A new model for sapphirine is adopted here, based on the revision of Kelsey et al. (2004), which involves the 2:2:1 end-members spr4 (Mg4Al8Si2inline image) and fspr (Fe4Al8Si2inline image) and the 3:5:1 end-member spr5 (Mg3Al10Siinline image). The activity relations, as discussed below, are found by optimization of the fit to the experimental data on sapphirine equilibria (Boyd & England, 1959; Hensen, 1972; Newton, 1972; Seifert, 1974; Doroshev & Malinovskiy, 1974; Malinovsky & Doroshev, 1975; Ackermand et al., 1975; Arima & Onuma, 1977; Perkins et al., 1981; Podlesskii, 1996; Fockenberg, 2008). In the fitting process, the compositions of sapphirine are predicted; they fall in the range inline image = 0.36–0.45 for most of the high pressure experiments, but do rise to inline image when coexisting with mullite. The fit to all these experiments is now quite good. Although a similar quality fit to the H2O-absent subset of the data in MAS was made by Podlesskii et al. (2008), their data set was only constrained within this subset of MAS rather than by all the other phases and equilibria used in this study.

Mullite is a complex solid solution involving an end-member of sillimanite composition (Al2SiO5) into which the substitution Si + inline imageO = Al + inline image occurs. This could in principle extend from Al2SiO5 (x = 0) to a Si-free end-member Al2Alinline image (x = 1), where x is the amount of the substitution above, but in practice rarely extends beyond x = 0.5 (Cameron, 1977). We have elected to use this intermediate composition (amul, Al2inline imageinline imageinline image) as the aluminous end-member in mullite in part because natural compositions rarely become more aluminous than this and in part because of the strong ordering of Al + Si and O + inline image. These two different ordering patterns (Al + Si and O + inline image) lead to two different symmetries, inline image and inline image and an overall structure with an incommensurate modulation (Angel et al., 1991). Rather than attempt a detailed, and probably incorrect, activity model for this solid solution we take a pragmatic approach that assumes that the high degrees of Al,Si and inline image,O ordering can be approximated by a simple two-site mixture of the end-members, such that inline image and inline image. Mullite enthalpies (for smul and amul) and the interaction energy (inline image) are derived from the experiments on the reactions muscovite + quartz = mullite + sanidine + H2O (Segnit & Kennedy, 1961), pyrophyllite = mullite + quartz + H2O (Carr & Fyfe, 1960), cordierite + corundum = sapphirine + mullite (Seifert, 1974) and the melting equilibria cristobalite + mullite + liquid and mullite + corundum + liquid (Klug et al., 1987). The calculated compositions of mullite are close to that of sillimanite at low temperatures and reproduce the aluminous compositions observed by Klug et al. (1987) at the melting temperatures. Calculations involving this mullite are included below.

Lizardite, one of the serpentine group minerals (with antigorite and chrysotile) is now included in the data set. Its properties are assumed to be like those of chrysotile, but with slightly smaller values for volume and entropy (Evans, 2004; Hilairet et al., 2006). We have accordingly also lowered the heat capacity and compressibility of lizardite. The enthalpy for lizardite, following the arguments of Evans (2004), is derived from accepting that lizardite transforms (metastably) to chrysotile between 413 and 431 °C at 2 kbar (Chernosky, 1975). The calculated stability of lizardite extends only up to 170 °C at 2 kbar where it breaks down to antigorite + brucite. More work needs to be done to determine unambiguously the stability of lizardite relative to chrysotile. The new measured compressibilities for lizardite and chrysotile (Hilairet et al., 2006) and for antigorite (Bose & Navrotsky, 1998) are used, allowing good fits to antigorite in very high pressure experiments (Wunder & Schreyer, 1997; Bose & Navrotsky, 1998; Pawley, 1998).

The new modified TEOS for solids allows reliable extrapolation of mineral volumes to very high pressures, and so we are starting to accumulate a set of thermodynamic data for phases at deep mantle pressures and temperatures. We present preliminary data on the end-members ferropericlase (fper, FeO), Mg-wadsleyite (mwd, Mg2SiO4), Fe-wadsleyite (fwd, Fe2SiO4), Mg-ringwoodite (mrw, Mg2SiO4), Fe-ringwoodite (frw, Fe2SiO4), Mg-perovskite (mpv, MgSiO3), Fe-perovskite (fpv, FeSiO3), Al-perovskite (apv, AlAlO3), Ca-perovskite (cpv, CaSiO3), Mg-akimotoite (mak, MgSiO3), Fe-akimotoite (fak, FeSiO3), majorite garnet (maj, Mg4Si4inline image), high-pressure clinoenstatite (hen, Mg2Si2O6), Ca-Si-titanite (cstn, CaSi2O5), walstromite (wal, CaSiO3), MgSi-corundum (mcor, MgSiO3), K-cymrite (kcm, KAlSi3O8.H2O), wadeite (wa, K2Si24O9) and hollandite (hol, KAlSi3O8). Experimental details for the equilibria used to extract the data may be found in Appendix 2. These data are tied into, and are consistent with the thermodynamic data for end-members at lower PT (crustal) conditions.

Mixing model changes

Since HP98 we have changed slightly some solid solution models used in the data set generation. Only the ones which directly affect the fitted enthalpies are discussed here.

For MgAl orthopyroxene, the entropy of mixing is taken over octahedral and tetrahedral sites rather than the earlier octahedral site only model as in Wood & Banno (1973). This is done to facilitate multicomponent extensions to the model involving other substitutions. We take only a one-fourth of the full tetrahedral site entropy as an approximation for Al–Si and Mg–Al ordering, writing the activities of en and mgts as inline image and inline image, with the activity coefficients taken from a macroscopic regular model (symmetric formalism; Powell & Holland, 1993a,b) with inline imageinline image kJ derived from the measurements of Al solubility in aluminous pyroxenes coexisting with other phases in the data set, principally garnet and spinel.

For tremolite–tschermakite amphibole, we now take the tetrahedral contribution to be only one-fourth that of the full configurational entropy, as in the pyroxenes above, as was done in Diener et al. (2007) to make a comprehensive amphibole mixing model from natural and experimental data. Allowing a small cummingtonite component, the activities are written as
image
with the activity coefficients taken from a regular model with inline image kJ, inline image kJ and inline image kJ derived from the experiments of Jenkins (1994), Hoschek (1995) and the results of Diener et al. (2007).

Chlorite has been slightly simplified since HP98, keeping the basic model the same, but relaxing the degree of ordering required slightly. This has come about in part due to using the X-ray calibration of chlorite compositions from Jenkins & Chernosky (1986), Roots (1994) and Shirozu & Momoi (1972) rather than the data of Baker & Holland (1996) which yielded slightly lower volumes than the other studies. This has affected the adopted molar volumes of the clin, ames and afchl end-members. The molar volume of daph has been changed from the old value (213.4 J inline image) taken from Helgeson et al. (1978) and Holdaway & Lee (1977) to 216.2 J inline image from Parra et al. (2005) as, even though their measurements are quite scattered, they are in better agreement with the measured data of James et al. (1976), Vidal et al. (2001) and with simple exchange models involving chlorite and biotite, olivine, orthopyroxene and chloritoid. In addition the entropy of clinochlore and daphnite have been taken from Bertoldi et al. (2007) with an extra 11.5 J inline image added for tetrahedral site configurational entropy. The entropies of afchl and ames were adjusted slightly in fitting to the phase equilibrium experimental results. The heat capacities were taken from Bertoldi et al. (2007), the thermal expansion from Nelson & Guggenheim (1993) and compressibility from Pawley et al. (2002). The mixing energies are very similar to those of the earlier data set inline image kJ, inline image kJ and inline image kJ with an enthalpy of inline image kJ for the internal equilibrium afchl + ames = 2 clin.

Epidote has also been slightly modified since HP98. The heat capacities of zoisite and clinozoisite have been refitted to high temperatures using a simple vibrational model. The values for both polymorphs are now very similar, with clinozoisite being very slightly lower than zoisite. The heat capacity of epidote is similarly extrapolated to high temperatures, fitting the experimental data of Kiseleva et al. (1974) and the entropy of epidote is taken from Kiseleva & Ogorodova (1987). The entropy of cz and fep end-members are adjusted slightly to fit phase equilibrium data for the reaction epidote = anorthite + garnet + hematite + quartz + H2O from Holdaway (1972) and Liou (1973). The activity model is the same as in HP98, but the mixing energies are changed (simplified) to inline image kJ, inline image kJ and inline image kJ. These small values are based on a value for inline image kJ for Al–inline image mixing in grossular-andradite garnet derived from fitting the experiments of Holdaway (1972) for coexisting garnet + anorthite + wollastonite + quartz. The enthalpy of the internal equilibrium fep + cz = 2ep is inline image kJ to account for the degree of order in natural epidote (Dollase, 1973; Bird & Helgeson, 1980).

Talc now incorporates a pyrophyllite as well as a tschermak substitution. The mixing properties are assumed to be given by an ideal solution of the three end-members, ta, tats and tap (see above). The activities are given by
image

Sapphirine, following the treatment in Kelsey et al. (2004) involves two end-members spr4 and spr5 (see above) related by a tschermak substitution. The activities for the binary are given by inline image and inline image, with gammas found from a regular model with inline imageinline image kJ.

Pyrrhotite is treated as a non-ideal solid solution of trov and trot (see above), with activities given by inline image and inline image. The activity coefficients may be found from a regular model with inline image kJ. More details may be found in Evans et al. (2010).

There are many additional changes to the data set, mainly relating to changes to thermodynamic parameters taken as assumed in data set generation (entropy, volume, heat capacity, etc.), and in the use of newer experimental data on phase stability that can be included in data set generation. Some changes are very minor and may be found by comparison with the tables in HP98, whereas others are more significant and are listed briefly in Appendix 3. One change that may be of greatest import to metamorphic petrologists is highlighted here, and concerns the aluminium silicate phases kyanite, andalusite and sillimanite. The choice of the Holdaway (1971) experiments, as opposed to those of Richardson et al. (1969) for the and = sill reaction is no longer arbitrarily imposed as a constraint. Instead, we prefer to return to the situation in our earlier data sets (Holland & Powell, 1985; 1998) in which no and = sill experimental brackets were used, and a triple point is allowed to emerge from the multitude of other equilibria involved in the data set. The calculated triple point from data in this study lies at 4.3 kbar, 534 °C, in between that of Holdaway (1971) and Richardson et al. (1969). The fact that the relaxation of the and = sill constraint yields a triple point almost identical to that advocated by Pattison et al. (2002) on the basis of field, petrographic and phase equilibria arguments, suggested to us that the combined reaction data used in the regression provide a reasonable justification of this decision.

Examples of Calculated Phase Equilibria

The following examples are of calculated phase equilibria highlighting new features of the internally consistent data set. All calculations were undertaken with thermocalc (Powell & Holland, 1988, 1998), and the activity–composition relations adopted are given in Table S2.

Sapphirine

Calculations in the literature on sapphirine phase equilibria using the Holland and Powell data set have used a special upgrade of the HP98 data set (tc-ds55s), for example, Kelsey et al. (2004), Baldwin et al. (2007) and Taylor-Jones & Powell (2010). The origin of the upgrade was that the fitting of the available experimental data in the fifth update of Holland & Powell (1998) in November 2003, tc-ds55 – the extant standard data set – was considered to be partially degraded by inclusion of the sapphirine experimental data. Now, as discussed above, a successful incorporation of the sapphirine end-members into the data set has been undertaken.

Sapphirine equilibria are important geologically as they have been used widely in higher temperature rocks in which sapphirine-bearing mineral assemblages occur to estimate PT conditions of metamorphism. Phase equilibria in the simple systems MgO–Al2O3–SiO2 (MAS) and MgO–Al2O3–SiO2–H2O (MASH) are experimentally determined, so they in turn constrain the corresponding thermodynamic data of the mineral end-members Figure 4 shows the calculated phase equilibria in the systems MgO–Al2O3–SiO2, with the ultimate stability of sapphirine, and sapphirine + quartz indicated. The main invariant points (a–d) are at a slightly lower pressure (< 0.4 kbar) and higher temperature (< 30 °C) than those calculated with tc-ds55s. Note that mullite-bearing equilibria, at the highest temperature on Fig. 4, can now be calculated.

Details are in the caption following the image

PT projection for sapphirine equilibria in the MgO–Al2O3–SiO2 system, showing the maximum stability fields for sa (light shading) and sa + q (darker shading). Phases: g, garnet; sa, sapphirine; cor, corundum; sp, spinel; opx, orthopyroxene; ky, kyanite; and, andalusite; sill, sillimanite; cd, cordierite; mlt, mullite; q, quartz. a, b, c, d are invariant points from which FeO–MgO–Al2O3–SiO2 univariants emerge (see Fig. 5). For ax relationships used, see Table S2.

