Investigating the role of endogenous opioids and KATP channels in glycerol-induced acute renal failure
Dharmraj Singh Sauriyal
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
Search for more papers by this authorAmteshwar Singh Jaggi
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
Search for more papers by this authorCorresponding Author
Nirmal Singh
Correspondence and reprints: [email protected]Search for more papers by this authorArunachalam Muthuraman
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
Search for more papers by this authorDharmraj Singh Sauriyal
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
Search for more papers by this authorAmteshwar Singh Jaggi
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
Search for more papers by this authorCorresponding Author
Nirmal Singh
Correspondence and reprints: [email protected]Search for more papers by this authorArunachalam Muthuraman
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
Search for more papers by this authorAbstract
The present study was designed to investigate the possible role of endogenous opioids and KATP channels in glycerol-induced acute renal failure (ARF) in rats. The rats were subjected to rhabdomyolytic ARF by single intramuscular injection of hypertonic glycerol (50% v/v; 8 mL/kg), and the animals were sacrificed after 24 h of glycerol injection. The plasma creatinine, blood urea nitrogen, creatinine clearance, and histopathological studies were performed to assess the degree of renal injury. Naltrexone (2.5, 5.0 and 10.0 mg/kg s.c.), glibenclamide (5.0 and 10.0 mg/kg i.p.), and minoxidil (25 and 50 mg/kg) were employed to explore the role of endogenous opioids and KATP channels in rhabdomyolysis-induced ARF. Pretreatment with naltrexone and glibenclamide attenuated hypertonic glycerol-induced renal dysfunction in a dose-dependent manner, suggesting the role of endogenous opioids and KATP channels in the pathogenesis of myoglobuniric renal failure. However, the simultaneous pretreatment with naltrexone (10 mg/kg s.c.) and glibenclamide (10 mg/kg i.p.) did not enhance the reno-protective effects of individual drugs, suggesting that release of endogenous opioids and opening of KATP channels constitute a single pathway in acute renal injury triggered by hypertonic glycerol-induced rhabdomyolysis. Furthermore, administration of minoxidil abolished the attenuating effects of naltrexone in glycerol-induced renal failure, suggesting that opening of KATP channels is downstream to opioid receptor activation. It is concluded that hypertonic glycerol-induced rhabdomyolysis may involve release of endogenous opioids that in turn modulate KATP channels to contribute in the pathogenesis of ARF.
References
- 1 Liano F., Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int. (1996) 50 811–818.
- 2 Jacob R. Acute renal failure. Indian J. Anaesth. (2003) 47 367–372.
- 3 Khan F.Y. Rhabdomyolysis: a review of the literature. Neth. J. Med. (2009) 67 272–283.
- 4 Vanholder R., Sever M.S., Erek E., Lameire N. Rhabdomyolysis. J. Am. Soc. Nephrol. (2000) 11 1553–1561.
- 5 Stefanovic V., Savic V., Vlahovic P., Getkovic T., Najman S., Zlatkovic M.M. Reversal of experimental myoglobinuric acute renal failure with bioflavonoids from seeds of grapes. Ren. Fail. (2000) 22 255–266.
- 6 Chander V., Singh D., Chopra K. Attenuation of glycerol-induced acute renal failure in rats by trimetazidine and deferoxamine. Pharmacology (2003) 67 41–48.
- 7 Kapusta D.R. Opioid mechanisms controlling renal function. Clin. Exp. Pharmacol. Physiol. (1995) 22 891–902.
- 8 Snook L.A., Milligan G., Kieffer B.L., Massotte D.J. Co-expression of mu and delta opioid receptors as receptor-G protein fusions enhances both mu and delta signalling via distinct mechanisms. Neurochem. (2008) 105 865–873.
- 9 Weber M.L., Farooqui M., Nguyen J. et al. Morphine induces mesangial cell proliferation and glomerulopathy via kappa-opioid receptors. Am. J. Physiol. Renal Physiol. (2008) 294 1388–1397.
- 10 Trelewicz P., Grzeszczak W., Drabczyk R. Levels of beta endorphin in serum of patients with chronic renal failure treated with hemodialysis during a test which stimulates hypoglycemia after insulin. Pol. Arch. Med.Wewn. (1993) 89 217–222.
- 11 Barreca T., Robaudo C., Cataldi A. et al. Plasma beta-endorphin levels and glucose tolerance in patients with chronic renal failure. Biomed. Pharmacother. (1995) 49 283–287.
- 12 Gupta K., Weber M.L. Renal effects of opioid exposure: considerations for therapeutic use. J. Opioid Manag. (2006) 2 236–240.