Not specifically shown in Fig. 4 are the corresponding MASH equilibria as these can be easily envisaged in Fig. 4. Addition of H2O to MAS affects only equilibria involving cordierite, at least until melt is stabilized. Thus, on addition of H2O, the MAS invariant points become MASH univariant lines coincident with reactions not involving cordierite (or [cd], i.e. cd-out) MAS univariant lines. These extend up PT from invariant points, a and b, in Fig. 4.

Extension of the phase equilibria from MAS into the FeO-bearing system, FMAS, is shown in Fig. 5. Out of each MAS univariant point comes a FMAS univariant line, depending on which phases involved more easily incorporate FeO. Focussing on point b, the [sp] FMAS univariant extends down temperature until garnet is stabilized, and the resulting FMAS invariant point is the lower temperature one of the familiar triangle of FMAS invariant points (as shown in the adjacent inset on Fig. 5). Extending into FMASH, the [cd] FMAS univariant reactions go up to higher PT from this triangle of FMAS invariant points to become the FMASH univariants. As discussed in Kelsey et al. (2004) and Baldwin et al. (2007), the classic experimental results of Hensen (1972) are in (at least) FMASH, not FMAS, and so occur at rather higher PT than those shown in Fig. 5, corresponding to the small amount of water in his experiments.

Details are in the caption following the image

PT projection for sapphirine equilibria in the FeO–MgO–Al2O3–SiO2 system (full curves) and the MgO–Al2O3–SiO2 subsystem (dashed curves). a, b, c, d are invariant points in MAS from which FMAS univariants emerge. Close to MAS invariant point b is the triangle of FMAS invariant points deduced by Hensen (1972)– although his experiments contained trace H2O and were at somewhat higher pressures (see text). For ax relationships used, see Table S2.

Sulphur

As outlined above, the scope for calculating phase equilibria involving aqueous solutions, CHOS fluids and also sulphides and sulphate is now considerably increased (see above; also Evans & Powell, 2007; Evans et al., 2010). Calculated equilibria among magnetite, hematite, pyrite, pyrrhotite, anhydrite and siderite, in the presence of calcite, are shown in Fig. 6. These are simple end-members, apart from pyrrhotite, for which the non-stoichiometry is modelled as described in Evans et al. (2010), and outlined above. Focussing on phase equilibria at 5 kbar, Fig. 7 shows a back-projection of the phase relationships onto the pyrrhotite one-phase field for assemblages with calcite + graphite.

Details are in the caption following the image

PT projection for CaO–FeO–C–O–S with excess calcite (cc) to show calculated equilibria among the phases hem (hematite), mt (magnetite), gph (graphite), sid (siderite), po (pyrrhotite), pyr (pyrite), any (anhydrite). Compatibility tetrahedra are shown – see text for discussion.

Details are in the caption following the image

inline imageinline image diagram at 5 kbar, with excess calcite and graphite, showing the calculated composition of pyrrhotite coexisting with wustite (wst), magnetite (mt), siderite (sid) and pyrite.

The fields on Fig. 6 are labelled with tetrahedral compatibility diagrams. Simpler triangular compatibility diagrams can be drawn for graphite-, and for pyrite-saturated, conditions. Whereas compatibilty diagrams of various sorts are commonly best adapted for representing mineral stabilities for geological processes (e.g. Powell et al., 2005), conventionally such relationships for the minerals involved here are represented on intensive variable diagrams, involving for example log activities. An equivalent diagram, calculated at 5 kbar and 500° C, in terms of chemical potentials, is shown in Fig. 8. The top surface of the inline image-inline image-inline image box is for graphite presence. Note that the inline image-inline image-inline image invariant points (a–d in Fig. 8) correspond to tie tetrahedra in the compatibility diagrams in Fig. 6. The calculations were performed on these divariant equilibria using the calcmu script in thermocalc, with inline image calculated from inline image, and inline image calculated from inline image. Only the higher inline image relationships are shown (for simplicity): from the compatibility diagram it can be seen that at lower inline image (moving away from the C apex), successive invariant points in the inline image-inline image-inline image box, will involve pyr + mt + sid + any (at inline image), mt + hem + sid + any (at inline image) and pyr + po + mt + any (at inline image)

Details are in the caption following the image

inline image box at 5 kbar, 500 °C showing the fields for mt (magnetite), sid(siderite), any (anhydrite), pyr (pyrite) and po (pyrrhotite). The top surface is graphite-saturated. Invariant points a–d correspond with the compatibility tie-tetrahedra in Fig. 6.

If the mineral assemblages are considered to be in equilibrium with a CHOS fluid, the composition can be calculated with thermocalc. So for example, considering the tie tetrahedron pyr + po + mt + sid with a fluid involving the end-members, H2O–CO2–CH4– H2–CO–H2S–S2 at 5 kbar and 500° C, the proportions of these end-members are:
image
image
image
image
image
image

Phase equilibria at deep mantle pressures

A new departure in this data set is the inclusion of phases which become stable in the deeper parts of the Earth's mantle. The thermodynamic data now allow calculation of PT grids in chosen chemical systems, and pseudosections for bulk compositions applicable to model mantle materials. This is an expanding field of endeavour, both experimentally and in modelling, and we present some examples of the types of phase diagram which may be calculated with this data set using thermocalc.

The first example is a PT projection in the MgO–SiO2 system (Fig. 9) involving the phases olivine, wadsleyite (wad), ringwoodite (ring), high-pressure cpx (hcpx), akimotoite (aki), perovskite (pv), periclase (per) and stishovite (stv). The diagram pertains to pressures above the breakdown of orthopyroxene. The inferences that can be made from the MS system about mantle mineralogy are somewhat limited, and so we calculate a PT diagram showing the MAS reactions emerging from the MS invariant points on introduction of alumina into the system (Fig. 10). Three stable invariant points ensue, labelled A, B and C in the figure, and these are the starting points for FMAS univariant reactions in the Fe-bearing system (arrow-ended curves in Fig. 10). These enable construction of the rather more petrologically interesting pseudosection for fixed bulk composition allowing portrayal of the different FMAS assemblages on the P–T diagram.

Details are in the caption following the image

PT projection for deep mantle phases in MgO–SiO2. Phases: pv, perovskite; aki, akimotoite (ilmenite); per, periclase; ring, ringwoodite; wad, wadsleyite; g, majorite garnet; stv, stishovite; hcpx, high-pressure clinoenstatite; ol, olivine. Legend provides the end-member names as used in thermocalc.

Details are in the caption following the image

PT projection for deep mantle phase in MgO–Al2O3–SiO2. Full thin curves are univariant equilibria in MAS and thin dashed curves are the MS equilibria. There are six MAS invariant points (A, B, C, D, E, F) with emergent FeO–MgO–Al2O3–SiO2 univariants shown by heavy lines and arrowed ends, as well as one full FMAS invariant point close to 250 kbar and 1200 °C. cor, corundum; other phase names as in Fig. 9. For ax relationships used, see Table S2.

Figure 11 shows the pseudosection calculated for the Kilbourne Hole peridotite bulk composition (Takahash, 1986; Walter, 1998), simplified into the FMAS system. It is immediately clear that the nature of the 660 km transition (inline image230 kbar) is likely to be more complex than that commonly interpreted from experimental data in smaller subsystems, changing through several assemblages involving incoming of perovskite and periclase. The range and variety of assemblages developed in PT space shows how difficult it will be to perform and interpret experimental charges in chemically complex systems. Addition of calcium will further complicate the pattern of mineral assemblages, and such a calculation will be presented elsewhere. A word of caution is in order here, as there are a couple of major sources of uncertainty in the experiments used to derive these data. First, pressures and temperatures for the same experimental boundaries are often inconsistent among different investigators, and second, the pressure scale to be used in the experiments has not yet been satisfactorily resolved. Thus, the calculated equilibria may require adjustment in future as these experimental problems are resolved.

Details are in the caption following the image

PT pseudosection for FeO–MgO–Al2O3–SiO2 with a bulk composition corresponding to the Kilbourne Hole peridotite KLB-1 (Walter, 1998). The bulk composition sees short sections of some of the univariant curves in Fig. 10, but only below about 1400 °C and 240 kbar and so typical mantle geotherms are likely to pass to somewhat higher temperatures and may not intersect them. The dashed line represents one estimated geotherm smoothed from Stixrude & Lithgow-Bertelloni (2007). The lowest pressure part of this diagram is metastable with respect to inclusion of high-pressure cpx which was not considered for this diagram. cor, corundum; other phase names as in Fig. 9. For ax relationships used, see Table S2.

Discussion

The internally consistent thermodynamic data set described here is a major improvement on previous ones because all the calorimetric and experimental data published in the 13 years since HP98 are now considered and incorporated if appropriate, and this increases the reliability of the data and expands the scope (via the incorporation of the new end-members that has become possible). The increase in reliability of the data set, in relation to the end-members already present in HP98, stems from the better implicit cross-checking between equilibria that involve the same end-members (the `internal consistency') as new data become available. In detail, if before there was an equilibrium with high `hat' (see HP98, table 7, or Table S1 here) – a measure of how constraining that equilibrium is – then addition of data involving that end-member will reduce the hat for the equilibria involved. Also additional data may simply suggest that equilibria taken to be correct in the past should now be considered untrustworthy and not used in data set generation. Methodological improvements also contribute to reliability. The expansion of scope is self-evident in the addition of a large number of new end-members, but also arises as a consequence of the methodological improvements that now allow calculations at high PT, and in S-bearing systems, for example.

The ongoing development of the internally consistent thermodynamic data set is largely dependent on the calorimetric and phase equilibria experimental community, without whose best efforts our work will tend to founder. Although we think this data set is a substantial step forward in the quest for this aspect of quantification of petrological processes, much needs to be done. Obvious things are needed, for example the proper characterization of the phases in experimental charges and measurement of unit cell volumes to high pressures and temperatures, particularly those made at high temperatures at elevated pressures. As may be readily seen from Appendix 1, there remain many end-members for which no measured thermal expansion, compressibility or heat capacity values as yet exist. For some, for example, those fictive end-members which do not exist stably in nature or are not readily synthesized experimentally, such measurements will never be available but could in principle be calculated from molecular simulations. For many others in the table new measurements would be most welcome. Applications to well-characterized rocks from well-established geological settings will provide critical input to the evaluation of the data set, and we welcome feedback relating to this from people using the data set. Of course such applications are equally reliant on the activity–composition relations used for the phases involved, as well as a realistic appraisal of the likely geological processes involved in rock formation.

In generation of the data set, the enthalpies of formation of the end-members are solved for in the weighted least squares approach. As a part of this, the uncertainty on these enthalpies are calculated, as well as the correlations between them (e.g. Powell & Holland, 1993a,b). These uncertainties can be considered as reflecting `known unknowns' about the end-member properties. If in fact data used in the generation of the data set are incorrect, because the data were not sufficiently dense to identify this, then this amounts to `unknown unknowns' about the end-member properties (the results are incorrect, and we have no way of knowing about it). The former source of uncertainty can be accounted for in error propagation calculations, but the latter cannot be handled in this way and introduce a bias in the results if, later, such problems are recognized. It is for this reason that validation of the data set via more experimental studies, and/or appropriate applications is important.

In using the data set, the uncertainties inherent in the data set can be propagated through calculations using thermocalc, as is done routinely in average PT calculations, but also can be done for PT projection and pseudosection calculations (via the calcsdnle script). So, for example considering Fig. 5, the uncertainty on the positions of the invariant points that form the highlighted triangle at around 6 kbar and 1000 °C, from the data set uncertainties, at 2inline image level, in inline imagekbar,°Cinline image, are inline image, inline imageinline image and inline image, with increasing temperature. If the uncertainties on the interaction parameters of the phases (Table S2) are also included, as they can be as outlined in Powell & Holland (2008), the uncertainties will be yet larger. These uncertainties are for the invariant points individually, and a way of looking at the correlations between the positions of the points as a consequence of the uncertainties is not yet implemented. It is conceivable that the uncertainties simply translate the triangle of points, rather than cause them to be involved in an inversion of topology. Work is in progress to address this aspect of uncertainties in calculated phase diagrams. Uncertainties, but with the same problem of not being able to ascertain correlations, can be done for pseudosection calculations. So, in Fig. 11, looking at the point on the divariant field, ring + g + pv + per, where the modes of pv and per are zero, the calculated uncertainty just with data set uncertainties is inline image. In the case of propagated uncertainties for calculations at these conditions, the agreement of a pressure scale for experimental studies, as well as the reaching of a consensus on the position of end-member equilibria in PT, should dramatically reduce the size of the uncertainties.