- 13 Singhal P.C., Sagar S., Reddy K., Sharma P., Ranjan R., Franki N. HIV-1 gp120 envelope protein and morphine-tubular cell interaction products modulate kidney fibroblast proliferation. J. Investig. Med. (1998) 46 243–248.
- 14 Arerangaiah R., Chalasani N., Udager A.M. et al. Opioids induce renal abnormalities in tumor-bearing mice. Nephron. Exp. Nephrol. (2007) 105 e80–e89.
- 15 Singhal P.C., Abramovici M., Bansal M. et al. Opioids modulate migration, spreading and adherence of mesangial cells. Nephron. (1994) 68 366–371.
- 16 Blaszczyk J., Kedziora J., Luciak M., Sibinska E., Trznadel K., Pawlicki L. Effect of morphine and naloxone on oxidative metabolism during experimental renal ischemia and reperfusion. Exp. Nephrol. (1994) 2 364–370.
- 17 Molia A., Novella J.L., Frances C., Jochum C., Blanchard F., Trenque T. Rhabdomyolysis following therapeutic doses of oral and injectable morphine. Therapie. (2002) 57 595–597.
- 18 Somala R.K. Rhabdomyolysis and brain ischemic stroke in a heroin-dependent male. Acta Psychiatr. Scand. (2009) 120 80–81.
- 19 Reeves W.B., Shah S.V. Activation of potassium channels contribute to hypoxic injury in proximal tubules. J. Clin. Invest. (1994) 94 2289–2294.
- 20 Kline C.F., Hund T.J., Mohler P.J. Ankyrin regulates KATP channel membrane trafficking and gating in excitable cells. Channels (Austin) (2010) 4 55–57.
- 21 Wang W.H., Giebisch G. Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch. (2009) 458 157–168.
- 22 Kim S., Heo N.J., Jung J.Y. et al. Changes in the sodium and potassium transporters in the course of chronic renal failure. Nephron Physiol. (2010) 115 31–41.
- 23 Silva-Santos J.E., Santos-Silva M.A., Cunha F.Q., Assreuy J. The role of ATP-sensitive potassium channels in neutrophil migration and plasma exudation. J. Pharmacol. Exp. Ther. (2002) 300 946–951.
- 24 Tawfik M.K., Abo-Elmatty D.M., Ahmed A.A. The role of ATP-sensitive potassium channel blockers in ischemia-reperfusion-induced renal injury versus their effects on cardiac ischemia reperfusion in rats. Eur. Rev. Med. Pharmacol. Sci. (2009) 13 81–93.
- 25 Chander V., Chopra K. Molsidomine, a nitric oxide donor and l-arginine protects against rhabdomyolysis-induced myoglobinuric acute renal failure. Biochimi. Biophys. Acta. (2005) 1723 208–214.
- 26 Ibrahim M., Luchese C., Pinton S. et al. Involvement of catalase in the protective effect of binaphthyl diselenide against renal damage induced by glycerol. Exp. Toxicol. Pathol. (2010) [Epub ahead of print].
- 27 Bowers L.D. Kinetic serum creatinine assays I. the role of various factors in determining specificity. Clin. Chem. (1980) 26 551–554.
- 28 Talk H., Schubert G.E. Enzymatic urea determination in the blood and serum in the Warburg optical test. Klin. Wochenschr. (1965) 43 174–175.
- 29 Subeq Y.M., Wu W.T., Lee C.J., Lee R.P., Yang F.L., Hsu B.G. Pentobarbital reduces rhabdomyolysis-induced acute renal failure in conscious rats. J. Trauma (2009) 67 132–138.
- 30 Perin L., Sedrakyan S., Giuliani S. et al. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS ONE (2010) 5 9357.
- 31 Bowmer C.J., Collis M.G., Yates M.S. Effect of the adenosine antagonist 8-phenyltheophylline on glycerol-induced acute renal failure in the rat. Br. J. Pharmacol. (1986) 88 205–212.
- 32 Chander V., Singh D., Chopra K. Catechin, a natural antioxidant protects against rhabdomyolysis-induced myoglobinuric acute renal failure. Pharmacol. Res. (2003) 48 503–509.
- 33 Newaz M., Yousefipour Z., Oyekan A. Role of PPAR-gamma on the pathogenesis and vascular changes in glycerol-induced acute renal failure. Pharmacol. Res. (2006) 54 234–240.
- 34 Newaz M., Yousefipour Z., Oyekan A. Natriuretic and reno protective effect of chronic oral neutral endopeptidase inhibition in acute renal failure. Ren. Fail. (2010) 32 384–390.
- 35 Zager R.A., Johnson A.C. Progressive histone alterations and pro inflammatory gene activation: consequences of heme protein/iron-mediated proximal tubule injury. Am. J. Physiol. Renal Physiol. (2010) 298 827–837.