Acknowledgements

We thank K. Evans for her enthusiasm and direct involvement with generating the sulphur part of the data set story. R. White, J. Diener and E. Green are also thanked for suggestions and discussions on data set-related matters. We thank J. Ferry, J. Ganguly, M. Gottshalk and an anonymous reviewer for their helpful reviews, and J. Connolly for comments on TEOS. We thank M. Brown yet again for his editorial handling of our work. R. Powell thanks the support of ARC DP0451770 and DP0987731.

    Appendices

    Appendix 1: Sources for thermodynamic data

    Group End-member S V inline image inline image inline image
    Garnet and olivine almandine (alm) 3 4 0, 3 5 6
    andradite (andr) 1 1 1 46 46
    grossular (gr) 42 1 43, 44 45, 46 46
    knorringite (knor) 0 47 0 0 0
    majorite (maj) 33 26 33 33 26
    pyrope (py) 0, 1 3 34 35 36, 37
    spessartine (spss) 38 39 38 40 41
    clinohumite (chum) 0 20 0 0 21
    fayalite (fa) 1 1 13 14, 15 16
    forsterite (fo) 1 1 1 10, 11 10, 12
    larnite (larn) 1 1 1 0 0
    monticellite (mont) 0, 1 1 1 18 19
    tephroite (teph) 1 1 1 17 0
    Aluminosilicates andalusite (and) 1 1 52 53 54
    kyanite (ky) 1 1 52 53 55
    sillimanite (sill) 1 1 52 53 54
    mullite (amul) 0 7 0 8 9
    mullite (smul) 0 7 0 8 9
    chloritoid (mctd) 61 59 61 62 63
    chloritoid (fctd) 61 64 61 62 63
    chloritoid (mnctd) 0 0 0 62 63
    staurolite (mst) 0 65 0 57 58
    staurolite (fst) 0 60 0 57 58
    staurolite (mnst) 0 0 0 57 58
    topaz (tpz) 0 66 0 40 0
    Other orthosilicates akermanite (ak) 2 2 2 2 0
    gehlenite (geh) 79 60 1 40 0
    julgoldite (jgd) 0 78 0 0 0
    merwinite (merw) 1 65 1 40 0
    pumpellyite (mpm) 0 77 0 0 0
    pumpellyite (fpm) 0 0 0 0 0
    rankinite (rnk) 1 1 1 40 0
    sphene (sph) 1 1 1, 88 89 90
    spurrite (spu) 1 1 0 0 0
    tilleyite (ty) 0 80 0 0 0
    zircon (zrc) 1 1 1 40 91
    Sorosilicates clinozoisite (cz) 0 71 0 69 70
    epidote (ep) 72 73 72 69 70, 74
    epidote (fep) 0 0 0 0 0
    lawsonite (law) 67 1 0, 67 69 76
    piemontite (pmt) 0 75 0 0 0
    zoisite (zo) 0, 67 68 0, 67 69 70
    vesuvianite (vsv) 0 49 0 50 51
    Cyclosilicates cordierite (fcrd) 81 86 81 83 84, 85
    cordierite (hcrd) 81 0 0 83 84, 85
    cordierite (crd) 81, 82 1 81 83 84, 85
    cordierite (mncrd) 0 0 0 83 84, 85
    osumilite (osm1) 18 18 18 0 0
    osumilite (osm2) 18 18 18 0 0
    osumilite (fosm) 18 18 18 0 0
    High-pressure silicates akimotoite (fak) 0, 33 22 33 0, 33 33
    akimotoite (mak) 0, 33 22 33 33 26
    caSi-titanite (cstn) 0 247 0 0 247
    perovskite (apv) 0, 27 22 0 0, 32 26
    perovskite (cpv) 0 246 0 0, 32 246
    perovskite (fpv) 0 249 0 0 249
    perovskite (mpv) 0, 27 22 32 32 26
    phase A (phA) 0 87 0 87 87
    ringwoodite (mrw) 0, 27 22 23 28 26
    ringwoodite (frw) 0 26 29, 30 31 30
    wadsleyite (mwd) 0 22 23 24 25
    wadsleyite (fwd) 0 22 0 0 26
    Pyroxenes and pyroxenoid acmite (acm) 1 60 1 92 93
    Ca-tschermak's pyroxene (cats) 94 94 94 94 0
    Ca-Eskola pyroxene (caes) 0 95 0 0 0
    clinoenstatite (cen) 0 96 97, 98 40 0
    clinoenstatite (hen) 0 102 0 0 107
    diopside (di) 1 99 1 100 101
    enstatite (en) 1 1 1 40 102
    ferrosilite (fs) 1 103 1 103 104
    hedenbergite (hed) 105 105 105 92 106
    jadeite (jd) 1 1 108 92, 109 109
    kosmochlore (kos) 0 110 0 92 111
    Mg-tschermak’s pyroxene (mgts) 0 112 0 0 0
    protoenstatite (pren) 0 60 0, 1 113 102
    pseudowollastonite (pswo) 1 1 0, 114 40 0
    pyroxmangite (pxmn) 1 1 1 115 115
    rhodonite (rhod) 1 1 1 115 115
    walstromite (wal) 248 248 0, 114 0,40 0, 116
    wollastonite (wo) 1 60 114 40 116
    Amphiboles actinolite (fact) 0 120 0 0 0
    anthophyllite (anth) 1 1 0 0 0
    anthophyllite (fanth) 0 0 0 0 0
    cummingtonite (cumm) 0 126 0 0 0
    glaucophane (gl) 123 124 123 124 119
    glaucophane (fgl) 0 0 0 0 0
    grunerite (grun) 0 127 0 0 128
    pargasite (parg) 0 122 0 103 119
    riebeckite (rieb) 0 125 0 0 0
    tremolite (tr) 0, 1 117 118 242 119
    tschermakite (ts) 0 121 0 0 0
    Other chain silicates deerite (deer) 0 129 0 0 129
    carpholite (mcar) 130 131 130 0 0
    carpholite (fcar) 130 132 130 0 0
    sapphirine (spr4) 0 133, 134 0 0 0
    sapphirine (spr5) 0 133, 134 0 0 0
    sapphirine (fspr) 0 0 0 0 0
    Mica annite (ann) 0 60 0 0 0
    biotite (mnbi) 0 0 0 0 0
    celadonite (cel) 0 135 0 137 138
    celadonite (fcel) 0 136 0 137 138
    eastonite (east) 0 139 0 0 0
    margarite (ma) 1 1 1 140 0
    muscovite (mu) 1 1 1 137 138
    paragonite (pa) 1 1 1, 141 137 138
    phlogopite (phl) 1 1 1 142 143
    phlogopite (naph) 0 144 0 0 0
    Chlorite chlorite (afchl) 145 146, 147, 148 145 149 150
    chlorite (mnchl) 0, 145 0 0 149 150
    amesite (ames) 0 146, 147, 148 145 149 150
    clinochlore (clin) 145 146, 147, 148 145 149 150
    daphnite (daph) 145 151 145 149 150
    sudoite (sud) 152 0 0 149 150
    sudoite (fsud) 0 0 0 149 150
    Other sheet silicates antigorite (atg) 0 158 159 0 160
    chrysotile (chr) 1 1 1 0 162
    lizardite (liz) 0 162 1 0 162
    greenalite (glt) 0 161 0 0 0
    kaolinite (kao) 1 1 1 0 0
    minnesotaite (min) 0 155 0 0 0
    minnesotaite (minm) 0 0 0 0 0
    stilpnomelane (mstp) 0 0, 155 0 0 0
    stilpnomelane (fstp) 0 155 0 0 0
    prehnite (pre) 67 67 67 0 156
    prehnite (fpre) 0 157 0 0 156
    pyrophyllite (prl) 1 22 153 0 150
    talc (ta) 22 1 1 154 150
    talc (fta) 0 0 0 154 150
    talc (tap) 0 0 153 0 150
    talc (tats) 0 0 0 154 150
    Feldspar and feldspathoid albite (ab) 1 1 1 163 164
    albite (abh) 0, 1 0, 1 1 163 164
    analcite (anl) 1 1 0 0 177
    anorthite (an) 1 1 167 168 169
    carnegieite (cg) 1 1 1 0 0
    carnegieite (cgh) 1 178 1 0 0
    kalsilite (kls) 1 179 1 179, 180 181
    leucite (lc) 1 182 0, 1 182 181
    microcline (mic) 1 1 1 165 166
    nepheline (ne) 1 1 1 40 177
    sanidine (san) 1 165 1 165 166
    Silica minerals coesite (coe) 0, 174 1 174 0 0
    cristobalite (crst) 0, 1 0, 1 1 0 0
    quartz (q) 1 1 1, 173 0 173
    stishovite (stv) 0, 1 1 33 175 176
    tridymite (trd) 0, 1 0, 1 0, 1 0 0
    Other framework silicates heulandite (heu) 187 187 0 0 244
    hollandite (hol) 171 172 172 172 172
    laumontite (lmt) 0 186 0 0 0
    meionite (me) 0, 183 183 0 184 185
    K-cymrite (kcm) 0 170 0 170 170
    sodalite (sdl) 245 245 245 0, 40 0, 177
    stilbite (stb) 0 188 0 0 0
    wadeite (wa) 171 170 170 172 171
    wairakite (wrk) 0 1 0 0 0
    Oxides baddeleyite (bdy) 1 1 1 40 205
    bixbyite (bix) 1 1 199 0 0
    corundum (cor) 1 1 199 200 201
    corundum (mcor) 0 0 0 0 0
    cuprite (cup) 1 1 1 0 206
    eskolaite (esk) 1 1 1 0 202
    geikielite (geik) 1 1 0, 1 0 0
    hematite (hem) 1 1 1 40 202
    hercynite (herc) 209 1 0 40 0
    Ilmenite (ilm) 1 1 1 204 204
    lime (lime) 1 1 1 189 190
    magnesioferrite (mft) 210 1 1 0 0
    magnetite (mt) 1 1 1 40 208
    manganosite (mang) 1 1 1 197 198
    nickel oxide (NiO) 1 1 1 0 203
    periclase (per) 1 1 193 194 195, 196
    picrochromite (picr) 211 1 1 0 0
    pyrophanite (pnt) 1 1 0, 1 0 0
    rutile (ru) 1 1 1 191 192
    spinel (sp) 0, 1 1 1 207 208
    tenorite (ten) 1 1 1 0 0
    ulvospinel (usp) 1 1 1 0 0
    ferropericlase (fper) 0, 1 26 1 40 26
    Hydroxides brucite (br) 1 1 0, 1 212, 213 213, 214
    diaspore (dsp) 1 22 0, 1 215 216
    goethite (gth) 1 1 0 0 0
    Carbonates ankerite (ank) 0 227 0 0 226
    aragonite (arag) 1 1 0, 1 40, 219 219
    calcite (cc) 1 1 0, 1 217 218
    dolomite (dol) 1 22 0, 1 224, 225 225, 226
    magnesite (mag) 1 1 0, 1 217, 220, 221 220, 221
    rhodochrosite (rhc) 1 1 1 222 223
    siderite (sid) 0, 1 22 0, 1 0 177
    Halides and S-bearing anhydrite (any) 1 1 235 236 177
    halite (hlt) 1 1 1 228 228
    pyrite (pyr) 1 1 229 40 230
    pyrrhotite (trot) 0 231 0, 233 231 232
    pyrrhotite (trov) 0 231 0, 233 231 232
    troilite (tro) 0 231 0, 233 231 232
    troilite (lot) 0 231 0, 233 234 232
    sylvite (syv) 1 1 1 228 228
    Elements copper (Cu) 1 1 1 40 238
    diamond (diam) 1 1 1 40 240
    graphite (gph) 1 1 1 40 239
    iron (iron) 1 1 0, 1 40 237
    nickel (Ni) 1 1 0, 1 40 177
    sulphur (S) 1 1 1 243 241
    Gas species methane (CH4) 1 1
    carbon monoxide (CO) 1 1
    carbon dioxide (CO2) 1 1
    hydrogen (H2) 1 1
    hydrogen sulphide (H2S) 1 1
    sulphur gas (S2) 1 1
    water (H2O) 1 1
    oxygen (O2) 1 1

    Appendix 2: Summary table of equilibria used for fitting the data set.