- 36 Salluzzo R.F.. Rhabdomyolysis, in: P. Rosen, R.M. Barken (Eds), Emergency medicine concepts and clinical practice. Mosby, St Louis, 1992, pp. 2232–2234.
- 37 Wang S.G., Xu H.Q., Wang L.J. Measurements and significance of serum gastrin, plasma motilin and serum beta-endorphin in patients with severe burns. Zhonghua. Wai. Ke. Za. Zhi. (2005) 43 745–747.
- 38 Stanley B., Sher L., Wilson S., Ekman R., Huang Y.Y., Mann J.J. Non-suicidal self-injurious behavior, endogenous opioids and monoamine neurotransmitters. J. Affect. Disord. (2009) 124 134–140.
- 39 Altier C., Zamponi G.W. Opioid, cheating on its receptors, exacerbates pain. Nat. Neurosci. (2006) 9 1534–1540.
- 40 Nezami B.G., Talab S.S., Emami H. et al. Chronic upregulation of the endogenous opioid system impairs the skin flap survival in rats. Ann. Plast. Surg. (2009) 63 558–563.
- 41 Sauriyal D.S., Jaggi A.S., Singh N. Extending pharmacological spectrum of opioids beyond analgesia: multifunctional aspects in different pathophysiological states. Neuropeptides (2011) Jan 3. [Epub ahead of print].
- 42 Berrendero F., Robledo P., Trigo J.M., Martín-García E., Maldonado R. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system. Neurosci. Biobehav. Rev. (2010) 35 220–231.
- 43 Clayton C.C., Bruchas M.R., Lee M.L., Chavkin C. Phosphorylation of the mu-opioid receptor at tyrosine 166 (Tyr3.51) in the DRY motif reduces agonist efficacy. Mol. Pharmacol. (2010) 77 339–347.
- 44 Shirasaka T., Kunitake T., Kato K., Takasaki M., Kannan H. Nociceptin modulates renal sympathetic nerve activity through a central action in conscious rats. Am. J. Physiol. (1999) 277 1025–1033.
- 45 Sebastiano M., Edoardo A. Opioids and renal function. J. Pain (2004) 5 2–19.
- 46 Kapusta D.R., Obih J.C., Dibona G.F. Central mu opioid receptor-mediated changes in renal function in conscious rats. J. Pharmacol. Exp. Ther. (1993) 265 134–143.
- 47 Shweta A., Malpas S.C., Anderson W.P., Evans R.G. Effects of naloxone on the haemodynamic and renal functional responses to plasma volume expansion in conscious rabbits. Pflugers Arch. (1999) 439 150–157.
- 48 Afshari R., Ghooshkhanehee H. Tramadol overdose induced seizure, dramatic rise of CPK and acute renal failure. J. Pak. Med. Assoc. (2009) 59 178.
- 49 Gómez M., Castañeda M., Araujo A.M., Pascual J., Martín M.P., Batllori M. Consequences of heroin consumption: compartmental syndrome and rhabdomyolysis. An. Sist. Sanit. Navar. (2006) 29 131–135.
- 50 Deroee A.F., Nezami B.G., Mehr S.E. et al. Cholestasis induced nephrotoxicity: the role of endogenous opioids. Life Sci. (2010) 86 488–492.
- 51 Quast U. ATP-sensitive K+ channels in the kidney. Naunyn Schmiedebergs Arch. Pharmacol. (1996) 354 213–225.
- 52 Namazi H. ATP-sensitive potassium channel blockage attenuates cisplatin-induced renal damage: a novel molecular mechanism. Kidney Blood Press. Res. (2008) 31 163.
- 53 Pompermayer K., Souza D.G., Lara G.G. et al. The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats. Kidney Int. (2005) 67 1785–1796.
- 54 Chen Z., Li T., Zhang B. Morphine postconditioning protects against reperfusion injury in the isolated rat hearts. J. Surg. Res. (2008) 145 287–294.
- 55 Cunha T.M., Roman-Campos D., Lotufo C.M. et al. Morphine peripheral analgesia depends on activation of the PI3Kgamma/AKT/nNOS/NO/KATP signaling pathway. Proc. Natl. Acad. Sci. USA (2010) 107 4442–4447.
- 56 North R.A., Williams J.T., Surprenant A., Christie M.J. Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc. Natl. Acad. Sci. USA (1987) 84 5487–5491.
- 57 Cohen M.V., Yang X.M., Liu G.S., Heusch G., Downey J.M. Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K (ATP) channels. Circ. Res. (2001) 89 273–278.
- 58 Pateliya B.B., Singh N., Jaggi A.S. Possible role of opioids and KATP channels in neuroprotective effect of postconditioning in mice. Biol. Pharm. Bull. (2008) 31 1755–1760.