    1) 2knor = 3en + 2esk (Irifune et al., 1982)
    2) 2knor = 3en + 2esk (Turkin et al., 1983)
    3) knor + fo = picr + 2en (Klemme, 2004)
    Equilibrium: crpx crsp (Carroll Webb & Wood, 1986), involving:
    4) 2kos + sp = 2jd + picr
    5) lot = tro (fix at transition)
    Equilibrium: po S2 (Rau, 1976), involving:
    6) 16trov = 14trot + S2
    7) 8trov + H2 = 7trot + H2S (Lin, 1976)
    Equilibrium: po S2 (Toulmin & Barton, 1964), involving:
    8) 16trov = 14trot + S2
    Equilibrium: po pyr S2 (Toulmin & Barton, 1964), involving next two reactions:
    9) 14trot + S2 = 16trov
    10) 2trot + S2 = 2pyr
    Equilibrium: po pyr S2 (Schneeberg, 1973), involving next two reactions:
    11) 16trov = 14trot + S2
    12) 2pyr = 2trot + S2
    Equilibrium: iron tro fluid2 (Rosenqvist, 1954), involving:
    13) iron + H2S = tro + H2
    Equilibrium: iron tro fluid2 (Alcock & Richardson, 1951), involving:
    14) iron + H2S = tro + H2
    15) en = pren (Atlas, 1952; Chen & Presnall, 1975)
    16) diam = gph (Kennedy & Kennedy, 1976)
    17) q = trd (Ostrovsky, 1966)
    18) trd = crst (Ostrovsky, 1966)
    19) q = crst (Ostrovsky, 1966; Jackson, 1976)
    20) coe = q (Bose & Ganguly, 1995)
    21) coe = q (Bohlen & Boettcher, 1982; Gasparik, 1984)
    22) stv = coe (Zhang et al., 1996)
    23) arag = cc (Boettcher & Wyllie, 1968)
    24) arag = cc (Crawford & Hoersch, 1972)
    25) arag = cc (Johannes & Puhan, 1971)
    26) arag = cc (Goldsmith & Newton, 1969)
    27) arag = cc (Irving & Wyllie, 1975)
    28) arag = cc (Suito et al., 2001)
    29) arag + mag = dol (Morlidge et al., 2006)
    30) arag + sid = ank (Morlidge et al., 2006)
    31) cen = en (Boyd & England, 1965)
    32) hen = en (Pacalo & Gasparik, 1990)
    33) hen = cen (Angel et al., 1992)
    34) mwd + stv = hen (Sawamoto, 1987; Kanzaki, 1987)
    35) maj = 2hen (Ohtani, 1991)
    36) 2mwd + 2stv = maj (Ohtani, 1991)
    37) mwd = fo (Katsura & Ito, 1989; Fei & Bertka, 1999)
    38) mrw = mwd (Katsura & Ito, 1989; Fei et al., 2004)
    39) 2mak = mwd + stv (Sawamoto, 1987; Kanzaki, 1987)
    40) 4mpv = maj (Katsura & Ito, 1989; Ohtani 1991)
    41) mpv = mak (Katsura & Ito, 1989; Ohtani 1991)
    42) mpv = mak (Ito & Takahashi, 1989)
    43) frw = fa (Yagi et al., 1987; Akimoto et al., 1965, 1967)
    44) fwd = fa (Fei & Bertka, 1999; Frost, 2003; Katsura & Ito, 1989; Akimoto, 1987)
    Equilibrium: ol wd rg (Fei & Bertka, 1999; Frost, 2003; Katsura & Ito, 1989; Akimoto, 1987), involving next three reactions:
    45) fwd = fa
    46) mwd = fo
    47) mwd = mrw
    48) mpv + per = mrw (Shim et al., 2001; Ito & Takahashi 1989; Fei et al., 2004)
    49) per + cor = sp (Akaogi et al., 1989)
    Equilibrium: pv aki (Ito & Yamada, 1982), involving next two reactions:
    50) fpv = fak
    51) mpv = mak
    Equilibrium: aki rg stv (Ito & Yamada, 1982), involving next two reactions:
    52) 2mak = mrw + stv
    53) 2fak = frw + stv
    Equilibrium: rg mwu stv (Ito & Yamada, 1982), involving next two reactions:
    54) mrw = 2per + stv
    55) frw = 2fper + stv
    Equilibrium: pv aki rg mwu (Ito & Yamada, 1982), involving next three reactions:
    56) fpv = fak
    57) mpv = mak
    58) 2mpv + frw = 2fpv + mrw
    Equilibrium: pvk crn py (Hirose et al., 2001; Kubo & Akaogi, 2000), involving next three reactions:
    59) cor = apv
    60) mcor = mpv
    61) py = 3mpv + cor
    62) wo = pswo (Osborn & Schairer, 1941; Huang & Wyllie, 1975)
    63) wal = wo (Chatterjee et al., 1984; Essene, 1974)
    64) lrn + cstn = 3wal (Gasparik et al., 1994)
    65) 3cpv = lrn + cstn (Gasparik et al., 1994)
    66) cc = lime + CO2 (Smyth & Adams, 1923)
    67) cc = lime + CO2 (Baker, 1962)
    68) cc + q = wo + CO2 (Zhu, Newton & Kleppa, 1993)
    69) cc + q = wo + CO2 (Jacobs & Kerrick, 1981)
    70) cc + q = wo + CO2 (Ziegenbein & Johannes, 1974)
    71) cc + q = wo + CO2 (Greenwood, 1967a,b; Harker & Tuttle, 1956)
    72) cc + q = wo + CO2 (Aranovich & Newton, 1999)
    73) cc + q = wo + CO2 (Haselton et al., 1978)
    74) 3cc + 2wo = ty + CO2 (Zharikov & Shmulovich, 1969)
    75) ty = spu + CO2 (Zharikov & Shmulovich, 1969)
    76) spu + 4wo = 3rnk + CO2 (Zharikov & Shmulovich, 1969)
    77) spu + rnk = 4lrn + CO2 (Zharikov & Shmulovich, 1969)
    78) ta + 2en = anth (Chernosky et al., 1985)
    79) br = per + H2O (Barnes & Ernst, 1963)
    80) br = per + H2O (Aranovich & Newton, 1996)
    81) br = per + H2O (Schramke et al., 1982; Irving et al., 1977)
    82) br = per + H2O (Irving et al., 1977)
    83) br = per + H2O (Kanzaki, 1991)
    84) 2ta = 3en + 2q + 2H2O (Chernosky, 1976a,b; Chernosky et al., 1985; Skippen, 1971)
    85) 2ta = 3en + 2q + 2H2O (Chernosky et al., 1985)
    86) 2ta = 3en + 2q + 2H2O (Jenkins et al., 1991)
    87) 2ta = 3en + 2q + 2H2O (Aranovich & Newton, 1999)
    88) 2ta = 3en + 2coe + 2H2O (Pawley & Wood, 1995)
    89) 2fo + 2ta = 5en + 2H2O (Chernosky, 1976a,b; Chernosky et al., 1985)
    90) 2fo + 2ta = 5en + 2H2O (Pawley, 1998)
    91) 2anth = 7en + 2q + 2H2O (Chernosky & Autio, 1979)
    92) 7ta = 3anth + 4q + 4H2O (Chernosky & Autio, 1979)
    93) 2anth + 2fo = 9en + 2H2O (Chernosky et al., 1985)
    94) 9ta + 4fo = 5anth + 4H2O (Chernosky et al., 1985)
    95) br + chr = 2fo + 3H2O (Johannes, 1968; Kitahara et al., 1966)
    96) 5chr = ta + 6fo + 9H2O (Chernosky, 1982; Kitahara et al., 1966)
    97) liz = chr (Chernosky, 1975)
    98) 17liz = atg + 3br (Evans, 2004)
    99) atg = 4ta + 18fo + 27H2O (Evans et al., 1976)
    100) atg = 4ta + 18fo + 27H2O (Wunder & Schreyer, 1997)
    101) atg = 14fo + 10cen + 31H2O (Wunder & Schreyer, 1997)
    102) atg = 14fo + 10cen + 31H2O (Wunder & Schreyer, 1997)
    103) atg = 14fo + 10en + 31H2O (Bose & Navrotsky, 1998)
    104) 2br + cen = 2fo + 2H2O (Wunder & Schreyer, 1997)
    105) atg + 14ta = 45en + 45H2O (Pawley, 1996)
    106) phA = 3br + 2fo (Pawley & Wood, 1995)
    107) 6atg + 226fo = 62phA + 153en (Bose & Navrotsky, 1998)
    108) anth = cumm (Ghiorso & Evans, 2002)
    Equilibrium: cum enfs ol q H2O (Fonarev & Korolkov, 1980), involving next two reactions:
    109) 2cumm = 7en + 2q + 2H2O
    110) 2grun = 7fs + 2q + 2H2O
    111) chum = 4fo + per + H2O (Duffy & Greenwood, 1979)
    112) chum = 4fo + per + H2O (Pawley, 2000)
    113) chum = 4fo + br (Pawley, 2000)
    114) 4fo + br = chum (Wunder, 1998)
    115) 4fo + br = chum (Wunder, 1998)
    116) mag = per + CO2 (Harker & Tuttle, 1955; Goldsmith & Heard, 1962)
    117) mag = per + CO2 (Johannes & Metz, 1968; Philipp & Girsperger, 1990; Koziol & Newton, 1995)
    118) mag = per + CO2 (Irving & Wyllie, 1975)
    119) 2mag + 2q = en + 2CO2 (Johannes, 1969)
    120) 2mag + 2q = en + 2CO2 (Koziol & Newton, 1995)
    121) 2mag + 2coe = en + 2CO2 (Haselton et al., 1978)
    122) 2mag + en = 2fo + 2CO2 (Haselton et al., 1978; Koziol & Newton, 1998)
    123) ta + 5mag = 4fo + 5CO2 + H2O (Greenwood, 1967a,b)
    124) 2wo + 2mont = di + merw (Yoder, 1968)
    125) wo + mont = ak (Yoder, 1968)
    126) di + merw = 2ak (Yoder, 1968)
    127) di + 3mont = fo + 2ak (Walter, 1963; Yoder, 1968)
    128) 2di + ta = tr (Jenkins et al., 1991)
    129) di + 2mag = en + dol (Brey et al., 1983)
    130) spu + 2mont = 2merw + cc (Walter, 1965)
    131) 2tr = 3en + 4di + 2q + 2H2O (Yin & Greenwood, 1983)
    132) 2tr = 3en + 4di + 2q + 2H2O (Boyd, 1959)
    133) 2tr = 3en + 4di + 2q + 2H2O (Jenkins et al., 1991)
    134) 2tr + 2fo = 5en + 4di + 2H2O (Jenkins, 1983)
    135) dol = cc + per + CO2 (Goldsmith, 1980)
    136) dol = cc + per + CO2 (Harker & Tuttle, 1955)
    137) dol + 2q = di + 2CO2 (Slaughter et al., 1975; Eggert & Kerrick, 1981; Jacobs & Kerrick, 1981)
    138) dol + 2q = di + 2CO2 (Eggler et al., 1976)
    139) dol + 2coe = di + 2CO2 (Luth, 1995)
    140) di + 3dol = 2fo + 4cc + 2CO2 (Kase & Metz, 1980)
    141) 2dol + ta + 4q = tr + 4CO2 (Eggert & Kerrick, 1981)
    142) di + cc = ak + CO2 (Walter, 1963)
    143) ak + fo + cc = 3mont + CO2 (Walter, 1963)
    144) fo + di + 2cc = 3mont + 2CO2 (Walter, 1963)
    145) 5dol + 4ta = 6fo + 5di + 4H2O + 10CO2 (Skippen, 1971)
    146) ta + 3cc + 2q = 3di + H2O + 3CO2 (Skippen, 1971)
    147) 5dol + 8q + H2O = tr + 3cc + 7CO2 (Slaughter et al., 1975; Eggert & Kerrick, 1981)
    148) 5ta + 6cc + 4q = 3tr + 6CO2 + 2H2O (Slaughter et al., 1977)
    149) 3dol + 4q + H2O = ta + 3cc + 3CO2 (Eggert & Kerrick, 1981; Metz & Puhan, 1971; Gordon & Greenwood, 1970)
    150) tr + 3cc + 2q = 5di + 3CO2 + H2O (Slaughter et al., 1975)
    151) tr + 11dol = 8fo + 13cc + 9CO2 + H2O (Metz, 1976)
    152) 3tr + 5cc = 11di + 2fo + 5CO2 + 3H2O (Chernosky & Berman, 1986a,b)
    153) ky = and (Holdaway, 1971; Newton, 1966a; Richardson et al., 1969; Bohlen et al., 1991)
    154) ky = sill (Newton, 1966b; Richardson et al., 1968; Holdaway, 1971; Bohlen et al., 1991)
    155) and = sill (Pattison, personal communications)
    156) and = sill (Holdaway, 1971; Bowman, 1975; Kerrick & Heninger, 1984)
    157) and = sill (Richardson et al., 1969)
    158) ky = cor + q (Harlov & Newton, 1993; Harlov & Milke, 2002)
    159) cor + q = sill (Harlov et al., 2008)
    160) cor + q = and (Harlov & Newton, 1993)
    161) cor + stv = ky (Schmidt et al., 1997)
    162) 2dsp = cor + H2O (Haas, 1972; Fockenberg et al., 1996)
    163) 2dsp = cor + H2O (Vidal et al., 1994)
    164) prl + 6dsp = 4and + 4H2O (Haas & Holdaway, 1973; Hemley et al., 1980)
    165) 2dsp + 4q = prl (Theye et al., 1997)
    166) 2dsp + 4coe = prl (Theye et al., 1997)
    167) prl = cor + 4q + H2O (Chatterjee et al., 1984)
    168) prl = and + 3q + H2O (Hemley et al., 1980; Kerrick, 1968)
    169) prl = and + 3q + H2O (Haas & Holdaway, 1973)
    170) kao + 2q = prl + H2O (McPhail, 1985; Hemley et al., 1980)
    171) 2kao = 2dsp + prl + 2H2O (Hemley et al., 1980)
    172) tpz = ky + H2O (Wunder et al., 1993)
    173) gr + 2ky + q = 3an (Koziol & Newton, 1988; Goldsmith, 1980)
    174) gr + 2ky + q = 3an (Gasparik, 1984; Hays, 1967)
    175) gr + q = an + 2wo (Huckenholz et al., 1975; Newton, 1966c; Hays, 1967; Windom & Boettcher, 1976)
    176) gr + cor = geh + an (Boettcher, 1970; Huckenholz et al., 1975)
    177) 2gr = 3wo + geh + an (Huckenholz et al., 1975; Hays, 1967)
    178) gr + 2cor = 3cats (Gasparik, 1984)
    179) 2cats + 2caes = 3an (Gasparik, 1984)
    180) gr + 3ky = 3an + cor (Gasparik, 1984)
    181) gr + 3cats = 2an + 2geh (Hays, 1967)
    182) 3cats = an + geh + cor (Hays, 1967)
    183) gr + 3ky = 3an + cor (Gasparik, 1984)
    184) 3an + cc = me (Baker & Newton, 1994)
    185) 3an + cc = me (Goldsmith & Newton, 1977)
    186) gr + cc + 2ky + q = me (Baker & Newton, 1994)
    187) 4zo + q = 5an + gr + 2H2O (Boettcher, 1970; Newton, 1966; Chatterjee et al., 1984)
    188) 4zo + q = 5an + gr + 2H2O (Newton, 1966)
    189) 6zo = 6an + 2gr + cor + 3H2O (Boettcher, 1970; Newton, 1965; Chatterjee et al., 1984)
    190) 2zo + ky + q = 4an + H2O (Goldsmith, 1981; Jenkins et al., 1983; Johannes, 1984)
    191) 2zo + sill + q = 4an + H2O (Newton, 1966; Newton & Kennedy, 1963)
    192) ma = an + cor + H2O (Chatterjee, 1974)
    193) ma = an + cor + H2O (Storre & Nitsch, 1974)
    194) ma + q = an + and + H2O (Storre & Nitsch, 1974)
    195) ma + q = an + ky + H2O (Storre & Nitsch, 1974)
    196) 4ma + 3q = 2zo + 5ky + 3H2O (Jenkins, 1984)
    197) ma + q = an + and + H2O (Nitsch et al., 1981)
    198) ma + q = an + ky + H2O (Nitsch et al., 1981)
    199) 4ma = 2zo + 2ky + 3cor + 3H2O (Chatterjee et al., 1984)
    200) law = an + 2H2O (Crawford & Fyfe, 1965)
    201) 4law + 2q = 2zo + prl + 6H2O (Nitsch, 1972)
    202) 12law = 6zo + 2ky + prl + 20H2O (Nitsch, 1972)
    203) 5law = 2zo + ma + 2q + 8H2O (Nitsch, 1974)
    204) 2law + dsp = zo + ky + 4H2O (Schmidt & Poli, 1994)
    205) 4law = 2zo + ky + q + 7H2O (Schmidt & Poli, 1994; Chatterjee et al., 1984)
    206) 4law = 2zo + ky + q + 7H2O (Newton & Kennedy, 1963)
    207) 4law = 2zo + ky + q + 7H2O (Skrok et al., 1994)
    208) pre = an + wo + H2O (Chatterjee et al., 1984)
    209) 5pre = 2zo + 2gr + 3q + 4H2O (Connolly & Kerrick, 1985)
    210) wrk = an + 2q + 2H2O (Liou, 1970)
    211) lmt = an + 2q + 4H2O (Thompson, 1970)
    212) lmt = wrk + 2H2O (Liou, 1971a,b,c)
    213) law + 2q + 2H2O = lmt (Liou, 1971a,b,c)
    214) law + 2q = wrk (Liou, 1971a,b,c)
    215) lmt + 3q + 2H2O = heu (Cho et al., 1987)
    216) stlb = lmt + 3q + 3H2O (Liou, 1971a,b,c)
    217) 3cc + an + cor = 2geh + 3CO2 (Shmulovich, 1974)
    218) 2cc + an = wo + geh + 2CO2 (Shmulovich, 1974)
    219) wo + cc + an = gr + CO2 (Hoschek, 1974)
    220) an + cor + 3cc = 2geh + 3CO2 (Hoschek, 1974)
    221) 2an + 3cc = geh + gr + 3CO2 (Hoschek, 1974)
    222) an + 2cc = geh + wo + 2CO2 (Hoschek, 1974)
    223) 2zo + CO2 = 3an + cc + H2O (Allen & Fawcett, 1982)
    224) cc + q + and = an + CO2 (Chernosky & Berman, 1991)
    225) cc + q + and = an + CO2 (Jacobs & Kerrick, 1981)
    226) cc + q + ky = an + CO2 (Jacobs & Kerrick, 1981)
    227) per + cor = sp (Chamberlin et al., 1995)
    Equilibrium: opx cor py (Gasparik & Newton, 1984), involving next two reactions:
    228) 3en + 2cor = 2py
    229) en + mgts = py
    Equilibrium: opx cor py (Fockenberg, 2008), involving next two reactions:
    230) 3en + 2cor = 2py
    231) en + mgts = py
    Equilibrium: py q opx sill (Perkins, 1983; Hensen & Essene, 1971), involving next two reactions:
    232) 2py + 2q = 3en + 2sill
    233) en + mgts = py
    Equilibrium: py opx q ky (Hensen, 1972), involving next two reactions:
    234) 2py + 2q = 3en + 2ky
    235) en + mgts = py
    Equilibrium: fo py sp opx (Danckwerth & Newton, 1978; Gasparik & Newton, 1984), involving next two reactions:
    236) fo + py = sp + 2en
    237) en + mgts = py
    238) en + sp = mgts + fo (Gasparik & Newton, 1984)
    239) en + mgts = py (Perkins et al., 1981)
    240) hcrd = crd + H2O (Mirwald et al., 1979)
    241) hcrd = crd + H2O (Schreyer & Yoder, 1964)
    242) hcrd = crd + H2O (Carey, 1995; Skippen & Gunter, 1996)
    243) hcrd = crd + H2O (Mukhopadhyay & Holdaway, 1994)
    Equilibrium: opx sp fo crd (Hertzberg, 1983), involving next two reactions:
    244) 5en + 2sp = 5fo + crd
    245) en + sp = mgts + fo
    Equilibrium: opx sp fo cd H2O (Seifert, 1974; Fawcett & Yoder, 1966), involving next three reactions:
    246) 5en + 2sp = 5fo + crd
    247) en + sp = mgts + fo
    248) hcrd = crd + H2O
    Equilibrium: opx sill q crd (Newton, personal communication), involving next three reactions:
    249) en + 2sill + q = crd
    250) 2mgts + 3q = crd
    251) 3en + 6sill = 2mgts + 2crd
    Equilibrium: opx sill cd cor H2O (Newton, 1972), involving next four reactions:
    252) 3en + 6sill = 2mgts + 2crd
    253) en + 3sill = crd + cor
    254) hcrd + cor = en + 3sill + H2O
    255) hcrd = crd + H2O
    Equilibrium: opx sa q crd (Newton, 1972; Perkins et al., 1981), involving next three reactions:
    256) 2crd = spr4 + 8q
    257) 5crd = 2spr5 + 2en + 19q
    258) crd = 2mgts + 3q
    Equilibrium: sa q crd sill (Newton, 1972; Perkins et al., 1981), involving next two reactions:
    259) 2crd = spr4 + 8q
    260) 3crd + 4sill = 2spr5 + 17q
    Equilibrium: sa q opx sill (Newton, 1972; Hensen, 1972), involving next five reactions:
    261) spr4 + 6q = 2en + 4sill
    262) 2spr5 + 14q = 3en + 10sill
    263) en + spr5 = mgts + spr4
    264) spr4 + 2q = 4mgts
    265) en + spr4 + 2sill = 6mgts
    Equilibrium: py opx sa sill (Boyd & England, 1959; Arima & Onuma, 1977; Hensen, 1972), involving next three reactions:
    266) 6py = spr4 + 7en + 2sill
    267) 7py = spr5 + 9en + 2sill
    268) py = en + mgts
    Equilibrium: py opx sa ky (Fockenberg, 2008), involving next four reactions:
    269) 6py = spr4 + 7en + 2ky
    270) 7py = spr5 + 9en + 2ky
    271) en + spr5 = mgts + spr4
    272) py = en + mgts
    Equilibrium: py sp cor sa (Ackermand et al., 1975; Doroshev & Malinovskiy, 1974), involving next two reactions:
    273) 2py + 6sp + 4cor = 3spr4
    274) py + 6sp + 8cor = 3spr5
    Equilibrium: py cor sa sill (Malinovsky & Doroshev, 1975), involving next two reactions:
    275) 4py + 14cor = 3spr4 + 6sill
    276) py + 6cor = spr5 + 2sill
    Equilibrium: opx cor sa sill (Malinovsky & Doroshev, 1975), involving next two reactions:
    277) 2en + 6cor = spr4 + 2sill
    278) 3en + 14cor = 2spr5 + 4sill
    Equilibrium: sa opx cd sp H2O (Seifert, 1974), involving next four reactions:
    279) 2crd + 16sp = 5spr4
    280) 5spr5 + 5en = 3crd + 19sp
    281) hcrd = crd + H2O
    282) en + spr5 = mgts + spr4
    Equilibrium: cor opx sp sa (Podlesskii, 1996), involving next three reactions:
    283) en + 4sp + 6cor = 2spr5
    284) en + 2sp + 2cor = spr4
    285) en + 2cor = 2mgts
    Equilibrium: chl cor cd sa H2O (Seifert, 1974), involving:
    286) 16clin + 64cor = 2crd + 19spr4 + 64H2O
    Equilibrium: chl cd opx sa H2O (Seifert, 1974), involving next two reactions:
    287) 16clin + 6crd = 32en + 7spr4 + 64H2O
    288) hcrd = crd + H2O
    Equilibrium: chl cor sp sa H2O (Seifert, 1974; Ackermand et al., 1975), involving next two reactions:
    289) 2clin + 8cor + 2sp = 3spr4 + 8H2O
    290) 2clin + 20cor + 8sp = 6spr5 + 8H2O
    Equilibrium: chl opx fo py H2O (Pawley, 2003), involving:
    291) clin + en = 2fo + py + 4H2O
    Equilibrium: chl opx fo sp H2O (Baker & Holland, 1996), involving next two reactions:
    292) clin = en + fo + sp + 4H2O
    293) ames = en + 2sp + 4H2O
    Equilibrium: chl opx fo H2O (Baker & Holland, 1996), involving next two reactions:
    294) clin = 2fo + mgts + 4H2O
    295) 2clin = ames + 2fo + en + 4H2O
    Equilibrium: chl cor sp H2O (Baker & Holland, 1996), involving:
    296) 3ames = 2clin + 2cor + 2sp + 4H2O
    Equilibrium: chl cor py sp H2O (Ackermand et al., 1975), involving next two reactions:
    297) clin + 2cor = py + 2sp + 4H2O
    298) 2py + 6sp + 12H2O = 3ames + 2cor
    Equilibrium: chl opx fo sp H2O (Jenkins, 1981; Jenkins & Chernosky, 1986; Fawcett & Yoder, 1966), involving next two reactions:
    299) clin = en + fo + sp + 4H2O
    300) ames = en + 2sp + 4H2O
    Equilibrium: chl opx fo sp H2O (Jenkins, 1981; Jenkins & Chernosky, 1986; Fawcett & Yoder, 1966), involving next two reactions:
    301) clin = en + fo + sp + 4H2O
    302) ames = en + 2sp + 4H2O
    303) 2mcar = sud + q (Vidal et al., 1992)
    Equilibrium: chl py fo sp H2O (Staudigel & Schreyer, 1977), involving:
    304) 2clin = py + 3fo + sp + 8H2O
    Equilibrium: chl py fo sp H2O (Fockenberg, 1995), involving:
    305) 2clin = py + 3fo + sp + 8H2O
    Equilibrium: chl q ky tlc H2O (Massonne et al., 1981), involving next two reactions:
    306) 3clin + 14q = 3ky + 5ta + 7H2O
    307) 2clin + 4q = ames + 2ta + 2H2O
    Equilibrium: chl opx fo cd H2O (Jenkins & Chernosky, 1986), involving:
    308) 2clin + 3en = 7fo + crd + 8H2O
    Equilibrium: chl cd opx sp H2O (Jenkins & Chernosky, 1986), involving next two reactions:
    309) 5clin + crd = 10en + 7sp + 20H2O
    310) hcrd = crd + H2O
    Equilibrium: chl fo sp cd H2O (Chernosky, 1974; McPhail et al., 1990), involving:
    311) 5clin = 10fo + 3sp + crd + 20H2O
    Equilibrium: chl q tlc cd H2O (Chernosky, 1978), involving:
    312) 6clin + 29q = 8ta + 3crd + 16H2O
    Equilibrium: chl q tlc cd H2O (Massonne, 1989), involving:
    313) 6clin + 29q = 8ta + 3crd + 16H2O
    Equilibrium: tlc sill q cd H2O (Newton, 1972), involving next four reactions:
    314) 2ta + 6sill + q = 3crd + 2H2O
    315) hcrd = crd + H2O
    316) 2ta + 6sill + q + H2O = 3hcrd
    317) tap = sill + 3q + H2O
    Equilibrium: tlc ky q cd H2O (Massonne & Schreyer, 1989), involving next two reactions:
    318) 2ta + 6ky + q = 3crd + 2H2O
    319) hcrd = crd + H2O
    Equilibrium: chl ky q cd H2O (Seifert & Schreyer, 1970), involving:
    320) 2clin + 8ky + 11q = 5crd + 8H2O
    Equilibrium: chl and q cd H2O (Seifert & Schreyer, 1970), involving next two reactions:
    321) 2clin + 8and + 11q = 5crd + 8H2O
    322) hcrd = crd + H2O
    Equilibrium: chl and cd cor H2O (Seifert, 1973), involving:
    323) 2clin + 19and = 5crd + 11cor + 8H2O
    Equilibrium: chl sill cd cor H2O (Seifert, 1973), involving:
    324) 2clin + 19sill = 5crd + 11cor + 8H2O
    Equilibrium: chl ky cd cor H2O (Seifert, 1973), involving:
    325) 2clin + 19ky = 5crd + 11cor + 8H2O
    Equilibrium: chl cor cd sp H2O (Seifert, 1974), involving:
    326) 5clin + 20cor = 3crd + 19sp + 20H2O
    326) equil: chl cor cd sp H2O (Seifert, 1974)
    327) clin + 2mag = 3fo + sp + 2CO2 + 4H2O (Chernosky & Berman, 1986a,b)
    328) 3mctd = py + 2cor + 3H2O (Chopin & Schreyer, 1983)
    Equilibrium: mctd tlc chl ky H2O (Koch-Müller & Wirth, 2001), involving:
    329) 7mctd + ta = 2clin + 5ky
    330) 8mctd + 3cor + 7ky = 2mst + 4H2O (Schreyer, 1968)
    Equilibrium: chl ky cor mst H2O (Massonne, 1995), involving:
    331) 8clin + 51ky + 31cor = 10mst + 12H2O
    Equilibrium: chl ky cor mst H2O (Fockenberg, 1998), involving:
    332) 8clin + 51ky + 31cor = 10mst + 12H2O
    Equilibrium: mst ky cor opx H2O (Fockenberg, 1998), involving:
    333) 2mst = 7ky + 11cor + 4en + 4H2O
    Equilibrium: mst tlc ky cor H2O (Fockenberg, 1998), involving:
    334) 6mst = 8ta + 13ky + 41cor + 4H2O
    335) 8mctd + 7ky + 6dsp = 2mst + 7H2O (Fockenberg, 1998)
    336) 6mst = 8py + 21ky + 25cor + 12H2O (Fockenberg, 1998)
    Equilibrium: tlc mst ky py H2O (Chopin & Sobolev, 1995), involving:
    337) 25ta + 12mst = 67ky + 41py + 49H2O
    Equilibrium: tlc chl mst py H2O (Fockenberg, 2008), involving next three reactions:
    338) 67clin + 78ta + 16mst = 211py + 378H2O
    339) 2ames + 2ta = clin + 3py + 6H2O
    340) 67ames + 106ta + 8mst = 206py + 390H2O
    Equilibrium: mcar q tlc ky H2O (Chopin & Schreyer, 1983), involving:
    341) 3mcar + q = ta + 3ky + 5H2O
    Equilibrium: mcar chl ky tlc H2O (Chopin & Schreyer, 1983), involving:
    342) 14mcar = clin + 13ky + 3ta + 21H2O
    Equilibrium: mcar chl ky q H2O (Chopin & Schreyer, 1983), involving:
    343) 5mcar = clin + 4ky + 3q + 6H2O
    Equilibrium: tlc q ky H2O (Hoschek, 1995), involving next two reactions:
    344) 2ta + 3ky + H2O = 3tats + 2q
    345) tap = ky + 3q + H2O
    Equilibrium: zo tlc trts ky q H2O (Hoschek, 1995), involving next three reactions:
    346) 2ta + 3ky + H2O = 3tats + 2q
    347) 5ts + 7q = 3tr + 7ky + 2zo + H2O
    348) 12zo + 14ta = 3tr + 9ts + 14q + 8H2O
    Equilibrium: phe tlc trts mbi zo q H2O (Hoschek, 1990), involving next two reactions:
    349) 9mu + 6tr = 9phl + 26q + ta + 6zo + 2H2O
    350) 33phl + 21ta + 22zo = 26east + 7mu + 22tr + 10H2O
    351) ts + 2di + 2q = tr + 2an (Jenkins, 1994)
    352) ts + 2fo = tr + 2sp (Jenkins, 1994)
    353) clin + 2dol = 3fo + 2cc + sp + 4H2O + 2CO2 (Chernosky & Berman, 1986a,b)
    354) 3clin + 2cc = 2di + 5fo + 3sp + 2CO2 + 12H2O (Chernosky & Berman, 1986a,b)
    Equilibrium: mpm cz gr chl q H2O (Schiffman & Liou, 1980), involving:
    355) 25mpm = 29cz + 14gr + 5clin + 6q + 53H2O
    356) 2vsv + 6q = 11gr + 4di + wo + 9H2O (Hochella et al., 1982)
    357) cg = cgh (Bowen & Greig, 1923; Cohen & Klement, 1967)
    358) ne = cgh (Greig & Barth, 1938)
    359) jd + q = abh (Holland, 1980)
    360) jd + q = ab (Newton & Smith, 1967; Holland, 1980)
    361) jd + ky = abh + cor (Essene et al., 1972)
    362) 2jd = ne + abh (Gasparik, 1985; Robertson et al., 1957; Boettcher & Wyllie, 1968)
    363) 6ne + 2hlt = sdl (Sharp et al., 1989)
    364) sdl = 6cgh + 2hltL (Sharp et al., 1989)
    365) pa = jd + ky + H2O (Holland, 1979)
    366) pa = abh + cor + H2O (Chatterjee, 1970)
    367) pa + q = abh + and + H2O (Chatterjee, 1972)
    368) pa + q = abh + ky + H2O (Chatterjee, 1972)
    369) jd + H2O = anl (Manghnani, 1970)
    370) anl + q = abh + H2O (Thompson, 1971; Liou, 1971)
    371) mu = san + cor + H2O (Chatterjee & Johannes, 1974)
    372) mu + q = san + and + H2O (Chatterjee & Johannes, 1974)
    373) mu + q = san + sill + H2O (Chatterjee & Johannes, 1974)
    Equilibrium: mu q san mlt H2O (Segnit & Kennedy, 1961), involving next three reactions:
    374) mu + q = san + smul + H2O
    375) 5mu + 2q = 5san + 4amul + 5H2O
    376) 2smul + 3mu = 4amul + 3san + 3H2O
    Equilibrium: prl q mlt H2O (Carr & Fyfe, 1960), involving next two reactions:
    377) prl = smul + 3q + H2O
    378) 5prl = 4amul + 18q + 5H2O
    Equilibrium: crd cor mlt sa (Seifert, 1974), involving next four reactions:
    379) 13smul + 2spr5 = 17cor + 3crd
    380) 8smul + spr4 = 8cor + 2crd
    381) 73smul + 6spr5 = 68amul + 9crd
    382) 32amul + 6crd = 40smul + 3spr4
    Equilibrium: sp cor mlt sa (Seifert, 1974), involving next four reactions:
    383) 2smul + 3cor = 4amul
    384) 26smul + 12spr5 = 40amul + 9spr4
    385) 2smul + 4spr5 = 10cor + 3spr4
    386) 4amul + 4spr5 = 13cor + 3spr4
    Equilibrium: mlt mqL (Klug et al., 1987), involving next two reactions:
    387) smul = silL
    388) 4amul + 3qL = 5silL
    Equilibrium: mlt crst mqL (Klug et al., 1987), involving next three reactions:
    389) crst = qL
    390) smul = silL
    391) 4amul + 3qL = 5silL
    Equilibrium: mlt cor mqL (Klug et al., 1987), involving next three reactions:
    392) cor = corL
    393) smul = silL
    394) 4amul + 3qL = 5silL
    395) kcm = san + H2O (Massonne 1999; Fasshauer et al., 1997; Thompson, 1994)
    396) wa + ky + coe = 2san (Fasshauer et al., 1998; Yagi et al., 1994; Urakawa et al., 1994; Yong et al., 2008)
    397) 2hol = wa + ky + coe (Yagi et al., 1994; Urakawa et al., 1994)
    398) kls + san = 2lc (Scarfe et al., 1966; Lindsley, 1966; Fasshauer et al., 1998)
    399) kls + 2coe = san (Fasshauer et al., 1998)
    400) san + fo = lc + en (Luth, 1967)
    401) 2phl + 3en = 2san + 6fo + 2H2O (Luth, 1967)
    402) 2phl + san = 3lc + 3fo + 2H2O (Luth, 1967)
    403) 2phl = kls + lc + 3fo + 2H2O (Luth, 1967)
    Equilibrium: phe chl mbi ky q H2O (Bird & Fawcett, 1973), involving next two reactions:
    404) 5mu + 3clin = 5phl + 8ky + q + 12H2O
    405) cel + east = mu + phl
    Equilibrium: phe chl mbi ky q H2O (Massonne, unpublished), involving next two reactions:
    406) 5mu + 3clin = 5phl + 8ky + q + 12H2O
    407) cel + east = mu + phl
    Equilibrium: phe mbi q cd san H2O (Seifert, 1976), involving next two reactions:
    408) 6mu + 2phl + 15q = 3crd + 8san + 8H2O
    409) cel + east = mu + phl
    Equilibrium: phe chl q cd mbi H2O (Seifert, 1970), involving:
    410) mu + clin + 2q = crd + phl + 4H2O
    Equilibrium: cd phe mbi sill q H2O (Seifert, 1970), involving next two reactions:
    411) 2phl + 8sill + 7q = 3crd + 2mu
    412) cel + east = mu + phl
    Equilibrium: tlc phe coe ky H2O (Massonne & Schreyer, 1989), involving next two reactions:
    413) 6cel + 6ky + 2H2O = 2ta + 6mu + 4coe
    414) 2ta + 3ky + H2O = 3tats + 2coe
    Equilibrium: tlc phe q ky H2O (Massonne & Schreyer, 1989), involving:
    415) 6cel + 6ky + 2H2O = 2ta + 6mu + 4q
    Equilibrium: phe ky py coe H2O (Massonne & Szpurka, 1997), involving:
    416) 3cel + 4ky = py + 3mu + 4coe
    Equilibrium: fphe ky alm coe H2O (Massonne & Szpurka, 1997), involving:
    417) 3fcel + 4ky = alm + 3mu + 4coe
    Equilibrium: fphe ky alm q H2O (Massonne & Szpurka, 1997), involving:
    418) 3fcel + 4ky = alm + 3mu + 4q
    Equilibrium: phe mbi san q H2O (Massonne & Schreyer, 1989), involving next four reactions:
    419) 3mu + 2phl = 3east + 2san + 3q + 2H2O
    420) 3cel = phl + 2san + 3q + 2H2O
    421) 3mu + 2phl = 3east + 2san + 3q + 2H2O
    422) cel + east = phl + mu
    Equilibrium: tlc phe mbi ky q H2O (Massonne & Schreyer, 1989), involving:
    423) ta + mu = phl + ky + 3q + H2O
    Equilibrium: chl mbi q phe tlc H2O (Massonne & Schreyer, 1989), involving:
    424) 3clin + 3phl + 23q = 3mu + 8ta + 4H2O
    425) 2phl + 6q = 3en + 2san + 2H2O (Aranovich & Newton, 1998)
    426) 2phl + 6q = 3en + 2san + 2H2O (Berman et al., 1995)
    427) 2phl + 6q = 3en + 2san + 2H2O (Bohlen et al., 1983a,b,c)
    428) 2phl + 6q = 3en + 2san + 2H2O (Peterson & Newton, 1990)
    429) 2phl + 6q = 3en + 2san + 2H2O (Wood, 1976)
    430) 2jd + ta = gl ( Carman & Gilbert, 1983)
    431) gl + 2q = ta + 2abh (Corona & Jenkins, 2007)
    432) 2naph + 3en = 2abh + 6fo + 2H2O (Carman & Gilbert, 1983)
    433) 5phl + 6cc + 24q = 3tr + 5san + 6CO2 + 2H2O (Hewitt, 1975)
    434) 3dol + san + H2O = phl + 3cc + 3CO2 (Puhan & Johannes, 1974; Puhan, 1978)
    435) mu + cc + 2q = san + an + CO2 + H2O (Hewitt, 1973)
    436) 2zo + mu + 2q = 4an + san + 2H2O (Johannes, 1980)
    437) 4law + ab = 2zo + pa + 2q + 6H2O (Heinrich & Althaus, 1980)
    438) 4law + jd = 2zo + pa + q + 6H2O (Heinrich & Althaus, 1980)
    439) 2parg = 3di + sp + an + 2fo + 2ne + 2H2O (Westrich & Holloway, 1981; Lykins & Jenkins, 1992)
    440) 2tr + 2fo = 4di + 5en + 2H2O (Lykins & Jenkins, 1992)
    441) 2ts = 2fo + 4an + en + 2H2O (Lykins & Jenkins, 1992)
    442) 2parg + 5en = 2di + 8fo + 2an + 2abh + 2H2O (Lykins & Jenkins, 1992)
    443) fs = fa + q (Bohlen et al., 1980)
    444) 4mt + O2 = 6hem (Myers & Eugster, 1983)
    445) 4mt + O2 = 6hem (Chou, 1978)
    446) 3fa + O2 = 3q + 2mt (Chou, 1978)
    447) 3fa + O2 = 3q + 2mt (Myers & Eugster, 1983)
    448) 3fa + O2 = 3q + 2mt (Hewitt, 1978)
    449) 3fa + O2 = 3q + 2mt (O'Neill, 1987a)
    450) q + 2iron + O2 = fa (O'Neill, 1987b)
    451) 3iron + 2O2 = mt (O'Neill, 1988)
    452) 2gth = hem + H2O (Voigt & Will, 1981)
    453) sid + hem = mt + CO2 (Koziol, 2004)
    454) 2grun = 7fs + 2q + 2H2O (Lattard & Evans, 1992)
    455) 2grun = 7fa + 9q + 2H2O (Lattard & Evans, 1992)
    456) 2deer = 9fs + 6mt + 6q + 10H2O (Lattard & Le Breton, 1994)
    457) deer + Ni = 6fs + 2mt + NiO + 5H2O (Lattard & Le Breton, 1994)
    458) alm + 3hem = 3mt + ky + 2q (Harlov & Newton, 1992)
    459) alm + 2sill = 3herc + 5q (Bohlen et al., 1986)
    460) alm + 5cor = 3herc + 3sill (Shulters & Bohlen, 1989)
    461) 2alm + 4sill + 5q = 3fcrd (Mukhopadhyay & Holdaway, 1994)
    462) 6fst + 25q = 8alm + 46ky + 12H2O (Rao & Johannes, 1979)
    463) 6fst + 25q = 8alm + 46ky + 12H2O (Ganguly, 1972)
    464) 2fst + 15q = 4fcrd + 10sill + 4H2O (Richardson, 1968)
    465) 23fctd + 7q = 2fst + 5alm + 19H2O (Rao & Johannes, 1979)
    466) 8fctd + 10ky = 2fst + 3q + 4H2O (Rao & Johannes, 1979)
    467) 3fctd = alm + 2cor + 3H2O (Ganguly, 1969; Vidal et al., 1994)
    468) 3fctd = alm + 2cor + 3H2O (Ganguly, 1969)
    469) 3fctd = 4dsp + alm + H2O (Vidal et al., 1994)
    470) 6fst + 25q = 8alm + 46sill + 12H2O (Richardson, 1968)
    471) 6fst + 25q = 8alm + 46sill + 12H2O (Dutrow & Holdaway, 1989)
    472) 8fctd + 10sill = 2fst + 3q + 4H2O (Richardson, 1968)
    473) 5fctd = fcrd + 3herc + 5H2O (Grieve & Fawcett, 1974)
    474) 2fgl = 4abh + 3fa + q + 2H2O (Hoffmann, 1972)
    475) rieb + 3hem = 2acm + 3mt + 4q + H2O (Ernst, 1962)
    476) 2ann + 6sill + 9q = 3fcrd + 2san + 2H2O (Holdaway & Lee, 1977)
    477) 2ann + 3q = 2san + 3fa + 2H2O (Rutherford, 1973)
    478) 2ann + 3q = 2san + 3fa + 2H2O (Dachs & Benisek, 1995)
    479) 2san + 2mt + 2H2O = 2ann + O2 (Dachs, 1994)
    480) gr + 2alm = 3fa + 3an (Bohlen et al., 1983a,b,c)
    481) gr + 2alm = 3fa + 3an (Perkins & Vielzeuf, 1992)
    482) 2hed = 2wo + fa + q (Lindsley & Munoz, 1969)
    483) 2fact = 3fa + 5q + 4hed + 2H2O (Jenkins & Bozhilov, 2003)
    484) 2minn = 3fa + 5q + 2H2O (Engi, 1986)
    485) glt + 2q = minn + H2O (Rasmussen et al., 1998)
    486) 2glt + 5minn = 3grun + 6H2O (Rasmussen et al., 1998)
    487) 3sid + minm = minn + 3mag (Klein, 1974)
    488) 28fstp = 14ann + 5grun + 21alm + 79q + 156H2O (Miyano & Klein, 1989)
    489) mstp + daph = fstp + clin (Miyano & Klein, 1989)
    490) andr = 3pswo + hem (Huckenholz & Yoder, 1971)
    491) 6andr + 3fa = 6mt + 18wo + 3q (Gustafson, 1974)
    492) 6andr + 2Ni = 4mt + 18wo + 2NiO (Gustafson, 1974)
    493) 6andr = 4mt + 18wo + O2 (Moecher & Chou, 1990)
    494) 3andr + mt + 9q = 9hed + 2O2 (Burton et al., 1982)
    495) 2andr + q + 3fa = 4hed + 2wo + 2mt (Liou, 1974)
    496) 2andr + 4q + 2Ni = 4hed + 2wo + 2NiO (Liou, 1974)
    497) 3andr + mt + 9q = 9hed + 2O2 (Moecher & Chou, 1990)
    498) 2andr + 4q = 4hed + 2wo + O2 (Moecher & Chou, 1990)
    499) 3cc + hem + 3q = andr + 3CO2 (Taylor & Liou, 1978)
    500) cz = zo (Natural pairs, unpublished)
    501) 2cz + ky + q = 4an + H2O (Jenkins et al., 1983)
    Equilibrium: epi an grd hem q H2O (Holdaway, 1972; Liou, 1973), involving next five reactions:
    502) 2fep = andr + an + hem + q + H2O
    503) 2ep = gr + an + hem + q + H2O
    504) 6ep = 2andr + 6an + hem + 3H2O
    505) 4cz + q = 5an + gr + 2H2O
    506) 6cz + hem + 3q = andr + 9an + 3H2O
    Equilibrium: grd q an wo (Holdaway, 1972), involving:
    507) gr + q = an + 2wo
    Equilibrium: grd trd an wo (Holdaway, 1972), involving:
    508) gr + trd = an + 2wo
    Equilibrium: epi grd (Perchuk & Aranovich, 1979), involving:
    509) 2cz + andr = 2ep + gr
    510) 12pmt + 6cup = 8gr + 4spss + 12ten + 6H2O (Keskinen & Liou, 1979)
    511) osm1 = crd + san + 2q (Olesch & Seifert, 1981)
    512) 4phl + 3crd + 2san + 33q = 6osm2 + 4H2O (Olesch & Seifert, 1981)
    513) en + san + 2sill + 3q = osm1 (Carrington & Harley, 1995)
    514) py + osm2 = osm1 + 2en (Carrington & Harley, 1995)
    515) osm1 + fs = fosm + en (Holland et al., 1996)
    516) fosm + crd = osm1 + fcrd (Holland et al., 1996)
    517) mag + ru = geik + CO2 (Haselton et al., 1978)
    518) mag + ru = geik + CO2 (Ferry et al., 2002)
    519) sph + ky = an + ru (Manning & Bohlen, 1991)
    520) ru + cc + q = sph + CO2 (Hunt & Kerrick, 1977)
    521) ru + cc + q = sph + CO2 (Jacobs & Kerrick, 1981)
    522) 2ilm = 2iron + 2ru + O2 (O'Neill et al., 1988)
    523) 2ilm = 2iron + 2ru + O2 (Anovitz et al., 1985)
    524) 2usp = 2ilm + 2iron + O2 (O'Neill et al., 1988)
    525) 2usp = 2ilm + 2iron + O2 (Anovitz et al., 1985)
    526) alm + 3ru = 3ilm + sill + 2q (Bohlen et al., 1983a,b,c)
    527) 2alm + gr + 6ru = 6ilm + 3an + 3q (Bohlen & Liotta, 1986)
    528) zrc = bdy + crst (Butterman & Foster, 1967)
    529) zrc + 2mag = bdy + fo + 2CO2 (Ferry et al., 2002)
    530) 2NiO = 2Ni + O2 (O'Neill, 1987)
    531) 2mag + fa = fo + 2sid (Dalton & Wood, 1993)
    532) 2dol + fa = fo + 2ank (Dalton & Wood, 1993)
    533) dol + sid = ank + mag (Anovitz & Essene, 1987)
    534) dol + sid = ank + mag (Rosenberg, 1967)
    535) dol + sid = ank + mag (Klein, 1978)
    536) dol + sid = ank + mag (Klein, 1978)
    537) py + ann = alm + phl (Ferry & Spear, 1978)
    538) py + ann = alm + phl (Perchuk & Lavrent’eva, 1983)
    539) 3fcrd + 2py = 3crd + 2alm (Perchuk & Lavrent’eva, 1983)
    540) alm + 3cel = py + 3fcel (Green & Hellman, 1982)
    541) alm + 3cel = py + 3fcel (Hynes & Forest, 1988)
    542) alm + phl = py + ann (Hynes & Forest, 1988)
    543) phl + mu = cel + east (Hodges & spear, 1988)
    544) 2phl + mu + 2sill = 3east + 5q (Hodges & spear, 1988)
    545) 2phl + mu + 2ky = 3east + 5q (Pigage & Greenwood, 1982)
    546) 2mu + phl + py = 3east + 6q (Natural)
    547) 2mu + phl + py = 3east + 6q (Hynes & Forest)
    548) 5cel + daph = 5fcel + clin (Currie & Van Staal99)
    549) ames + cel = mu + clin (Currie & Van Staal99)
    550) 2hed + en = fs + 2di (Lindsley, 1983)
    551) 2hed + fo = fa + 2di (Perkins & Vielzeuf, 1992)
    552) fs + fo = en + fa (Matsui & Nishizawa, 1974)
    553) fs + fo = en + fa (von Seckendorff & O'Neill, 1993)
    554) 2py + 3fa = 2alm + 3fo (O'Neill & Wood, 1979)
    555) 2py + 3fa = 2alm + 3fo (Hackler & Wood, 1989)
    556) 2py + 3fs = 2alm + 3en (Lee & Ganguly, 1988)
    557) 2py + 3fs = 2alm + 3en (Kawasaki & Matsui, 1983)
    558) 2py + 3fs = 2alm + 3en (Harley, 1984)
    559) alm + 3di = 3hed + py (Wood, 1976)
    560) 2herc + fo = 2sp + fa (Jamieson & Roeder, 1984)
    561) 2herc + fo = 2sp + fa (Engi, 1983)
    562) fa + 2mft = 2mt + fo (Jamieson & Roeder, 1984)
    563) 3en + 2ann = 2phl + 3fs (Fonarev & Konilov, 1986)
    564) fact + 5di = tr + 5hed (Natural Kd)
    565) 7en + 2fanth = 2anth + 7fs (Natural Kd)
    566) 3tr + 5fgl = 5gl + 3fact (Natural Kd)
    567) spr4 + 2fcrd = fspr + 2crd (Waters, 1986)
    568) spr4 + 2fs = fspr + 2en (Natural Collected)
    569) 2acm + pa + 2q = 3ab + hem + H2O (Holland & Ray, 1985)
    570) jd + ep = acm + cz (Holland & Ray, 1985)
    571) 5alm + 3clin = 5py + 3daph (Dickenson & Hewitt, 1986; Laird, 1989)
    572) 5phl + 3daph = 5ann + 3clin (Laird, 1989)
    573) clin + fact = tr + daph (Laird, 1982)
    574) pre + ep = fpre + cz (Cho et al., 1986)
    575) 5mpm + daph = 5fpm + clin (Evans, 1990)
    576) fpm + 5ep = jgd + 5cz (Cho et al., 1986)
    577) alm + 3mctd = py + 3fctd (Chinner & Dixon, 1974; Miller, 1986)
    578) 3fctd + ta = 3mctd + fta (Chinner & Dixon, 1974; Chopin & Monie, 1984; Miller, 1986)
    579) 5fctd + clin = 5mctd + daph (Vidal et al., 1999)
    580) mcar + fctd = fcar + mctd (Natural, Seidel & Okrusch, 1977; Theye et al., 1992)
    581) 5mcar + daph = 5fcar + clin (Natural, Theye et al., 1992)
    582) 5sud + 2daph = 5fsud + 2clin (Theye et al., 1992)
    583) pxmn = rhod (Maresch & Mottana, 1976)
    584) rhc + q = pxmn + CO2 (Peters, 1971)
    585) rhc = mang + CO2 (Huebner, 1969)
    586) pxmn + rhc = teph + CO2 (Huebner & Eugster, 1968)
    587) fo + 2mang = teph + 2per (Wood et al., 1994)
    588) 2spss + 3fo = 2py + 3teph (Wood et al., 1994)
    589) spss + 3ilm = alm + 3pnt (Pownceby et al., 1987)
    590) phl + 3mnctd = mnbi + 3mctd (Mahar et al., 1997)
    591) 4phl + 3mnst = 4mnbi + 3mst (Mahar et al., 1997)
    592) 2phl + 3mncrd = 2mnbi + 3crd (Mahar et al., 1997)
    593) 5phl + 3mnchl = 5mnbi + 3clin (Mahar et al., 1997)
    594) phl + spss = mnbi + py (Mahar et al., 1997)
    595) syv = syvL (Clark, 1966)
    596) hlt = hltL (Clark, 1966)
    597) di = diL (Clark, 1966)
    598) san = kspL (Lindsley, 1966)
    599) en = enL (Clark, 1966)
    600) pswo = woL (Yoder, 1966)
    601) cor = corL (Shen & Lazor, 1995 omitting UHP)
    602) crst = qL (Jackson, 1976)
    603) crst = qL (Jackson, 1976)
    604) q = qL (Jackson, 1976)
    605) q = qL (Hudon et al., 2002)
    606) q = qL (Kanzaki, 1990)
    607) coe = qL (Kanzaki, 1990)
    608) coe = qL (Zhang et al., 1993)
    609) an = anL (Clark, 1966; Goldsmith, 1980)
    Equilibrium: an H2O anwL (Clark, 1966), involving next two reactions:
    610) H2oL = H2O
    611) an = anL
    612) lc = lcL (Lindsley 1967; (approx).)
    613) per = perL (Bowen & Anderson, 1914)
    614) lime = limL (Rankin & Wright, 1915)
    615) fo = foL (Davis & England, 1964)
    616) fo = foL (subset of Ohtani & Kumazawa, 1981)
    617) fo = foL (low temperature exp's)
    618) fa = faL (Clark, 1966)
    619) sill = silL (Cameron, 1977; Holland & Carpenter, 1986)
    620) cgh = neL (Bowen, 1912)
    621) ne = neL (Smith, 2003)
    622) abh = abL (Schairer & Bowen, 1956)
    623) abh = abL (Boyd & England, 1963)
    624) abh = abL (Nekvasil & Carroll, 1996)
    Equilibrium: abh H2O abwL (Goldsmith & Jenkins, 1985), involving next two reactions:
    625) H2oL = H2O
    626) abh = abL
    627) abh = abL (Goldsmith & Jenkins, 1985)
    628) h2oL = H2O (Goldsmith & Jenkins, 1985)
    Equilibrium: san H2O kspwL (Lambert et al., 1969; Goldsmith & Peterson, 1990), involving next two reactions:
    629) h2oL = H2O
    630) san = kspL
    Equilibrium: trd H2O qwL (Kennedy et al., 1962), involving next two reactions:
    631) h2oL = H2O
    632) trd = qL
    Equilibrium: q H2O qwL (Kennedy et al., 1962), involving next two reactions:
    633) h2oL = H2O
    634) q = qL
    635) h2oL = H2O (Johannes & Holtz, 1996)
    636) h2oL = H2O (Goranson, 1936)
    637) h2oL = H2O (Behrens, 1995)
    638) h2oL = H2O (Behrens, 1995)
    Equilibrium: abh q abqL (Luth, 1969), involving next two reactions:
    639) abh = abL
    640) q = qL
    Equilibrium: abh trd abqL (Schairer & Bowen, 1956), involving next two reactions:
    641) abh = abL
    642) trd = qL
    Equilibrium: an anqL (Schairer & Bowen, 1947), involving:
    643) an = anL
    Equilibrium: trd anqL (Schairer & Bowen, 1947), involving:
    644) trd = qL
    Equilibrium: an trd anqL (Schairer & Bowen, 1947), involving next two reactions:
    645) an = anL
    646) trd = qL
    Equilibrium: ol olL (Bowen & Schairer, 1935), involving next two reactions:
    647) fo = foL
    648) fa = faL
    • Univariant and divariant solid-solution equilibria start with the keyword `equilibrium' and are followed by one or more equilibrium relations involving end-members in solid solutions. Solid-solution names: crpx, Cr-cpx; crsp, Cr-spinel; po, pyrrhotite; tro, troilite; ol, Fe–Mg olivine; wd, Fe–Mg wadsleyite; rg, Fe–Mg ringwoodite; pv, Fe–Mg perovskite; aki, Fe–Mg akimotoite; mwu, Fe–Mg periclase; pvk, Mg–Al perovskite; crn, Mg–Al corundum; cum, Fe–Mg cummingtonite; opx, Mg–Al opx; cd, hydrous cordierite; sa, Mg–Al sapphirine; chl, Mg–Al chlorite; tlc, Mg–Al talc; trts, Al–tremolite; phe, Mg-phengite; mbi, Al-phlogopite; mlt, mullite; mqL, Al–Si liquid; epi, Fe–Al epidote; grd, grandite garnet; anwL, an-H2O liquid; abwL, ab-H2O liquid; kspwL, ksp-H2O liquid; qwL, q-H2O liquid; abqL, ab-q liquid; anqL, an-q liquid; olL, fo-fa liquid.

    Appendix 3: Other data set changes

    A list of some of the more important changes to thermodynamic data since HP98 follows. Further detailed information may be found on the website at: http://www.esc.cam.ac.uk/people/academic-staff/tim-holland.

    • 1

      New experiments by Aranovich & Newton (1998) on the reactions cc + q = wo + CO2 and 2ta = 3en + 2q + 2H2O, and by Koziol & Newton (1998) on 2mag + en = 2fo + 2CO2 at higher pressures and temperatures than before have led to improved thermodynamic data not only on these end-members but also on the mixing parameters for H2O–CO2 mixtures.

    • 2

      The data for clinohumite has been updated to incorporate the experimental results of Pawley (2000) on the reactions chum = 4fo + per  + H2O and Pawley (2000) and Wunder (1998) on chum = 4fo + br. Compressibility data for chum are from Ross & Crichton (2001), thermal expansion is assumed as for forsterite.

    • 3

      Phlogopite data have been updated using the experiments of Aranovich & Newton (1998) on the reaction 2phl + 6q = 3en + 2san + 2H2O. There has been some controversy over the molar volume to use, as the synthetic phlogopites have a larger volume (inline image bar; Robie & Hemingway, 1995; Aranovich & Newton, 1998) than natural phlogopites (inline image bar; Smyth & McCormick, 1995; Pavese et al., 2003). Until this is resolved we will use the synthetic volumes as they presumably reflect the synthetic material used in the experiments.

    • 4

      The double carbonate reaction equilibrium reactions (arag + mag = dol and arag + sid = ank) are characterized by small free energy changes and are difficult to calculate with accuracy from thermodynamic data gained from a variety of mixed carbonate-silicate equilibria. The recent experimental study of Morlidge et al. (2006) means that these equilibria may now be fitted and refined, such that the small differences in free energy are made consistent with the experimental pressures. In addition, the experimental data for cc = arag is now known to much higher pressures and temperatures, and the experiments of Suito et al. (2002) may now also be fitted satisfactorily.

    • 5

      Data for chlorite have been updated using experiments of Pawley (2003) and Fockenberg (1995). The new heat capacity and entropy data for chlorite are from Bertoldi et al. (2007).

    • 6

      Compressibility data for pyrophyllite is taken from Pawley (2003). The thermal expansion has been increased somewhat higher than the measurements of Symmes (1986) to satisfy experiments.

    • 7

      The data for phengite and aluminous biotite are updated as discussed in Coggon & Holland (2002).

    • 8

      New experimental data on cor + q = ky from Harlov & Milke (2002) and Harlov et al. (2008) are now incorporated in the data fitting.

    • 9

      Heat capacity and entropy for carpholite are taken from Bertoldi et al. (2006).

    • 10

      New measurements are used for heat capacity and entropy for cordierite (Paukov et al., 2006; Dachs & Geiger, 2008).

    • 11

      Ferroactinolite enthalpy is fitted to the experiments of Jenkins & Bozhilov (2003).

    • 12

      Experimental data of Koziol (2004) on sid + hem = mt + CO2 are now used to derive enthalpy data for siderite.

    • 13

      Measurements of entropy of hercynite are taken from Klemme & Van Miltenburg (2003).

    • 14

      Chloritoid–chlorite Fe–Mg natural partitioning data are taken from Vidal et al. (1999) and used as low temperature constraints. Heat capacity and entropy for chloritoid and carpholite end-members have been modified using data of Koch-Müller et al. (2002) and Bertoldi et al. (2006).

    • 15

      Glaucophane data have been augmented by experiments of Corona & Jenkins (2007) for gl + q = ab + ta; new thermal expansion data for glaucophane are taken from Jenkins & Corona (2006).

    • 16

      Thermal expansion data for staurolite are now taken from Gibbons et al. (1981) and compressibility from Grevel et al. (1998).

    • 17

      Pargasite data are now fitted to the experiments of Westrich & Holloway (1981) and Lykins & Jenkins (1992) using a higher entropy than before. The derived enthalpy agrees well with measured values of Kahl et al. (2003). The amphibole mixing terms are from page 264 of Diener et al. (2007) except that, for good agreement with temperatures and amphibole compositions in the two experimental studies above, inline image is now set at 2 kJ rather than inline image kJ.

    • 18

      Added high pressure experiments on antigorite and phase A from Wunder & Schreyer (1997) and Bose & Navrotsky (1998).

    • 19

      Added experiments of Aranovich & Newton (1999) on cc + q = wo + CO2, mag + en = fo + CO2 and ta = en + q + H2O, and phl + q = san + en + H2O. Also, those of Koziol & Newton (1998) for mag + en = fo + CO2.

    • 20

      Sphene thermodynamic data have been updated using heat capacities and entropy of Manon et al. (2008), thermal expansion from Malcherek (2001) and compressibility from Angel et al. (1999a,b).

    • 21

      Thermodynamic data for zircon and baddeleyite have been updated through the experimental data in Butterman & Foster (1967), Ferry et al. (2002) and are in excellent agreement with the Gibbs energies retrieved by Newton et al (2010).

    • 22

      Geikelite enthalpy has been improved via the additional experiments of Ferry et al. (2002) on mag + ru = geik + CO2.

      The full text of this article hosted at iucr.org is unavailable due to technical difficulties.